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Abstract: Consider Cauchy problem of the degenerate parabolic equation
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A new kind of entropy solution is introduced, which is stronger than the general one. Supposing that ug €
L*®(RN), E = {E;}, E; € E?, by amodified regularization method, the problem is translated into a approximate
Cauchy problem. By choosing suitable testing functions, the BV estimates of the solutions of the approximate
Cauchy problem are obtained. According to Kolomogroff’s Theorem, a convergent subsequence can be extracted,
then the existence of the entropy solution of the original Cauchy problem is obtained. At last, by Kruzkov bi-
variables method, the stability of the entropy solutions is obtained, provided that E;x; > 0.
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1 Introduction

This paper studies the existence and uniqueness of
BV-solutions of Cauchy problem

ou 0 [ i, \Ou .
5 " om <a j(“)axj) + div(uE), (z,t) € Qr
ey

with initial
u(x,0) = ug(z), x € RY 2)

where Q7 = RN x (0,7), up(z) € L®RN), E =
{E;}, E; € E? with the definition of that

E*={feCYQr): f € L*(Qr),divE € L*(Qr)}.

As usual, the pairs of equal indices imply the summa-
tion from 1 up to N. We say equation (1) is weak-
ly degenerate, if there is not interior point of the set
{s : the determinant |a*/(s)| = 0}. Otherwise, if
there are interior points of the set {s: the determinan-
t |[a¥(s)| = 0}, then we say equation (1) is strongly
degenerate.

If (a¥(s)) = a(s)I, I is the unit N x N ma-
trix, a(s) > « > 0, some applicative models relat-
ed to equation (1) were studied in [1]. In this case,
the existence and the non-existence of weak solution-
s of the first initial-boundary value problem of (1)
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were obtained in [2], provided that ug € L'(2), and
E={E;} € (L*(Q x (0,T))", where 2 € RN is a
bounded domain.

If (a%) is only a semidefinite positive matrix , i.e.

age; >0, V¢ € RY, 3)

then equation (1) is a degenerate parabolic equation
and the corresponding problem seems more difficult
and few reference could be found.

If the unbounded flux term div(uFE) is substi-
tuted by a general convection term div(b(u)), where
b(u) = {b*(u)}, b'(u) generally is a bounded nonlin-
ear function when u is bounded, the following degen-
erate parabolic-hyperbolic equation

du_ 9
8t_a$]‘

(aij<u)§$> T div(b(u)), in Qr ()

had been studied widely. Equation (4) arises in many
applications, e.g., heat flow in materials with temper-
ature dependent conductivity, flow in a porous medi-
um, and the boundary layer theory (see [3], [4] et al.).
A.L Vol'pert and S.I. Hudjaev [5] had firstly got the
solvability of equation (4). After that, many mathe-
maticians (e.g. Bénilan, Brezis, DiBenedetto, Carril-
lo, Gagneux, Madaune-Tort, Wittbold, and Wu-Zhao
et al.)(see [4]-[18] et al.) continued to study its solv-
ability, and got many excellent results. The first author
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of the paper also has studied the posedness of Cauchy
problem of equation (4) for a long time ( see [10-11]
and [23-26]). However, all these results are based on
the boundedness and the nonlinearity of b°(u). In gen-
eral, one may expect that the linearity of the flux term
div(uE) can make the problem easier. If £ is bound-
ed, it is indeed likely the corresponding problem can
be solved by an easier way. But if £ = {E;(z,t)} be-
comes unbounded, the method used in [4-18] seem-
s impossible to be generalized to deal with Cauchy
problem of equation (1), the corresponding problem
becomes much more difficult.

In some details, the unbounded property of E
makes the general maximum principle ineffective,
makes the general parabolically regularized method
invalid. To overcome these difficulties, by using some
ideas in [10-11], we put forward to a new definition
of BV-entropy solution for system (1)-(2), this kind
of entropy solution is stronger than the general one.
By modifying the general parabolically regularized
method, and choosing the suitable testing functions,
we are able to get the needed BV estimates. By these
estimates, using Kolomogroff’s Theorem, we can se-
lect the convergent subsequence from the approximate
solutions {uf }, to get the existence of the entropy so-
lution. The estimating method used here is completely
different from that used in [5]-[7], [10]-[12] et al., but
we use some inspiring techniques in [19],[23].

