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Abstract: - Variance changes over time and depends on historical data and previous variances; as a result, it is useful 
to use a GARCH process to model it. In this paper, we use the notion of Conditional Esscher transform to GARCH 
models to find the GARCH, EGARCH and GJR risk-neutral models. Subsequently, we apply these three models to 
obtain option prices for the Stock Exchange of Thailand and compare to the well-known Black-Scholes model. 
Findings suggest that most of the pricing options under GARCH model are the nearest to the actual prices for SET50 
option contracts with both times to maturity of 30 days and 60 days. 
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1 Introduction 
The most important options in Thailand are the 
SET50 index options which are the contracts that 
provide the right to the buyer to buy or sell the SET50 
index on or before an expired date at a specified 
contract price, depending on the form of the option. 
We consider, in our study, the European call option 
and therefore it can only be exercised at expiration. 
Investment in the security has a risk due to changes 
over time and the variance may aff ect the investment 
returns in an unexpected way. The most popular 
model which gives the option price is the Black and 
Scholes formula which assumes volatility to be 
constant. Several studies have shown that in the 
market, the volatility of the security depends on 
previous volatilities. Hence the GARCH model is 
suitable for modeling volatility and for forecasting 
asset prices since the GARCH is a model that applies 
the information of variance in the past to forecast 
variances in the future.  

Many researchers were interested in GARCH 
option pricing models. In 2010, Costa, Veiga and Siu 
[1] valuated option prices by using some special 
GARCH models based on risk neutral assumption. In 
1995, Duan [2], developed an option pricing model 
and its corresponding delta formula for GARCH 
models with by the generalization of the concept of 
risk neutral valuation and local risk neutral valuation 
relationship on assets. In 1994, Gerber and Shiu [3] 
proposed a method of Esscher Transforms for option 
pricing which was later be able to apply for GARCH  

 
 
models. In the later year of 1996, Schmitt [4] showed 
his empirical studies that the time-varying volatility 
of asset returns can be described by GARCH models. 
Siu, Tong and Yang in 2004 [5] developed an 
approach for derivative pricing by using the GARCH 
option pricing models under the dynamic 
environment based on the model of Gerber-Shui and 
utilized the concrete idea of the conditional Esscher 
transforms. In 2017, Huang, Su and Chen [6] 
explored the valuation performance of a special kind 
of GARCH model, Heston and Nandi GARCH model 
on the option pricing. The results showed another 
vision of the impact of liquidity on GARCH models 
and the pricing error during financial crisis. In 2017, 
Badescu, Cui and Ortega [7] investigated the pricing 
and weak convergence of an asymmetric non-affine, 
non-Gaussian GARCH model. The option data 
analysis illustrated the advantage of coupling the 
option pricing with non-Gaussian methods. In 2018, 
Hua and Jiang [8] explored option pricing based on 
the proposed hybrid GARCH models with improved 
ensemble empirical mode decomposition. The results 
indicated that the hybrid models of GARCH with the 
decomposition technique could reduce the option 
pricing error. In the recent years, many researchers 
have applied GARCH models for the new financial 
currency which was well known as Cryptocurrency. 
In 2020, Venter, Mare and Pindza [9] applied 
GARCH models for Bitcoin and Cryptocurrency 
index (CRIX). Later, in the same year of 2020, 
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Venter and Mare [10] applied GARCH models to 
generate volatility indices of Bitcoin and 
Cryptocurrency index (CRIX). In 2021, Anel, 
Rastegari and Stentoft [11] proposed a new condition 
of GARCH models for option pricing including a 
dynamic variance dependent pricing kernel. 

There are some researchers studied GARCH 
models applied to the environment of Thailand. In 
2005, Khanthavit [12] considered the model for 
pricing and analyzed the behavior of options on the 
SET50. His results show that the GARCH (1,1) 
model could describe the random behavior of SET50 
better than the other models. In 2014, Tanattrin [13] 
applied GARCH and GJRGARCH model for 
volatility analysis of international tourist arrival 
growth rate in Thailand. 

