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Abstract: This paper is concerned with the problem of robust static output feedback guaranteed cost control for
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Two numerical examples are given to illustrate the effectiveness of the proposed methods.
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1 Introduction

Over the past few decades, time-delays have been
greatly considered in dynamical systems. Time-delay
often appears in many areas such as chemical sys-
tems, air-craft stabilization, communication systems,
population dynamic models, automatic control sys-
tems, neural networks, metallurgical processing sys-
tems and so on. It is well known that the existence of
time-delays in many cases lead to poor system perfor-
mance, and even cause system instability. Therefore,
stability analysis for time-delay systems have been in-
vestigated by many researchers over the past years
[1,2,3,4,5,6,7,8,9,10, 11, 12]. [1, 2,3, 4, 5, 6]
deals with constant delays, and [7, 8, 9, 10, 11, 12]
studies the problem of time-varying delays, or mixed
time-varying delays, which being more complicated.
On the other hand, the problem of designing con-
trollers for time-delay systems has drawn consider-
able attention especially designing robust controllers.
A great deal of effort has been directed towards find-
ing a controller in order to guarantee robust stability
[13, 14, 15, 16, 17]. However, in many practical sys-
tems, it is desirable to design control systems which
are not only asymptotically or exponentially stable but
can also guarantee an adequate level of system per-
formance. One method of dealing with this problem
is the guaranteed cost control. Moreover, it has the
advantage of providing an upper bound on a given
system performance index and thus the system per-
formance degradation incurred by the uncertainties or
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nonlinearities is guaranteed to be not more than this
bound. Bases on this idea, a lot of significant results
have been addressed for continuous-time systems in
[18, 19, 20], and for discrete-time systems in [21, 22].
When the time-delay is time-varying delays [23] or
interval time-varying delays [24, 25], even is mixed
time-varying delays [26], the situation turn to more
complicated.

In the past studies for guaranteed cost control, al-
most most of the articles considered linear systems
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. How-
ever, in majority dynamic systems, the nonlinear per-
turbations appears more and more frequently. There-
fore, we not only deal with the time-varying delays,
uncertainties, but also deal with the nonlinearities, dif-
ficulties then arise when on attempts to derive expo-
nential stabilization conditions in order to find con-
troller parameters. And in the past studies, the de-
lay appears in nonlinear perturbations always keep
consistent with delay in state vector, however in ac-
tual system, there exists inconsistent phenomenon.
Hence in this case, the methods in linear systems
[21, 22, 26, 27] can not directed applied to nonlin-
ear systems. This calls for a fresh look at the prob-
lem with a improved Lyapunov-Krasovskii function-
als and a new set of LMI conditions.

In this paper, we aim to design robust static out-
put feedback guaranteed cost controller for a class of
uncertain discrete systems with mixed time-varying
delays and nonlinear perturbations, where the state
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and output are subjected to interval time-varying de-
lays. By constructing a set of improved Lyapunov-
Krasovskii functionals, novel criteria for the existence
of robust static output feedback guaranteed cost con-
trollers are established in terms of linear matrix in-
equality (LMI). Two numerical examples are provided
to show the effectiveness of the proposed method.

Notations: Throughout this paper, R" denotes the
n-dimensional Euclidian space, R™*" is the set of
n X r real matrices, I represents the identity matrix.
AT denotes the transpose of A, a matrix A is sym-
metric if A = AT, 02 (A) (respectively, Apin(A))
denotes the maximum (respectively,minimum) value
of the real parts of eigenvalues of A. The symmetric
terms in a matrix are denoted by *. X > 0 (respec-
tively X > 0), for X € R™*" means that the matrix is
real symmetric positive definite (respectively,positive
semi definite). N7 denotes the set of all real non-
negative integers, the scalar product of two vectors z,
y is denoted by 7'y and x;, denotes the segment of the
solution z(k) on [—7,—7 + 1,...,0] with the norm
lzg|| = max{||z(k — 7)|,...,||=z(k||}. Matrices, if
not explicitly specified, are assumed to have compati-
ble dimensions.

2 Preliminaries

Consider the following uncertain discrete-time system
with mixed time-varying delays and nonlinear pertur-
bations:

x(k+1)=[A+ AAlz(k) + [A1 + AA]z(k
—d(k)) + [B+ ABJu(k) + [F + AF] f(z(k))
+[G + AG]g(z(k — h(k))),

y(k) = Cx(k) + Crz(k — d(k))
+ Coa(k — h(k)), ke NT,

z(k) =g, k=—-0,—0c+1,...,0,

(1)
where (k) € R" is the state vector, y(k) € R" is the
observation output, u(k) € R™ is the control input.
A, A, B, F, G, C, Cq, Cy are given constant ma-
trices with appropriate dimensions. AA, AA;, AB,
AF, AG are the time-varying parameter uncertainties
that are assumed to satisfy the following admissible
condition:

[AAAA;ABAFAG) = M H (k)[Ni NoN3 N, Ns),
(2)
HT(k)H(k) <1, Yke N, 3)

where M, Ni, No, N3, Ny, N5 are constant matri-
ces with appropriate dimensions. The positive inte-
gers d(k) and h(k) are time-varying delays satisfying:

0 <di <d(k) < da, 0)
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0 < hy < h(k) < he, &)
where di, d2, hi, ho are known positive integers.
f(z(k)) € R™, and g(xz(k — h(k))) € R™ are un-
known nonlinear perturbations with respect to (k)
and z(k — h(k)), respectively, assumed as

FH(k) f(x(k) < pra’ (K)z(k),  (6)
o (alh — ol —hE))
< BT (k — h(k))x(k — h(k),
where 31, B2 are known positive integers.
The initial condition
Y= (‘)0—07 P—g+15--+» 900) S R(U+1)n
with the norm
el = max{[lz(=o)|,.... [l=(0)I},  (8)

where 0 = max{hs, da2}.
Associated with the system (1) is the following
cost function:

J= i(wT(k:)Sx(k) + 2T (k — d(k))Syz(k
k=0

= 9
—d(k)) + 2T (k — h(k))Syx(k — h(k)) ®

+ uT (k) Ru(k)),

where S, S1, S2, R are given symmetric positive def-
inite matrices with appropriate dimensions.

Suppose the system output is available for feed-
back, the problem under consideration in this paper
is to design an output feedback controller u(k) =
Ky(k) for system (1) such that for any admissible un-
certain matrix H (k), the resulting closed-loop system
is robustly exponentially stable with an upper bound
for the cost function (9). The corresponding closed-
loop system described as follows:

z(k +1) = [A+ BKClz(k) + [A1 + BKC]
x x(k — d(k)) + BKCyx(k — h(k))

+ Ff(z(k)) + Gg(x(k — h(k))),
~ R R (10)
where A = A+AA, Ay = A1 +AA, B=B+AB,
F=F+AF,G=G+ AG.
Before ending this section, we introduce the fol-
lowing definitions and lemmas:

Definition 1 Given o« > 0, the closed-loop system
(10) is said to be robustly exponentially stable with
a decay rate «, if there exists scalars | > 0 such that
for every solution x(k, ¢) of the system the following
inequality holds:

|z(k, ¢)|| < pe=**||¢||, Vk e NT.
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Definition 2 For system (1) and cost function (9), if
there exist a output feedback control law u*(k) =
Ky(k) and a positive constant J* such that the
closed-loop system (10) is robustly exponentially sta-
ble with a decay rate o and the value (9) satisfies
J < J*, then the value J* is said to be a guaran-
teed cost constant, u*(k) is said to be a robustly out-
put feedback guaranteed cost control law of the system
and its corresponding cost function.

Lemma 3 For any x, y € R"™ and positive symmetric
definite matrix W € R™™™, we have

+22Ty < 2T Wa + T W1y

Lemmad [I7] Let A, E, H and F be real matrices
of appropriate dimensions and FTF < I, then we
have:

(a) For any scalar p > 0 : EFH + HTFTET <
pEET + p~'HTH.

(b) For any matrix P > 0 and scalar ¢ > 0 satisfying
P—¢EET >0:

(A+ EFH)'P~Y(A+ EFH)
<AT(P - eEFE") 1A+ e 'HTH.

Lemma 5 (Schur Complement[11]) Given constant
matrices S1, S9, S3 with appropriate dimensions,
where Sy = ST, Sy = ST, then Sy + S35;153 < 0

if and only if
)<0 or ( ><O.

S1
S3
3 Main Results

In this section, we will investigate a sufficient condi-
tion for the existence of robust output feedback guar-
anteed cost control for system (1) by the Lyapunov
function method. Before introducing main result, the
notations of several matrix variables are defined for
simplicity.

Let us denote

S5
Sy

~ S,
S5

S3
S1

©11 ©12 0
II; = * O O |,
* * —Q1

My = (AT 0 0)",
HQ = diag{—Qg, —81[, —62[},
II3 = — (W1 + 3R),
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M= (WaC 0 0),
0 0 0
Iis = [ e*NB e*2NB e¢*NB |,
0 0 0
0 0 0 0 0
U= |NF NG NM NM NM]|,