At the same time, we shall use Kruzkov’s bi-
variables method to get the stability of the entropy so-
lutions as we had done on equation (4) in [10]. How-
ever, we have to add an auxiliary condition, E;x; > 0,
to guarantee that Kruzkov’s bi-variables method is
still valid.

2 Definition and Main results

Following reference [20], f € BV (Qr) if and on-
ly if that the generalized derivatives of f are regular
measures on Qr, i.e.

J o 5t 1,05

A basic property of BV function is that ([21]): if
f € BV(Qr), then there exists a sequence {f,} C
C*°(Qr) such that

g&/égn—
nli_{l;(}//éﬁ]an|da:dt://QT]Vf].

So, we can define the trace of the functions in BV s-
pace as in Sobolev space. Moreover, the BV functions
are the weakest functions that we can define the traces.

| dadt =0,
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Let I';, be the set of all jump points of u €
BV (Qr). It is well-known that the normal vector
of I',, exists almost everywhere in the sense of V-
dimensional Hausdorff measure [4]. Let v be the nor-
mal of 'y, at X = (z,t), ™ (X) and u™ (X)) be the
approximate limits of v at X € I', with respect to
(v, Y —X) > 0and (v,Y — X) < 0 respectively. For
continuous function p(u, x,t) and u € BV (Qr), as
usual, we can define

1
plu,x,t) = / p(rut + (1 —7)u",x,t)dr,
0

1
u= 2(
For a given ¢, we denote I, H!, (v}, --- v};) and
u!, as all jump points of u(-,t), Hausdorff measure
of I'Y,, the unit normal vector of ', and the asymp-
totic limit of u(-,t) respectively. By [20], if f(s) €
CHR), u € BV(Qr), then f(u) € BV(QT) and

0f (u)
61:2-

ut +u”).

1=1,2

....N.
8:132 ) ) )

- Pl
For small > 0, we set Sy (s) = [; hy(7)dr

where hy(s) = 2(1 — &), s € R. Obviously
hy(s) € C(R), and satisfies

hy(s) >0
. N : / _
%13(1) Sy(s) = sgn(s), %1_% sS,(s) = 0.

| sha(s) |< 1, | Sp(s) |<1;

Definition 1 A function u is said to be a weak solu-
tion of Cauchy problem (1)-(2), if

1. u € BV(Qr) N L*(Qr), and there are
functions g' € L*(0,T; L% (RY)) such that for

Vo(z,t) € Co(Qr),

/ g'(x, t)p(x, t)dadt

Qr 9
t)r —d dt,
//T “ a v )

where (') is the square root of (a
1,2,---,N.

2. Forany ¢ € C3(Qr), ¢ >0, k€ R, n >
0, u satisfies

//T —k)or — Eily(u — k)pq,

A” (U, k) P,z ]d:cdt

—/1%wmu—m§ygu2¢

—/ SS;?(S — k)dsEiy, pldxdt >0,  (6)
k

9), and i =
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where I (u — k) = f(}hk Sy (s)ds, and

A%j(u7 k)= /k a'(s)S,(s — k)ds. (7
3. The initial value is satisfied in the sense that

lim |

. u(z,t) —up(x) | dr =0, VR >0, (8)

where Bp = {z € RY : |z| < R}.