In this paper, we study the GARCH, EGARCH 
and GJR-GARCH models to find the option prices. 
So we follow the Siu, Tong and Yang (2004) [5] 
method to find the risk neutral version of the 
GARCH, EGARCH and GJR-GARCH for pricing 
options on the SET50 index of Thailand. 
 

 

2 Theoretical Background 
In 1973, Black and Scholes [14] proposed a model 
for option pricing that has been frequently used in the 
financial researches. Nevertheless, the model that 
Black and Scholes proposed has some inapplicable 
assumptions of constant variance which is not 
practical. Hence, in 1982, Engle [15] presented the 
autoregressive conditional heteroskedasticity or 
ARCH model for modelling financial time series that 
present time-varying volatility clustering. In the 
ARCH model, a moving average of past error terms 
is utilized to forecast the variance: 

2 2 2
0 1 1 ...t t q t q           

and 2
1| (0, )t t tN     where 0 0   and 0i  , 

1, ... ,i q . i  must be estimated from the given 
data, t   is the information set of all information until 
time t. The stationarity condition of the ARCH model 

is that 
1

1
q

i
i




  . The GARCH(p,q) model is well 

known as Generalized Autoregressive Conditionally 
Heteroskedastic with conditional variance with p 
GARCH coefficient terms j  and q ARCH 
coefficient terms i . It practically determines a time 
series of return t ty     where   is the expected 
return and t  is a zero-mean white noise and 

2 2 2
0

1 1

q p

t i t i j t j

i j

      

 

     

where t t tz  . The stationarity condition of the 
GARCH model is 0 0  , 0i  , 0j   and 

1 1
1.

q p

i j

i j

 
 

    

In 1991, Nelson [16] presented the exponential 
GARCH or EGARCH model in which the logarithm 
of conditional variance is as follows. 
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where 2(0, )t tN  .  

In the GJR model,  0 1t iI      or  0 0t iI      
where 0 0  , 0i  , 0j   and 0i i   . 

The stationarity condition of the GJR model is: 

1 1 1

1 1.
2

q p q

i j i

i j i

  
  

      

In this paper, we consider the case of the GARCH, 
EGARCH and GJRGARCH option pricing models 
with the assumptions of the conditional distribution 
of the innovations t  given that 1t  is normal. 
 

2.1 GARCH Option Pricing Model 
For GARCH option pricing model, it is provided that 

t , given 1t  , is a noise with conditional mean zero 
and variance 2

t  under the statistical probability 
measure P. From the work of Duan in 1995 [2], we 
suppose that the process { }t t T   can be modelled as 
a GARCH (p,q) with zero mean and variance 2

t  
under the probability P.  

Thus, we have that tY  under the probability 
measure P is distributed under the normal 
distribution with the mean of 2 2 / 2t tr      and 
the variance of 2

t . The conditional risk-neutralized 
Esscher parameter q

t   is given by 

 ln ( , 1)q

Y tr M t   . 
Using  

  2

2
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which is a normally distributed moment generating 
function with mean 2 / 2tr   and variance 2

t , with 

 2 2/ 2, / 2 .t t tY N r    

Hence, the conditional distribution of t  given 

1t   under P where  
2;t t t t tY         

is 

   
2

1| |
2
t

P t t P t tE E Y r


           

    2
1|P t t P t tVar Var Y     . 

Under Q, nevertheless, the conditional 
distribution of t  given 1t   is 2(0, ),tN   

2 / 2t t tr        
and  

2 / 2t t tY r     . 
It is noted that by applying the conditional mean,

2 2 / 2t tr      , the same way as in Duan’s 
work [2], we obtain 

2 2 2/ 2 / 2t t t t tr r           . 
Thus,  

2
t t t      

and therefore the dynamics of the variance is given 
by 

 
2

2 2 2
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1 1
.
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t i t t j t j

i j
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This result was obtained from Siu, Tong and Yang 
[5] and was in agreement with that obtained by Duan 
[2]. 