0 0 0 0 0
5 = diag{—(W1 — N3 N3), —(W1 — eN3 N3),
— (W1 — eN5 N3)},
Iy = diag{—(d2 — d1 + 1)(W1 + 3R),
— (ha — h1 + 1)(W1 + 3R)},
Mg = diag{—(I — eN{ Ny), —(I — eNJ N;),
—¢/(e?® 4 2% 4 2oh2 L 9) (.50,
— 0.5age (421
011 =—P+(dy—d; +1)(Q1+€2*% S+ (ho—h1 +1)
Qs + €2ah252 + 522(6204(1+h2) + €2€2ah2)I]
+ B2(e*™ + )] + S + 2a1“N{ Ny
+2(dy — dy + 1)e gy NI Ny,
Oy = P—(N+NT), ©15 =0.5¢¥(NA+ATNT),
O3 = 0.5 @+ (N A, + ATNT),
A= (A] Ny), Ay =(dy—dy +1er2CTWY,
Ay = (hg — hy + 1)er2CcTW]
Ry = 2°CTKTW,KCy 4 3¢ CT KTRKCy
+ €202 ) 4 9e2(1Hd2) ) NT N,
Ry = B3e2(tha) 1 4 g2ahag, 4 20T KTV, KC,
+ gofB2e20h2 4 3e2h2 T KT RK Oy,
A1 = Amin(P),
A2 = Amaz (P) + (d2 + d3)[Amaz (Q1) + Amaz (R1)]
+ (h2 + 13) [Amaz(Q2) + Amac (R2)].-

Theorem 6 For given scalar o« > 0, the control
u(k) = Ky(k) is a robustly output feedback guar-
anteed cost controller for nonlinear uncertain system
(1), if there exist symmetric positive definite matrices
P, Q;, i = 1,2, Wy, Wa, an arbitrary matrix N and
scalars € > 0, a1 > 0, a9 > 0,1 > 0, g9 > 0 such
that the following LMI holds:

II;, 0 ILiz I ILis Il

x IIs O 0 0 0

« % I3 0 0 0

x % * IIy O 0 <0, D
x % * x Iy 0

* % * * x g
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and the guaranteed cost value is given by J*
Xa||@||%. Moreover; the controller parameter K is de-
signed by K = (W1 + 3R) " TWa.

Proof: First introduce the new variable z(k)
e®* 2 (k). The closed-loop system (10) is turned to

= [A+ BKC)e“z(k)

+[A] + BKCy]e® R+ D 2 (k — d(k))
+Fe D F(2(k))

+BEK Coe® B+ 2 (] — (k)
+Ge* " g (2(k — h(k))),

z(k+1)

F(ZE)) and

= e“[A+ MH(k)Ny],
Ay (k) = WD Ay + MH (k)N

B(k) = e**+Y[B + M H (k) N3],
C(k) = e,
Ci(k) = e oMoy,

(k) = e IOy,

F(k) = e** D[P 4 MH(k)Ny),
G(k) = e DG + M H (k)Ns).

The inequalities (6), (7) turn to, respectively,

FT (k) f(2(k)) < pie

" (z(k — h(k))g(z(k —
k

< /82 —2a(k—h( )

“20k T (k) 2(k),

h(k))) "
T (k — h(k)=(k — h(k)).

13)

For system (12), choose the following Lyapunov-
Krasovskii functional candidate

5)
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where
Vi(k) = 27 (k) Pz(k),
k—1 k—1
2T (1) Qq2(i) + 21 (1)Qa2(4),
i=k—d(k) i=k—h(k)
—d1+1
- Y Y swesn
j=—do+2i=k+j—1
—h1+1 k—1
D S MU
j=—ho+2i=k+j—1
k-1 k—1
Vik) = > 2T Riz(i)+ Y 2T (i) Roa(i),
i=k—d(k) i=k—h(k)
—d1+1
=YY some
j=—do+2i=k+j—1
—h1+1 k—1
Y Y SoRs)

j=—ho+2i=k+j—1

Take the difference of V; (k) and Va2 (k) along the so-
lution of the system yields:

AV (k) =21 (k+1)Pz(k + 1) — 2T (k) Pz(k),

AVa(k) )

D

i=k+1—d(k+1)

k-1
21 (1)Q12(i)

>

i=k—d(k)

D

—h(k+1)

-1
21 (i) Q2z(i)

i=k

k
i=k—h
k

21 (1)Q12(i)

+ (1) Q22(1)

k
(
—h(k)
d1

=Y Qi) + (1))
i=k+1—d(k+1)

(/€ d(k))Q1z(k — d(k))
+ Z (1)Q12(4)

i=k+1—dy

k—1
- Y AH@Qz() + 2T (k)Qaz(k)
i=k-+1—d(k)

k—h1

+ 21 (1) Qa2 (i)

D

i=k+1—h(k+1)
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+ Z (1)Q22(i)
i= k+1 h1
—= (0 = () Qax(k ~ (k)
— Y T0@a0)

i:kJrlfh(k)