To explain the reasonableness of Definition 1, it
is supposed that equation (1) has a classical solution
u. Let o € C3(Qr), ¢ >0, k € R, n > 0. Mul-

tiplying equation (1) by ¢S, (u — k) and integrating
over ()7, we have

/1, o
N / /QT oz, ( (;9;2 ) oSy (u — k)dzdt

+//QT div(uE)pS,(u — k)dxdt. 9

ou

//QT 5 @Sy (u — k)dxdt
= // 76177@ — k) pdxdt

- ot
I
_/ QTIW(U_IC)E
For the first term of the right hand side of (9), we have
[ Lo (@0
r 0 8
/ dt /R i 6%

[s’<u—k> St S (u = Ky, da, (11

u — k)dxdt

drdt.  (10)

>¢S (u — k)dwdt

where

[t w2

8A” (u, k:
= / dt/ Pz dx
RN 8x]

k)pq,dx

DAY (1, 1)pr)

= /0 dt/RN[ax]—A77 (u, k) Pz, | dv
T .

- ij

= /0 dt RNA77 (U, k) Pz d. (12)

So
/ / 10U 08, (u — k)dadt

o \ VW )¢
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ou au
/
/ QTS @ (u )O:Ej 6:31

A (u, k)cpxlx] dzdt
Qr

= —// Sy (u— k) Z |g?|?pdxdt
Qr j=1

+// Aff(u,k)goxixjdxdt (13)
and
/ div(uE)Sy(u — k)pdzdt
OF;

_//T<axz
i

OFE;
—i—//T ua—xiSn(u — k)pdxdt

- / I)(u — k) Ejspy,dadt
Qr

S f e
#/Ti

/ / I (u — k) Espp,dudt

Qr
—l—// / sS,(s — k)dsEz,pdxdt.  (14)
7k

8@) Sy(u — k)pdxdt

E;pdxdt

)Eiz, pdxdt

— k)pdxdt

By (9)-(14), if equation (1) has a classical solution

u, then
J [ -

+ A3 (U, k) iz, pldzdl

—//QT[s;w—k)ilrgjm

—/ SS;(S — k)dsE;z, pldxdt = 0. (15)
k

- Eiln(u - k)QOa:i

Clearly

//T[In(u — K)ot — Eily(u —k)o,

+A7 (u, k:)%imﬁ/ 5y (s —k)dsEig, pldadt
k
- (16)

Let n — O in this inequality. We have

[ [ =Ko = Bifu— K,
Qr

LAY () — AT (k) )sgn(u — k)P,
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+ksgn(u — k) Eig, pldzdt > 0.

where "
Aij(u):/ a'(s)ds.
0

Clearly, if one defines the weak solutions w1, us,
and w3 of equation (1) in the sense of expressions (6),
(16) and (6)’ respectively, then wu; is also a solution
in the senses of expressions (16) and (6)’, us is also
the solution in the sense of expression (6)’. If equa-
tion (1) is weakly degenerate, one can define the weak
solution of (1) in sense of (6)’. In this case, the term
—S(u—k) >0 | ¢7 |? ¢ in (15) seems redundan-
t, and can be drawn away. But, if the equation (1)
is strongly degenerate, the term —Sj (u — k) ;-V:l |
¢’ |* ¢ implies very important information of the u-
niqueness, it can not be drawn away. One can refer to
references [11-14].

Also, we note that the classical solution « induces
an integral equality (15), whereas the weak solution
formula defined as expression (6) is an inequality, this
is due to the following weak convergence property.

Lemma 2 Assume that U C RY is an open bounded
set and as k — oo,

fr — fweakly in L1(U),1 < q < o0,
then

Jim inf | fi (| Fo o2l f (o) - (D
Generally, inequality (17) can not be an equality.
In what follows, one can see that this is why we can
only define the weak solution as expression (6) instead
of expression (15).
Base on the about discussion, we shall prove the
following Theorems:

Theorem 3 Suppose that (a%(s)) is a semidefinite
positive matrix, every element a¥(s) € C'(R);
up(r) € L¥RN) N L2RYN).  Suppose that
Ei(x,t) € CY(Qr), and E = {E;} is a vector field,
such that

E={E},E; € E?, (18)

then the problem (1)-(2) has a weak solution in the
sense of Definition 1.