 
2.2 EGARCH Option Pricing Model 
The EGARCH(1,1) model under the statistical 
probability measure P is given by: 

12 2 1
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1 1
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In a similar manner as in the previous case, we 
apply the method used by Sui, Tong and Yang in [5] 
to obtain the EGARCH under the Q measure: 
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2.3 GJR-GARCH Option Pricing Model 

The GJR(1,1) model under the statistical probability 
measure P is given by : 

 2 2 2 2
0 1 1 1 10 .t t t t tI               

In a similar manner as in the previous cases, we 
apply the method used by Sui, Tong and Yang in [5].  
Now, we have the GJR-GARCH under Q measure as 
follows: 

 
2

2 2 2
0 1t t t t          

 
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 

 

 

 

3 Methodology 
In this work, we make some assumptions to construct 
a financial model for the discrete environment. We let 
T be the set {0,1, 2, , }T representing economic 
time under the probability space ( , , )F P  where P 
is the probability measure with sample space   and 
event space F.  

Let  t t T
 


  be a stochastic process of 

underlying asset return and 2
t  denotes the stock 

variance. Next, we let   be the risk premium and r 
be the risk free rate. Under P, we presume that the 
process { }t t T  , the bond price process, follows the 
relation 1

r

t t e   , 0 1   and the process of stock 
price  { }t t TS  follows the dynamics, 

2 2
0

1 , ,
2t t t tY r S S          

2(0, ), {0}t tN t T     

where 
1

ln t
t

t

S
Y

S 

  denotes the log-return of the stock 

S [2]. Subsequently, the method of conditional 
Esscher transform is applied for tY , the GARCH 
process with conditional Esscher parameter sequence 
of { }t t T  .  

Under the probability measure P, we let 
1| ( )

t tYM z 
be the moment generating function of tY  

given the information 1t   at time 1t   where z  
and assume a stochastic process {0}{ }t t T    given the 
information 1t  . We have 

1( , ) : ( | )t

t
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Y P tM t z E e    

2 2 21| ,
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tzY
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 
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where a conditional distribution function of tY  is 
defined as  
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 2 2 2
1
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 
. 

We assume that, for each {0}t T   and z , 
( , )

tYM t z  exists if  1|tzY

P tE e     and ( , )
tYM t   

exists and define 0 1  , where E is the expectation 
under P and 

1

, {0}.
( , )

k kYt

t

k Y k

e
t T

M k





                                       (3) 

Then, we let , {0}{ }
tt t TP    be a family of 

probabilities and define 
  , 1|

tt t tP Y X    
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1
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e
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                      (4) 

where  tI Y X  is the indicator function of the 
event and X  is an open set of the real line. Letting 

 ,Y tM z   be the moment generating function of the 
return tY  given the information 1t 

 with the 
conditional Esscher parameter

t , we consequently 
have  

 
 

 

,
,

,
Y t

Y t

Y t

M t z
M z

M t

 





                                              (5) 

With a sequence of {0}{ }q

t t T   , we assume that 
log-return follows the following equation with the 
martingale condition.  

.
     ln , 1 ln , , {0}q q

Y t Y tr M t M t t T       

In 1994, Shiu et al [3] proposed the derivative 
pricing model V at time t T  as  

 ( ) |r T t

t Q T tV e E V                                                             (6) 
where Q is a conditional risk neutral Esscher pricing 
measure and 

, q
TT

P


 is a probability measure on 

TF  . The process { }rt

t t Te S


 is a martingale 

process under Q given the information  .  
Consequently, in this paper, the methodology is 

performed in the following steps. 
1. We randomly choose the option contract on 

SET50 market of Thailand from years 2015 and 
2016, since the data of these two years are publicly 
accessible with complete data. 

2. We perform the residual test of ARCH effect 
from the chosen option data fitness by using Ljung-
Box’s 2 ( )Q n test. The results of (20)Q  of 25.382 and 

2 (20)Q  of 52.320 show that SET50 option price 
samples have the ARCH effect.  

3. In this paper, we use the lag order (1,1) for all 
testing models, since it was shown that models with 
a small lag are sufficient to cope with the changing 
variance [17]. 

4. We utilize the maximum likelihood estimation 
for parameter estimates of GARCH, EGARCH and 
GJR-GARCH. 

5. From equation (6), the expected value of TV is 
obtained by Monte Carlo simulation for a sample size 
of 10,000 with the variance reduction technique 
which is a control variate method. 