< 2T (k) (Q1 + Q2)z(k)
—2"(k — d(k))Q12(k — d(k))
—2"(k = h(K))Q22(k — h(K))
k—d;
LY TR
i=k+1—d(k+1)
k—hy
+ Y 2T (H)@ez(d). (16)
i=k+1—h(k+1)
The difference of AV3(k) is given by
AV;(k)
—d1+1 — k—1
= > {Z Q=) — > 2T()Quz(0)
Jj=—d2+2 i=k+j i=k+j

+2T (k)Quz(k) — 27 (k+ 5 — )Quz(k +5 — 1)}
Al k-1

DRI

jf—h2+2 i=k+j

(1)Q22(i) + 2" (k) Q22 (k)

— Z (0)Q2z(i) — 2" (k+j—1)Qoz(k+j—1)}
i=k+j
k—dy
=(dy — d)z"(F)Quz(k) — > 2T ()Q1z(j)
j=k+1—dy
k—h1
+(ho = h)Z" (K)Qaz(k) = > 2T (1)Q22()).
j=k+1—ho
(17)
Since
k—d; k—dy
> Oz - Y 2T (0)Quz(i) <0

i=kH—d(k+1) i=kHl—do
k—h1 k—hl
Yo A @)Quz) — Y AT (1)Qe2(i) <0

i=k+1—h(ktl) i=k+1—hs

we can get the followings inequality from (16) and

(17):

AVa(k) + AVi(k) < (do — dy + 1)27 (k)Q12(k)
— 2" (k — d(k)Quz(k — d(k))
+ (hy — h1 + 1)2T (k)Qa2(k)
— 2T (k = h(k)Q22(k — h(k)).
(18)
E-ISSN: 2224-2880 877
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Similarly, we can get

AVy(k) + AVs(k) < (dz — di + 1)2" (k) Ry2(k)
— 2" (k = d(k)))R12(k — d(k))
+ (ha — h1 +1)2T (k) Roz(k)
— 2T (k — h(k))Roz(k — h(k)).
(19)

From (14)-(19), it yields

AV (k) < 2T (k+ 1) Pz(k 4 1) + 27 (k)[(d2 — dy
+ 1)(Q1+ B1) + (he — by + 1)(Q2 + Ry)
= Plz(k) — 2" (k — d(k))(Q1 + R1)2(k — d(k))
— 2" (k = h(k))(Q2 + R2)z(k — h(k)).
(20)
Multiplying 227 (k 4 1) N both sides of the iden-
tity (12), we have
22T (k+1)N(A
22T (k 4+ 1)N (A (k)
—d(k)) + 227
< ) + 227

NG(k)g = 0.
(2D
Note that for any €; > 0, g2 > 0, it follows from
(13) to (14) that

er[Bre 2T (k)2(k) — F7(=(k)) f(2(k))] = 0,
(22)

eafe o ETHNT(h —h(k)z(k —h(k)

— " (2(k — h(k))g(=(k — h(k)))] = 0.

Adding the above relation (21)-(23) into (20), we can
get

AV (k)
Lk + 1) P2k +1) + 27 (k)[(do — di + 1)(Q1
+R1)+(h, — h1 +1)(Q2 + R2) — Pz(k)
—z (k d(k))(Q1 + R1)z(k — d(k))
(k h(k))(Q2 + R2)z(k — h(k))

IN

Lk +1)Nz(k+1)
+2z (k+1)N(A+B(k)KC(k))z(k)
+227 (k+1)N (A1 (k) + B(k) K Cy (k) z(k—d(k))
+22T(k + 1)NB(k)KCy(k))z(k — h(k))
+227 (k + 1)NF (k) f(2(k))
+22" (k + 1)NG(k)g(z(k — h(k)))
+er[Bre > 2T (k)2 (k)
— T (2(k)) F(z(k))]
+e9[B2e™ 20 k=hED T () — h(k))z(k — h(k))
—g" (2(k = h(k)))g(z(k — h(k)))].
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Dealing with partial idem in (24), we have

Lk + 1)N(A+ B(k)KC(k))z(k)
=227 (k + 1)N[e*(A+ MH(k)Ny)
+e*(B 4+ MH(k)N3)KC)z(k)
= 2T (k+1)e®[NA+ ATNT + NMH(k)N,
+N{HE)TMTNT)2(k)
+2¢“2T (k +1)N[B + M H (k) N3] KCz(k).
(25)

Applying Lemma 3 and Lemma 4, we get
Lk + 1)N(A+ B(k)KC(k))z(k)
2T (k4 1)eY(NA+ ATNT)z(k)
+ 2¢“2T (k + 1)NMH (k) Ny 2(k)
(k) CTKTW K Cz(k)
2T(k 4+ 1)e**N[B + M H(k)N3] x
Wi B+ MH(K)N3) " NT2(k +1)
2T (k4 1)e(NA+ ATNT)z(k)
+ 2012 (k+ )NMMTNT 2(k + 1)
+2p7 e 2T (k)N Ny2(k)
(k) CTKTW K Cz(k)
2Lk +1)e2*N[B(W; — eNJI N3)~1 BT
+ e 'MMTINT 2(k + 1).