Theorem 4 Let u, v be solutions of (1)-(2) with initial
values ug(z),vo(z) € L®(RN) N L2(RYN) respec-
tively. Suppose that

E-x= EZ'{Ei Z O, (19)
then

N | u(z,t) —v(x,t) | wr(x)dz
R

E-ISSN: 2224-2880

119

Huashui Zhan, Zheng Zhou, Xin Si

< c/ | up — vo | wa(x)dz, (20)
RN
where c, \ are positive constants and
wi(z) = exp{—\/1+ | z |?}. (21

Remark 5 Consider the equation
Ou 0?A(u)  OB(u)
ot 022 oz

A.L Vol'pert and S.1. Hudjaev in [5] defined that, u €
BV (Qr) N L>®(Qr) is said to be a weak solution of

equation (22), if 8’35:) € L} .(Qr), and for any 0 <
v € CP(Qr), any k € R,

// sgn(u—k) {(u—k)@—aA(u) &p} dxdt

(z,t) e Rx (0,T). (22)

ot ox Oz
[ [ sontu 1) [(Bw) ~ B0 G| daat
> 0. (23)

We know that only under the condition

DA(u)

9r L®Qr) () BV (Qr)

the uniqueness of the solutions in the sense that ex-
pression (23) is true. So, an essential improvement
of our paper (also [10-14]) is to get the uniqueness
of the solutions in the sense of expression (6) without
any bounded restrictions in g'.

Remark 6 Consider another equation

up — div(a(z,t,u)Vu) = —div(uE), (24)

(x,t) € Q=02 x(0,T).

Assuming that 0 < a < a(z,t,s) < S, L. Boc-
cardo, L. Orsina and A. Porretta [2] defined that
u € L®(Q)N L0, T; HY()) is a weak solution of

equation (24) in the sense that

< ug,p > +// a(x,t,u)Vu - Vdzdt
Q

:// uBEVdxdt,
Q

for every p € L*(0,T; H}(S2)), where § is a bound-
ed domain in RN, < .,. > denotes the duality prod-
uct between L*(0,T; H} () and L*(0,T; H~1(2)).
Clearly, if a(xz,t,s) = 0, equation (24) becomes
the type of conservation law equation, and it is well
known that in this case, if one defines the weak so-
lution as expression (25), then the uniqueness of the

(25)
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solutions is not true. Also, L. Boccardo, L. Orsi-
na and A. Porretta [2] had quoted the following un-
bounded entropy solution. A measurable function
u € L®(0,T; LY(Q)) is an entropy solution of equa-
tion (24) if Ty (u) € L?(0,T; HX(Q)) for every k > 0
and u satisfies

/@kuf

+/ /aw,s,u)VTk(u—np)dxds
0 Jo

< /Ot/QuEVTk(u — @)dxds
+ [ Onfuo— o(0)) (t)d,

tydex— < s, T, (u — @) >

(26)

for almost every t € (0,T), for every

@ € L*(0,T; Hy(Q)) [ L>(Q
such that
o1 € L0, T; HH(Q) + LH(Q),
where i
:/0 Ty (r)dr

If we check the proof of the theorems in [2], we have
Sfound that the condition 0 < o < a(z,t,s) < (B acts
an important role. If this condition is weakened to
0 < q, to get the same conclusions seems difficult. By
the way, though the authors of [2] did not discussed
the uniqueness of the solutions, we believe that the
uniqueness of the solutions in the sense of expression
(26) is true, provided that 0 < o < a(x,t,s) < f.

Remark 7 The space
E*={f € CY(Qr): [ € L*(Qr),divE € L*(Qr)},
is a Banach space with the norm defined as

A= 1A z2@r) + Idivfll L2 (@r)-

It acts an important role in the studying of compress-
ible flow dynamics theory, see [27].

3 The regularized problem

We need the following Gronwall Lemma.

Suppose that a(t) and c(t) are the functions de-
fined on [0,T), c(t) > 0. Suppose that y(t) €
C0, T such that y(0) = 0,

Y (t) < c(t)y(t) + c()a(t),
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then

y(t) < sup la(t)| [exp /OT e(r)dr — 1] .