6. The option pricing value from classical Black-
Sholes model is obtained from a financial toolbox of 
Matlab. 

7. The method of room mean square error is 
applied to evaluate the precision performance of the 
GARCH models. 

8. We discuss the advantage and the limitation of 
the results for the investor in stock market of 
Thailand. 
 

 

4 Numerical Results 
In this section, we show some simulated option prices 
by using GARCH option pricing models (GARCH, 
EGARCH and GJR) and the classical Black-Scholes 
model (BS) under probability measure Q using the 
estimated values of SET50. The data have been 
obtained from the database www.set.or.th and the 
derivative security in which we are interested is the 
European Call option on the SET50 index. 
 We randomly pick the option contract on SET50 
market from years 2015 and 2016. The contracts in 
year 2015 under study are S50Z15C950, 
S50Z15C925, S50Z15C900, S50Z15C875, 
S50Z15C850, S50Z15P950, S50Z15P925, 
S50Z15P900, S50Z15P875 and S50Z15P850. And in 
year 2016, the contracts under study are 
S50Z16C1000, S50Z16C975, S50Z16C950, 
S50Z16C925, S50Z16C900, S50Z16P1000, 
S50Z16P975, S50Z16P950, S50Z16P925 and 
S50Z16P900. We use daily closing prices in each 
index to estimate the parameters of the GARCH, 
EGARCH and GJR-GARCH models to be able to 
find the option price. 
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 Table 1 and 2 shows estimation results for 
randomized contracts from year 2015 and 2016 
respectively, based on the same index. Several 
researchers assume the risk-free rate r to be 0 to make 
the interpretation of options easier such as Duan in 
1995 [3] and Schmitt in 1996 [4]. Consequently, in 
this work, we also assume that the risk premium is 
zero.  
 Next, we use the estimated parameters from Table 
1 and 2 in GARCH models under probability measure 
Q so that we find the option price by taking the 
conditional expectation of the terminal payoff  under 
the pricing probability measure Q and discount at the 
risk-free interest rate as follows: 

 ( ) max , 0r T t

t TC e E S X      , 
and  

 ( ) max 0,r T t

t TP e E X S       
 

 
where tC  and tP  are call option prices and put option 
prices respectively. Following the work of Duan’s in 
1995 [2], the terminal stock price at time T can be 
calculated as: 

2

1 1

1exp ( )
2

T T

T t s s

s t s t

S S T t r  
   

 
    

 
 

. 
 Tables 3 and 4 present the average simulated 
option prices tC  and tP   under GARCH, EGARCH 
and GJRGARCH models applied to the SET50 index 
option. This table uses the estimated parameters from 
Tables 1 and 2 to fit in the GARCH, EGARCH and 
GJRGARCH option pricing models. Then, we 
establish a set of parameters, the strike price (K) and 
stock price ( 0S ) at the start date of the year-2015 
contracts and year-2016 contracts which are 19 
August 2015 and 2 November 2016 for calculation,  
 

Table 1 The Estimated Parameters of the GARCH models for contracts year 2015 

Contract Models 
Parameters 

0        

S50Z15C950 
GARCH 1.79e-5 0.92810 0.99183 - 
EGARCH -6.29874 0.12032 -0.79121 -0.12890 
GJR 2.37e-5 0.89321 0.21083 0.13801 

S50Z15C925 
GARCH 2.28e-5 0.23018 0.64020 - 
EGARCH -3.39023 -0.11930 0.20188 -0.13284 
GJR 2.11e-5 0.20912 0.80239 0.11121 

S50Z15C900 
GARCH 2.01e-5 0.39012 0.53082 - 
EGARCH -1.39801 -0.00231 0.98210 -0.19021 
GJR 2.55e-5 0.32900 0.99821 0.11934 

S50Z15C875 
GARCH 2.83e-5 0.12903 0.10299 - 
EGARCH -0.49781 -0.02190 -0.28301 -0.12190 
GJR 2.29e-5 0.23188 0.90128 0.13891 

S50Z15C850 
GARCH 1.88e-5 0.11408 0.22180 - 
EGARCH -10.81006 0.93801 0.90721 -0.17781 
GJR 2.17e-5 0.15324 0.28102 0.11198 