(26)

Similarly, applying Lemma 3 and Lemma 4, we
have

& (k+ DN (A (k) + BR)ECr (k)= (k -
=227 (k + 1)Ne® @BV Ay + MH(k)N,
+ (B + M H(k)N3)KC1]z(k — d(k))
2k 4+ 1) =D NA + ATNT)2(k —
+ 2e @D T (k4 1)N M H (k) Noz(k
+ 2T (k + 1)e*® N[B + MH(K)Ns]
x e*KCyz(k — d(k))
(o DAL+ AT )
4 2p0e DT (1 L WNMMTNT 2(k + 1)
N nglea(dQH)zT(k _ d(k))NgNQZ(k —d(k))
2T(k +1)e2% N[B + MH (k)N W, [B
+ MH(k)N3)TNT2(k + 1)
+ 22T (k — d(k))CTKTW K Cy 2(k — d(k))
b+ DI Ay + ATNT)a(h — ()
426D [ T (s 4 )N MMTNT 2(k + 1)
+ py 2T (k — d(k))NT Noz(k — d(k))]

d(k))

d(k))
—d(k))
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(k4 1)e?*®2 N[B(W; — eNI N3)~ ' BT
+ e "MMTINT 2(k + 1) 4 2227 (k
—d(k))CTKTW K Cy 2(k — d(k)),

27

and

Lk 4+ 1)NB(k)KCy(k))z(k — h(k))
=22 (k + 1) NP+ (B
+ MH (k)N3]K Coz(k — h(k))
<e?h2,T(k + 1)N[B + MH(k)N3)W; (B
+ MHk)N3]"NT2(k +1) + 22T (k
— h(E)CTKTW, K Cyz(k — h(k))

<T(k+1)e* "2 N[B(W; — eNIN3)™'B

+ e "MMTINT 2(k + 1) 4 2227 (k

— h(k))CT KW, K Coz(k — h(k)).

(28)

‘We have

2 (k+ D)NF(K)f(2(F))
=2:T(k +1)N(F + MH(k)Ny)e”
2 (k+ 1)N(F + MH(k)Ny)(F

+ MHk)N)TNT2(k +1)
+ 2D FT (2(k)) f(2(K))
<z(k+1)N[F(I — eN]Ny)~'FT
+ e 'MMTINT 2(k 4+ 1) + 22T (k) z(k),
22T (k+ 1)NG(k)g(z(k — h(k)))

=22T(k 4+ 1)N(G + M H (k) N5)e®**+Dg(z(k
— h(k)))
(k4 1)N(G + MH(k)Ns)(G
+ MH(E)N5)TNT 2(k + 1)
+ 2 VGT (2 (k — h(k))g(z(k — h(k)))
<T(k+ 1)N[G(I — eNI Ns)~1GT
+ e "MMTINT 2(k + 1)
+ 2200 T (| — h(k))z(k — h(k)).

At last, adding the following relation
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e~ 20(k=h(k)) G, "into (24), and using

ul' (k)Ru(k) < 32T (k)CTKTRKCz(k)

+ 3e20d2 T (] — d(k))CT KTRKC2(k — d(k))
+ 3¢, T (k — h(k))CT KTRK Coz(k — h(k)),
we can get
AV (k) < €7 (k)Q&(k) — [ (k)Sz(k) + 2T (k
d(k))S12(k — d(k)) + 27 (k — h(k))S22(k
— h(k)) +u” (k) Ru(k)],

(31
where {(k) = [2(k),z(k + 1),2(k — d(k)), z(k —
h(k)) f(z(k)) g(z(k — h(K)))]", and

Qu O12 0 0 0 0
*  (lgg O3 0 0 0
0_ * x  —Q1 0 0 0
* * x —Q2 0 0 ’
* * * * —e1l 0
* * * * * —eol

Q11 = 011 + CTKT[(dy — dy 4 1)e**2(W, + 3R)
+ (hg — hy + 1)e**W1|KC,
+CTKT(Wy +3R)KC
+3(hg — hy + 122 CT KT RKC,
+ (hy — hy + 1)e?h2CTKTW, KOs,
Qgy = O + 2*NB(W; — eNI N3) "1 BTNT
+ 2R NB(W, — eNI N3) ' BTNT
+ 22 NB(Wy — eNI N3) ! BTNT
+ NF(I — eNINy)"'FTNT
+ NG(I — eNIN5)'GTNT
+ e (2 420 4 22 L ) NMMTNT
+ 201 NMMTNT 4 2ppe* @O NMMTNT .