0<t<T

Now, it is supposed that A% (s), ug(z) are func-
tions as in Theorem 3, ug(z) € L=¥(RY) N L2(RY),
and E € (CY(Qr))Y is a vector field such that
E = {E;},E; € E*. For any given large positive
number K, let us introduce the following modified
regularized problem.

ou 0 ou
— = =— A d 0c * T B
5t ~ o, @ Wy, + Bt div(ude < TicE),
(27
u(z,0) = uok (), (28)
where 0. is the mollifier as usual, ie. if y =
(x1,-+-,xpN,t), then
S(u) = e\y\z 1 if |yl <1,
i { 0, if |yl >1,
where )
A= elvl>-1dz.
B1(0)

For any given ¢ > 0, d.(y) is defined as

L s,

be(y) = prEs i

Here, we choose € = % especially, and

55 * TK(E) = {6€(Ez> * TK(EZ)},
i=1,2,---,N.
TK(S)

Moreover, we suppose that ugx € C§(RY),
suppuox C B = {z € RN : |z| < K}, and

= min{ K, max{—K, s} }.

Kh_ljloo luox — woll 2wy =0,
[uok || oo mvy < [[tol| oo V- (29)

It is well-known that there is a classical solution ux €
C?Y(Qr) of system (27)-(28), and
lur Lo < [uol|zoe- (30)
Let gradux = (UK UKzy, " UKeys UKzyny,)
and *yy1 = 1, Ukszy,, = uk¢. For simplici-
ty, we denote ug as w in the following calculation.
Let us differentiate equation (27) with respect to x4

Volume 14, 2015



WSEAS TRANSACTIONS on MATHEMATICS

(s=1,2,---
plying the resulting relation by

, N, N +1) and sum up for s after multi-
Sy (|lgradul)
|gradul

0 < ¢ € C3°(Q7). Integrating over R” yields

. Here,

d
5 | Tlleradul)ods
1 Sy(|gradul)

Aug Uy,

d
|gradu| P

— /RN @[ai{'(u)umsu% + aijuxswj]
Sy(lgradul)

lgradul

S, (Jaradul)
— Vg, - 0z % Tr (E)ug, =2 d
/RN Has * T (B)ua, |gradul paz

[ o (uaaa . TK<E>> o, Solleradu)
R

Ug,

d
Ox |gradu| par

Integrating by part, we have

d
—/ I)(|gradul)pdz

62I gradu
% / oy P lmadal)

gradu
TsT X T d
K |gradu| Uoszitizs Vo, 0T

921, (|gradu
+/RN CLU uxsxiuxpxjw

D€ 0&p
+ aij(,u) Sﬂ(‘gradu’)

RN |gradul e

pdx

+ [ s, Iy radul g do

= [ 0 @z, [lgradul, (Jgradul)

N

—Iy(|gradul)]edz .
_ / Vg, - 0.+ Tie (E)uy, 22081244 o
RN |gradul

_/ div <u8(5€ * TK(E)) " Sy(|gradul)
RN Oz * |gradul
-0,

where &5 = Uz, s =1,2,--- N + 1.
For the last term on the left side of (32),

/ div (uaég * TK(E)> ) Sy(|gradul)
RN Oxs * |gradul
Z/ 0 (0e * TK(E )
N RN i Ts
32(5 * Tk (Ei)), ~ Syp(|gradul)
T O, 0u Jua, |gradu| dz. (33)
If we notice that ¢ = %, then
0 (0 x Tk (E;))
0x
E-ISSN: 2224-2880 121
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_/ 2K2($5 - ys)
(i K (— v <1} [|K (@ —y)|2 — 1)