S50Z15P950 
GARCH 3.74e-5 0.32301 0.92108 - 
EGARCH -2.89102 -0.00513 -0.27912 -0.17782 
GJR 2.02e-5 0.34782 0.82109 0.11293 

S50Z15P925 
GARCH 3.25e-5 0.01812 0.80122 - 
EGARCH -5.90123 -0.09913 0.21092 -0.18329 
GJR 2.65e-5 0.05635 0.99218 0.13245 

S50Z15P900 
GARCH 3.71e-5 0.52313 0.71221 - 
EGARCH -0.44814 0.02921 0.82123 -0.19810 
GJR 2.62e-5 0.43872 0.39033 0.17812 

S50Z15P875 
GARCH 2.90e-5 0.62901 0.59023 - 
EGARCH -8.11356 -0.13792 0.60298 -0.18921 
GJR 2.07e-5 0.58729 0.21203 0.12782 

S50Z15P850 
GARCH 1.66e-5 0.80001 0.12324 - 
EGARCH -11.18182 -0.98921 -0.83232 -0.16692 
GJR 2.35e-5 0.78293 0.79231 0.19320 
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respectively. The values of parameters set in the 
models of each contract are clearly shown in Table 5. 
Thus, we apply the diff erences between the actual 
data of option prices and the simulated results in 
order to compare the performance of the models.  
 Tables 6 and 7 show the Root Mean Square Error 
(or RMSE), calculated by the square root of average 
square diff erence between the simulated option price 
and the option price in the market. The formula of 
RMSE is as follows: 

 
2

1

1 ˆ
n

i i

i

RMSE y y
n 

   

where ˆ
iy  are predicted prices, and iy  market prices.  

We simulated the prices of option under the GARCH, 
EGARCH and GJRGARCH models by using 
MATLAB. The contracts under study from year 2015 
are S50Z15C950, S50Z15C925, S50Z15C900, 
S50Z15C875, S50Z15C850, S50Z15P950,  

 
S50Z15P925, S50Z15P900, S50Z15P875 and 
S50Z15P850. 
 The results show that, at the maturity time of 30 
days, the GARCH model’s value is the nearest to the 
actual option price in the market in all of our sample 
contracts except that the option prices for the contract 
S50Z15C850 under the EGARCH model are slightly 
nearer to the actual option prices as it can be seen that 
RMSE of contract S50Z15C850 under GARCH 
model is 0.17189 and the RMSE of EGARCH model 
is 0.16727.  
 At maturity time of 60 days, the option prices 
under the GARCH model are the nearest to the actual 
option prices in the market for all of the contracts as 
well, except that the for the contract of S50Z15C950, 
the EGARCH model shows a slightly better 
performance as indicated by the results that the 
RMSE of contract S50Z15C950 with GARCH model 
is 0.01332, while it is 0.01325 with the EGARCH. 

Table 2 The Estimated Parameters of the GARCH models for contracts year 2016 

Contract Models 
Parameters 

0        

S50Z16C1000 
GARCH 1.63e-5 0.42532 0.41512 - 
EGARCH -6.34532 0.25104 -0.89412 -0.15343 
GJR 3.52e-5 0.23482 0.24255 0.13241 

S50Z15C975 
GARCH 1.58e-5 0.57923 0.84152 - 
EGARCH -4.32144 0.94210 0.25143 -0.19423 
GJR 2.72e-5 0.45921 0.74231 0.18894 

S50Z15C950 
GARCH 2.32e-5 0.41325 0.42398 - 
EGARCH -1.43253 -0.04221 0.74235 -0.11048 
GJR 4.23e-5 0.39802 0.74632 0.18432 

S50Z15C925 
GARCH 2.48e-5 0.24234 0.67333 - 
EGARCH -0.23642 0.43152 -0.70244 -0.18923 
GJR 3.54e-5 0.28391 0.78234 0.12294 

S50Z15C900 
GARCH 2.09e-5 0.21425 0.23249 - 
EGARCH -3.42220 0.43232 0.74125 -0.14214 
GJR 4.88e-5 0.23008 0.94325 0.10943 