Define a1 = pl_l, ay = p2_1
congruent transformation

T:dz’ag{I,LFl,Fg,I,I},

and inserting the

where
Iy = (W, +3R)™!

and
Ty = (W1 + 3R) ‘diag{I, I},

into the LMI (11), we can get a matrix inequality. By
Lemma 5 (Schur complement lemma), the condition
Q0 < 0 is equivalent to the above matrix inequality.
Therefore, from (31) it follows that

AV (k) <0,
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which implies that

V(k)<V(0), VeNT, (32)
We can easily get that
Mllz(R)* < V (k) < doll2il, (33)

where ||zx|| = max{||z(k — o)]],...
From (32) and (33), we can get

Mllz(R))? < Azllell?,

W

therefore,

A2 _
[2(k)[| < ﬁllsol\-
ak

Using the relation z(k) = e**xz(k), we can get

2
(k)] < 4/ 5 “llell, Vke N*.

Therefore, the closed-loop system (10) is exponen-
tially stable.
Next we will find the guaranteed cost value. From
(31), we can get
AV (k) <
— [z (k)Sz(k) + 2T (k — d(k))S1z(k — d(k))
o’ (k — h(k))Sox(k — h(k)) + u' (k) Ru(k))],

therefore,

[ T(k)Sx(k) + 2" (k — d(k))S12(k — d(k))
o’ (k — h(k))Sax(k — h(k)) +u" (k) Ru(k)]
< V(k) —V(k+1).
(34)
Summing up both sides of (34) from 0 to n — 1, we
can get

n—1

> T (k)Sa(k) + 2T (k — d(k))Siz(k — d(k))
k=0

+ 2T (k — h(k))Sox(k — h(k)) + u” (k) Ru(k)]
<V(0) —V(n).

Let n — +o00, noting that V' (n) — 0, we can get

> (k) Sz (k) + 2" (k — d(k))Six(k — d(k))
k=0

L (k — h(k))Saz(k — h(k)) + uT
< V(0),

(k) Ru(k)]

that is, J < V/(0). Associated with (33), we have
J < allgl? = . 0
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Remark 7 When the delay in nonlinear perturba-
tions keeps consistent with the delay in the state vari-
able, the system (1) is turned to:

z(k+1)=

[A+ AA]z(k) + [A1 + AAq]z(k — d(k))
+ [B+ ABJu(k) + [F + AF]f(x(k))
+[G + AGlg(x(k — d(k))),

Cz(k) +

Pk

y(k) =
(2 (k)

)
k=

—do,—do+1,...,0,
(35
and the closed-loop system (10) and the cost function

(9) are reduced to

z(k+1) = [A+ BKClz(k) 4+ [A, + BK(Cy
+ Co)Jz(k — d(k)) + F f(x(k))
+ Gy(z(k — d(k))),

2! (k — d(k))(S1

J = i(wT
k=0

+ So)x(k — d(k)) 4+ u” (k) Ru(k)).

Thus we can give a sufficient condition for the
existence of robust output feedback guaranteed cost
control for system (35) based on Theorem 1. The no-
tations of several matrix variables are also defined for
simplicity. Let us denote

Ry = €2a(C1 —|—02)TKTW1K(01 —1—02)
+ €22 () +55)
+ 2e20% (¢} + Co)TKTRK (Cy + Cy)

+ 2e ) g INT N,

)\1 — )\mzn(P)y

)\2 - )\mar(P) + (d2 + d%)[)\ma:c(Ql) +
Corollary 8 For given scalars o > 0, the control
u(k) = Kuy(k) is a robustly static output feedback
guaranteed cost controller for nonlinear uncertain
system (35), if there exist symmetric positive definite
matrices P, QQ1, W1, W, an arbitrary matrix N and
scalars € > 0, a1 > 0, a2 > 0,1 > 0, e5 > 0 such
that the following LMI holds:

Iy 0 Ihiz Iy Iz Ilye
x Il 0 0 0 0
* x 13 0 0 0
x % * IIy O 0 <0, @9
x % * x Iy 0
* * * * * 114
E-ISSN: 2224-2880
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where
©11 ©12 0
I, = x  Og O3 |,
* * -1

H2 = diag{_gl-[a _82-[}7

M= (WaC 0 0)', Ty= (AT 0 0)"

0 0
5= | e*NB e NB |,
0 0

IIs = —(W1 4+ 2R),

0 0 0 0 0
NF NG NM NM NM |,
0 0 0 0 0

Iy = —(d2 — di + 1)(W1 + 2R),
= diag{— (W, — eNI N3), —(W; — eNI N3)},
I = diag (—(I — eNJ Ny), —(I — eNZ N3),
— 26/(620‘d2 +e2 4 2), —0.5a1e™“,
—0.5a26_0‘(d2+1)> ,