KN+
Y, s))dy,

TGP 1Tk (Eily (34)

where x = (x1,---,xN,t) as before. By the facts of

that
1 1
2@\K(Z—y)|2—1 <c,
K@=y —1]
and |K(z — y) (Ey))| < K, from (34) we
can get

| B2, |

1
y)I2 -1

< 0/
{y:|K(a—y)|<1} [| K (x —
N-+3 1
elK(@—y)2-1 dyds

< cKNH3,

Thus, in (33) (also in (32)), if we choose

1

W@l(w)ﬂﬁ € G (RY),

p(z) =

then we have

D0 % Tic(E))  Sy(|gvadul)
RV Oz ° |gradul
c
< 7 Jun lgradu|prde. (35)
Similarly, we are able to show that
0*(0- * Tk (E)) N
e TR < KNt
| 0xs0x; [<e ’
then
[ 20+ T(F))  Sy(laxadul)
0rs0x; “|gradul
<c| e (36)

By a process of limit, we can assume that in the
formulas (35)-(36) (also in (32)),

p1 = wy(z) = exp(—Ay/1 + |z|?).

Clearly, there exists a positive constant c) such that

—)\l‘i

A /71 T |3’J|27

[Vwi| < exw, Wz, | < exwa.

Wrg, = W

(37
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Now, by the following facts
11 Sy(leradu)
K Jry  |gradul

1
— _W/RN I, (|gradu|) Apidz, (38)

Uz yz; U P; AT

82177(|gradu|)

dx >0,
008, =

(39)

/RN a’ (u)u%xiu%%‘

e

+/RN aﬁf(u)umz

S, (|gradu
77(|g ‘)uxsxiuxsgpm]-dx
lgradul

I,(|gradul) ¢, dx

o [ T (ladul )
(40)

facul S, gracul) — Iy ead)

gradu

= / Thy(T)dT — 0, asn — 0, (41)
0

if we let n — 0 in (32), using (35)-(41), we have

d
—/ lgradu|wydr < ¢+ c/ |gradu|wydz,
dt JrRN RN

where ¢ depends on A but is independent of K. By
Gronwall Lemma, we have
/ lgradu|wydz < (T, \). (42)
RN

If we multiply with uw) on the two sides of equation
(27), and integrate over Qr, by (42), we can show that

N
Z//Q |rijuxi\2w,\d$dt < (T, \, ||uwollLe=),
j=17 Jor

(43)
we omit the details here.

By (30), (42) and Kolomogroff’s Theorem, there
exists a subsequence {u g, } of the family {ux } which
are the solutions of regularized problem (27)-(28), and
there exists a function u € BV (Qr) NL*>®(Q7), such
that ug, — wa.e. on Q.

4 The Proof of Theorem 3

Now, let u be the limit function of ug, as n — oc.
We now prove that v is the weak solution of (1)-(2)
in the sense of Definition 1. For simplicity, we denote
K, as K in what follows.

Firstly, from (43), there are

gt e L?(0,T; L% (RM)), i =1,2,---, N,

E-ISSN: 2224-2880
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such that, as K — oo

8uK

74

o, Jin L*0,T; L3 . (RY)).

For any » € CZ(Qr),

// ogtdxdt

T

= lim //
K—oo T

pu— 1 —_— Z]
Klgnoo//T 8% / ¥ (s)ds)dxdt
/ / P, / s)dsdxdt
T
= / <pf” Y dzdt. (44)
Qr Oxj

This implies that u satisfies (1) of Definition 1.

Secondly, let ¢ € C2(Qr), ¢ >0, k€ R, n >
0. Multiplying equation (27) by ¢S, (ux — k) and
integrating over ()7, we obtain

—// I(ug — k)pidadt
Qr

1 oug
+K//TSH(UK_k)a‘Pzidxdt

1 , GuKﬁuK
+K//QTS7I(UK—IC 0z, O ~pdzdt

_ / / Sy(urc—k) [Aij(uK)—Aza(k)} e, ddt

Oug

//S/ (ur—k) [AJ(UK) Alj(k)} oz, g%]da;dt
Qr P
(g — k)ald UK UK odzdt
+/ Qr SU(UK )CL (U’ ) a.rl axj

+// Sy(ur — k)de * T (E;)uk pq, dadt
Qr

+ S;?(uK—k)ég * T (E;)ug Kgodxdt

Qr 8m2

=0. (45)

Notice that, on the left-hand side of (45), the sec-

ond term trends to zero as K — oo, the third term is

nonnegative, and by Lemma 2, the sixth term satisfies
that

hm 1nf/ Sy (ug—k)a™ (uK)auK 8UK
Or Ox; Ox;

2// S;(u—k)2|gi 1 pdadt.
Qr i=1

At the same time, for the other terms on the left-hand
side of (45), we can deal with them as follows.