S50Z15P1000 
GARCH 2.23e-5 0.24202 0.24244 - 
EGARCH -5.23521 -0.09323 -0.94125 -0.10044 
GJR 2.56e-5 0.22329 0.73221 0.17935 

S50Z15P975 
GARCH 2.49e-5 0.04323 0.73242 - 
EGARCH -1.94233 -0.03253 0.12532 -0.17354 
GJR 3.92e-5 0.03928 0.81435 0.19843 

S50Z15P950 
GARCH 2.47e-5 0.28423 0.54523 - 
EGARCH -0.32424 -0.04238 0.82415 -0.19432 
GJR 1.34e-5 0.23654 0.43202 0.15324 

S50Z15P925 
GARCH 2.76e-5 0.69023 0.42150 - 
EGARCH -5.10023 -0.13225 0.84215 -0.17842 
GJR 3.34e-5 0.69832 0.23114 0.11894 

S50Z15P900 
GARCH 1.91e-5 0.34221 0.74231 - 
EGARCH -12.43253 -0.04247 -0.88349 -0.28340 
GJR 2.92e-5 0.42983 0.32566 0.29306 
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Table 3 The average simulated option 
prices under GARCH and BS models for 
contracts year 2015 
 

 

Contract GARCH EGARCH GJR BS 
Call option T = 30 

S50Z15C950 2.5823 3.2409 11.6788 9.7283 
S50Z15C925 6.3679 7.9823 12.8396 11.2452 
S50Z15C900 11.5321 14.0032 16.8921 17.3340 
S50Z15C875 24.0002 25.3245 29.9892 32.2391 
S50Z15C850 34.8772 34.7458 35.1242 40.9811 
Put option T = 30 

S50Z15P950 63.5023 63.4903 68.5322 65.0927 
S50Z15P925 46.1098 46.5436 58.3423 56.3902 
S50Z15P900 25.7320 27.3432 28.0321 35.0924 
S50Z15P875 14.2232 16.9823 19.9302 25.2501 
S50Z15P850 8.20102 11.2422 17.4325 20.2239 
Call option T = 60 

S50Z15C950 3.4245 3.3129 17.3274 15.3022 
S50Z15C925 7.5241 7.6432 35.4325 26.3247 
S50Z15C900 12.353 12.453 50.4522 49.2932 
S50Z15C875 26.432 29.432 70.0432 72.4320 
S50Z15C850 36.534 40.024 80.3245 93.7882 
Put option T = 60 

S50Z15P950 66.2932 66.4565 140.0623 80.3202 
S50Z15P925 48.4324 49.5343 75.9023 69.3936 
S50Z15P900 27.0801 28.4326 47.0343 49.9457 
S50Z15P875 17.0023 20.0342 36.0325 38.9021 
S50Z15P850 11.8425 15.0425 24.3883 29.0287 
     

Table 4 The average simulated option 
prices under GARCH and BS models for 
contracts year 2016 
 

 

Contract GARCH EGARCH GJR BS 
Call option T = 30 

S50Z16C1000 7.24254 7.13254 9.42423 10.1324 
S50Z16C975 15.42344 15.04353 18.23494 19.9932 
S50Z16C950 26.42435 26.14252 31.32544 35.3211 
S50Z16C925 41.12325 41.04659 42.33256 53.2038 
S50Z16C900 55.62234 58.12524 61.04235 73.9217 
Put option T = 30 

S50Z16P1000 67.83224 67.18942 75.45336 78.3231 
S50Z16P975 47.32532 47.10425 49.23343 52.3292 
S50Z16P950 32.32556 31.54342 31.24797 43.4893 
S50Z16P925 22.22145 24.52345 30.09842 35.4581 
S50Z16P900 14.23223 16.52533 29.04253 29.9210 
Call option T = 60 

S50Z16C1000 9.45233 10.42352 11.42026 12.9332 
S50Z16C975 18.23123 18.34235 23.89421 19.3292 
S50Z16C950 28.24252 30.24235 37.42363 35.9844 
S50Z16C925 43.43235 45.25324 46.42546 56.2001 
S50Z16C900 58.42224 61.02644 59.42084 65.7862 
Put option T = 60 