011 = —P + (do — dy +1)[Q1 + €2*%2(S; + So)]
+ ﬁ%(eh +e1)l + S+ 2a1e” lTNl
+2(dy — dy + 1)e @t gy NI Ny,

Qg =P — (N +NT),

012 = 0.5¢*(NA+ ATNT),

O3 = 0.5e* B+ (N A, + ATNT),

A = (dy — dy + 1)e®®2(Cy + Co)TW,

IIig =

and the guaranteed cost value is given by J* =
X2||p||%. Moreover; the controller parameter K is de-

signed by K = (Wy + 2R)~TWh.

Proof: The corresponding proof is similar to that in
Theorem 1, which are omitted. O

Remark 9 Without uncertainty idems, the system (1)
is reduced to

z(k+1) =Ax(k) + Ajz(k — d(k)) + Bu(k)
+ Ff(x(k)) + Gg(z(k — h(k))),
y(k) =Ca(k) + Cra(k — d(k))
+ Cox(k — h(k)), k€ NT,
z(k) =9k, k=—-0,—0+1,...,0,
(37)

Volume 13, 2014



WSEAS TRANSACTIONS on MATHEMATICS

and the closed-loop system (10) is reduced to

z(k+1) =(A+ BKC)xz(k)
+ (A1 + BKCh)x(k — d(k))
+ BKCox(k — h(k)) + F f(x(k))
+ Gg(x(k — h(k))).

Next we give a sufficient condition for the exis-
tence of robust output feedback guaranteed cost con-
trol for system (36) also based on Theorem 1. For
simplicity, let us denote

Ry = ®C{ K"W1KCy + €28,
+ 3e20 0T KTRK Y,

Ry = e**C] KTW1KCy + p3e**(IHh2) 4 2oh2 g,
+ eaf5e°M2 1 + 3¢ C§ KT RK Cy,

A = Amin(P),

A2 = Az (P) + (da + d3) Amaz (Q1) + Anaw (1))
+ (he + h%)[)‘maI(QQ) + Amaz (R2)]-

Corollary 10 For given scalars o« > 0, the control
u(k) = Ky(k) is a static output feedback guaranteed
cost controller for nonlinear system (36), if there exist
symmetric positive definite matrices P, Q;,i = 1,2,
W1, Wa, an arbitrary matrix N and scalars € > 0,
€1 > 0, g2 > 0 such that the following LMI holds:

Iy 0 Iz ITyy

ITi5 Il

x Il 0 0 0 0
x x II3 0 0 0
x % * IIy O 0 <0, B9
* * * * 115 0
* % * * x g
where
©11 612 0
I = * O ©Oo3 |,
* * =
0 0
IIig= | NF NG|,
0 0
0 0 0
IIis = | e*NB e*2NB e*:NB |,
0 0 0

M= (CTWE 0 0) Ty = (AT 0 0)",
H2 = diag{—Qg, —81[, —82[},
II3 = —(W1 + 3R),
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Iy = diag{—(d2 — d1 + 1)(W1 + 3R),
— (ha — h1 + 1)(W1 + 3R)},
15 = diag{—W1,—W1,-W1},
Il = diag{—1I,—1},
O11 = —P + (dy — dy + 1)(Q1 + 2> 5y)
+ (hy — by 4+ 1)[Q2 + €2M28, 4 3 (e22UFh2)
+ et [ 4+ B2(e®* 4 1)1 + S,
O =P — (N +N7T),
O12 = 0.5¢*(NA + ATNT),
O3 = 0.5 =TV (N A + ATNT),
A= (A1 Ay), Ay = (dy —dy + De*2CT WY,
Ay = (hy — hy + 1) CT WY,
and the guaranteed cost value is given by J* =

\a||¢||2. Moreover, the controller parameter K is de-
signed by K = (W1 + 3R)"TWa.

Proof: Construct the Lyapunov-Krasovskii func-
tional (15). The corresponding proof is similar to that
in Theorem 1, which are omitted. O

4 Numerical examples

In this section, two numerical examples are given to
demonstrate the effectiveness of the proposed meth-
ods.