/ / S (s A7 (uge A ()] S

Qr

(46)

ou
oz, K P dxdl
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+//Sn(uK—k) [Aij(UK)—A(/{:)} Pai, ddlt

— / / Ysg(s—k)[mf (5)=AY (k]dspy,q, dudt

Qr k
+//S77(UK—/€)[AM (UK)—Aij(k)]SOxix]dJUdt

UK
:/// Sy(s — k:)aij(s)dsgoxixjdxdt,

Qrk
47)
/ Sn(uK — ]{7)(55 * TK(EZ-)quomida;dt
Qr
/ Oug
+// Sp(ur — k)oe * T (Ei)ur pdxdt
Qr 8.7}1

-/ i :K d(sSy(s — k),

0 [uK
+ /k sy (s — k)ds]de * T (E;)dadt

81‘1'
UK UK
:// [/ sn(s—k)ds+/ sS%(s—k)ds}
T Lk k
0u;0c * Trc (Fy)dxdt
[ ] sSys — Rds(n,b. + Tic(B)
Qr Jk
+@oe * Txi(E;))dxdt

(uK k)@:m

—//Té*TK

—/ sy (s — k)dsTxi(E;)pldadt. (48)
k

where T (E;) = w

At last, let K — oo 1n (45) By (46)-(48), notic-
ing that £ = {E;} € (L*(Qr))N and divE €
L*(Qr), we can get (6).

The proof of (8) is similar to that in references
[10, 11] et al., we omit the details here.

5 Proof of Theorem 4

Using Vol'pert-Hudjaev’s inspiring idea in [5], similar
to the proof of Lemma 3.1 in [11], we are able to
prove the following lemma, and we omit the details
here.

E-ISSN: 2224-2880 123

Huashui Zhan, Zheng Zhou, Xin Si

Lemma 8 Let u be a solution of (1)-(2). Then

ut
,N; a.e.on Ty,

/.
(49)

where (49) is true in the sense of N dimensional Haus-
dorff measure.

r9(s)ds-v; =0, j =1,2,-

Proof of Theorem 4. Let u, v be two weak solutions
of equation (1) with initial values

u(z,0) = up(z), v(z,0) = vo(z).

By Definition 1, for any ¢ € C2(Qr), ¢ >0, k,l €
R, we have

[ itu =0 =~ B, 01w~ ke,

A” (u, k‘)gpxlx]]dwdt
—// [Sé(u—k)Z\gi ”

Qr i=1

—/k 55y (s — k)ds B, pldzdt > 0, (50)
// [y (v = Dpr — Ei(y, 7)In(v — Dy,
—i—Aij(v l)goylyj]da:dt

[ 1= Z\g e

/ 5y (s — k)dsEgy,@ldydr > 0. (51)

!

Let

Uz, ty,m) 20, ¥ € C*(Qr x Qr).
If for given (7,y) € Qr

Suppw(v 5T, y) C QT’

and if for given (z,t) € Qr,
SUppT/J(.’IJ, t,-, ) - QT-

‘We choose

k= v(va)a I = u(z,t), ¥ = I/J(l’,t, y’T)

in (50) (51) respectively, integrate over (Q7, then

////{In('u_”)(iﬁt+¢T)—[Ez~(a:,t)1/;xi

Qr Qr
+E;i(y, 7)Yy, | I (u — v) Ydxdtdydr
A” (U, V)V

Ik,
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+A;L7j (U u)wyzyg

N .
Zlgl

S;Y(u — )

)1+ Z | ¢ (v) [P))dedtdydr
T
T
/ 58, (s — v)dsy]dzdtdydr > 0. (52)

Let w(w7t7y77-) = ¢( 7t)jh(x -yt — T)' Here,
¢(z,t) 2 0, ¢(x,t) € C5°(Qr), and

gn(e =yt — 1) = wp(t — I wp (2 — ui),

w(s) € CC(R), w(s) >0, w(s) =0if |s|>1,

/OO w(s)ds = 1.

Clearly,
9jn . Ojn djn . Ojn
ZIh L ZIh
ot + or T Ox; + y;

v 0y _06. 0 0w _ 0.
at " or o’ oz oy 0"

Since E; € L*(Qr) and ¢ € C§°(Qr x Qr), by
the control convergent theorem, we have

im [ ][ 1B

+E2(ya T)?ﬂyi]fn(u - ’U)d.%'dtdydT

LS

+E;i(y, )y, ||u — v|dedtdydr

=] o ] Jo B0

Ei(y, 7)Yz, — wdn)][u — v|dzdtdydr.
Let h — 0 in the above equality. We have

i [ [ [ o

+EZ (y7 T)¢yi] |U - U’dl’dtdydT

://QTEi(:x,tﬂu

At the same time, by the fact of that

=0,

— V| ¢, dxdt. (53)

lim 55, (s) = 0,

n—0
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and by the test function ¢ = ¢(x,t)jn(z — y,t — 1),

h—0n—0 T T

/ 55y (s — v)dsiyp|dzdtdydr

=pimtim [ [ [ (B By

/ (s — )8y (s — v)dsy]dzdtdydr

lim 1 —
+hlg%)vzl—r>r(l)//T//T iai ~ Eiy)

v sgn(u — v)Ydzdtdydr

— lim / / / (B,
h—0 Qr Qr
o(x, t)jn(x —y,t — 7)dxdtdydr = 0. (54)

— Biy,)v sgn(u—v)

For the third term in the left-hand side of (52), we
can deal with it as [10, 11], use Lemma 8, and get the
following equality.

i | A3 (1, ), o, + A (1,0)y, ) = 0.
(55)
Combing (52)-(55), and letting  — 0, h — 0 in (52),
we get

J [ Attt = o060~ fu =B, 0,
+sgn(u —v) [Aij(u) - Aij(v)} Gy ydxdt > 0.
(56)
Let

(0)do, e < min{7,T — s}.

s—t
n = [ o

T—t
Here a.(t) is the kernel of mollifier with a(t) = 0

fort ¢ (—¢,¢).

By approximation, we can replace ¢ in (56) by
d(x,t) = wyr(z)n(t), where wy(x) is the function of
(21), and n(t) € C}(0,T). By the assumption of that

Eix; >0,

we known that the second term of the left-hand side
in (56) is non-positively, it can be drawn away, i.e. we
have

J [ fut )~ ) o,
+sgn(u —v) [Aij(u) - Aij(v)} Gy ydxdt > 0.

(57)
Using the estimate

| Waza; () [< Crwn(2),
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we obtain from (57)

//T [u(z,) — v(z,?)] prdwdt

- //Q [u(z,t) — v(z,t)]] wr(x)
[—ac(s — t) + ac (T — t)] dadt

= | lu(z,7) — vz, 7)]wrde
RN

~ [ ute) — ol )l nda
[ [, st [(4900 = 290 s
< C/TS /RN | u(z,t) —v(z,t) | wa(z)drdt,

/ N | u(z,s) —v(x,s) | wr(z)de
R
< / | u(z,7) —v(z,7) | wr(x)dz

RN
—i—c/: /RN | u(z,t) —v(z,t) | wy(x)dzdt.

By Gronwall Lemma
[ Tuw.s) = ow.s) | wr(@)do
RN

< C/RN | u(z,7) —v(z,7) | wi(x)de.

Let 7 — 0. The proof of Theorem 4 is complete.
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