Example 11 Consider the nonlinear uncertain
discrete-time system (1) with the following parame-
ters :

=050 e M=o o)
= o0s F=loos o)
=00 o0 €= |0t oos)
o= T00s om] ©=|Zo0s ooy
v=oi 0ol m=loe Yol
V= om o =00 nor)
M= oo o) = |oos o0
5= [o().i25 06.135]’ S1= [8? giﬂ’
S=l o5l B (02 0s)
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and fork =0,1,2,...

f(x(k —d(k))) = sin(z(k — d(k))),
g(e(k — h(k))) = 2sin(z(k — h(K))),
(k) = 2+ sin® B p(k) = 2 4 T2

Given o« = 0.1, d1 =2, dz =3, h1 =2, hg = 3,
61 = 0.2, B = 0.3. By using the LMI Toolbox in
MTALAB [29], the LMI (11) in Theorem 1 is satisfied
with

p_[102226 —1.1379 Q1= 1.2429  —0.3419
T—1.1379 11.6238|° ' |—-0.3419 1.1140 |’
Qo 1.2429  —0.3419 W 3.7245 —0.1804
271-0.3419  1.1140 | 71T [—0.1804  3.1272
W | 2:0821 —0.2124) [ 82587 —0.2481
27102124 4.3941 |’ T |—0.5235  8.8085

€ = 14.0832,a; = 8.4647,az = 9.6368,
&1 = 4.5770,62 = 3.1914.

Moreover, according to the controller design
K = (Wy +3R)" "Wy,
we have

0.5265

—0.1471
K= {—0.0880 ] '

0.9043
Therefore,the guaranteed cost controller is as follows:

—0.0345
ulk) = [ 0.0234
L[ ~0.0137
—0.0417

o

—0.0204
—0.0318
Moreover, the solution of the closed-loop system
satisfies ||z (k)| < 2.8261e~%1%||¢||, and the guaran-
teed cost control value of the closed-loop system is
J* = 76.5695||4||> . Given the initial condition of
system (11) as follows:

—0.1624
0.0535

0.0950
0.0457

0.1272
0.0051

} (k)
] (k — d(k))
] o(k — h(k)).

T T
)

(-1 0)" ,z(-2)=(-1 1)
(0 —05)",2(0)= (0.5 —0.1)",

then associated with the above values, we can get state
trajectories of the closed-loop system as shown in Fig-
ure 1.

From the Figure 1, it is easy to see the system is
exponentially stable.
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x1
08} - - x2|]
|
|

10 15 20
Time[sec]

Figure 1: State trajectories of the closed-loop system

Example 12 Consider the uncertain discrete-time
system (35) with the following parameters:

005 0 —0.01 0.01
A=102 003 0 |, B=0.02],
0 002 —0.05 0.03
002 01  0.02
Ai=1]0 -001 01 |, F=G=0,
0.0 0  —0.05
0.04 0.05 0
¢= [0.03 0.01 0.02] » G1=02=0,
0.01
0.002 0 001
M = |0.03 ,le[ ]
001 0.0l 0.002 0.03
001 0 0.03
No = [0.03 0.01 0.02] ’
N3 =[0.02 0.01 0.001],Ns;= N5 =0,
0.001 0 0
S=1] 0 0002 0 |[,$=8=0R=2
0 0  0.001

Given o = 0001, d1 = 1, dg = 1, ,81 = 0,
B2 = 0. By using the LMI Toolbox in MATLAB, the
LMI (36) in Corollary 8 is satisfied with

11.1259 —0.0238 0.0028
P =1-0.0238 11.0401 —-0.0046] ,
0.0028 —0.0046 11.1363
5.55614 —0.0151 —0.0108
@1 = |—-0.0151 5.5180 —0.0049{ ,
—0.0108 —0.0049 5.5445
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~8.2895 0.0281
Wi ="T9057T, W2 =1 0081 _8.3341]
9.7229  —0.0328 —0.0023
N = |{-0.0299 9.6205 —0.0055],
—0.0029 —0.0087 9.7299

€ =9.6416, a1 = 10.0245, ag = 10.0193,
€1 = 8.3573, &2 = 8.3573.
Therefore, according to the controller design
K = (W +2R)"'Wx,
we have

_ [~0.6963
~ | 0.0024

0.0024

K —0.7000] -

Furthermore, the solution of the closed-loop system
satisfies ||z(k)| < 1.4231e79091%||¢||, and the guar-
anteed cost value of the closed-loop system with the
initial condition ||¢|| = [1,1,1]7 is J* = 22.3472,
while basing on the same values of system vectors
in [24], we have the least guaranteed cost value is
J* =24.3218.

5 Conclusion

Throughout this paper, we have studied the problem
of robust output feedback guaranteed cost control for
a class of nonlinear uncertain discrete system with
mixed time-varying delays and nonlinear perturba-
tions. A static output feedback guaranteed cost con-
troller has been designed for all admissible uncertain-
ties such that the resulting closed-loop system is ro-
bust exponentially stable and guarantee an adequate
level of system performance. Two numerical exam-
ples have been provided to illustrate the usefulness of
the results we got. The paper mainly discussed the
delay in perturbations inconsistent with which in state
vector. And in future we will study the system with
the random perturbations and stochastic delays.
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