S50Z16P1000 69.42352 69.94326 75.42634 78.4522 
S50Z16P975 50.23425 51.14253 53.24336 65.0901 
S50Z16P950 34.53426 36.00234 43.23509 54.2995 
S50Z16P925 23.32098 24.14253 30.42540 41.7890 
S50Z16P900 15.94204 17.45530 25.42543 30.0087 

 
 
 
 
 
 

Table 5 Parameters set in the models for contracts 

Contract K 
0S  Variance Actual 

option 
price 

Call option T = 30 
S50Z15C950 950 859.51 0.234523 2.90 
S50Z15C925 925 859.51 0.134425 6.00 
S50Z15C900 900 859.51 0.135234 11.80 
S50Z15C875 875 859.51 0.342543 24.00 
S50Z15C850 850 859.51 0.109452 34.50 
Put option T = 30 
S50Z15P950 950 859.51 0.123253 63.80 
S50Z15P925 925 859.51 0.143567 46.00 
S50Z15P900 900 859.51 0.193235 25.90 
S50Z15P875 875 859.51 0.289223 14.30 
S50Z15P850 850 859.51 0.242674 8.80 
Call option T = 30 
S50Z16C1000 1000 942.56 0.192523 7.90 
S50Z16C975 975 942.56 0.145437 15.70 
S50Z16C950 950 942.56 0.183257 26.60 
S50Z16C925 925 942.56 0.235367 40.40 
S50Z16C900 900 942.56 0.323426 56.00 
Put option T = 30 
S50Z16P1000 1000 942.56 0.132567 67.90 
S50Z16P975 975 942.56 0.282363 48.00 
S50Z16P950 950 942.56 0.427336 32.30 
S50Z16P925 925 942.56 0.291325 21.30 
S50Z16P900 900 942.56 0.225623 13.90 
Call option T = 60 
S50Z15C950 950 859.51 0.242536 3.60 
S50Z15C925 925 859.51 0.292677 7.00 
S50Z15C900 900 859.51 0.192364 12.60 
S50Z15C875 875 859.51 0.242673 25.20 
S50Z15C850 850 859.51 0.109452 36.00 
Put option T = 60 

S50Z15P950 950 859.51 0.224256 64.60 
S50Z15P925 925 859.51 0.142267 48.00 
S50Z15P900 900 859.51 0.122566 27.90 
S50Z15P875 875 859.51 0.133554 15.30 
S50Z15P850 850 859.51 0.272342 10.80 
Call option T = 60 

S50Z16C1000 1000 942.56 0.152623 9.90 
S50Z16C975 975 942.56 0.183265 16.50 
S50Z16C950 950 942.56 0.223563 28.20 
S50Z16C925 925 942.56 0.243003 42.50 
S50Z16C900 900 942.56 0.132578 58.00 
Put option T = 60 

S50Z16P1000 1000 942.56 0.225367 69.50 
S50Z16P975 975 942.56 0.242774 49.00 
S50Z16P950 950 942.56 0.243268 34.00 
S50Z16P925 925 942.56 0.112532 23.20 
S50Z16P900 900 942.56 0.173564 15.10 
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Table 6 Model comparison for 2015 
contracts.  

 

Contract GARCH EGARCH GJR BS 
Call option T = 30 

S50Z15C950 0.1982 1.4823 3.5802 3.4293 
S50Z15C925 0.2452 1.4562 2.2063 2.1293 
S50Z15C900 0.2639 1.7892 2.2340 2.5324 
S50Z15C875 0.1455 0.0945 1.0178 2.2088 
S50Z15C850 0.1718 0.1672 0.8753 1.2398 

Put option T = 30 

S50Z15P950 0.2103 0.2242 2.0329 1.9923 
S50Z15P925 0.3801 0.3901 3.2238 3.1208 
S50Z15P900 0.8321 1.9323 1.3223 2.9023 
S50Z15P875 0.3012 1.3223 2.4387 3.8922 
S50Z15P850 0.6231 1.1021 4.2981 5.3892 
Call option T = 60 

S50Z15C950 0.0133 0.0132 4.0820 4.0037 
S50Z15C925 0.0013 0.3254 5.3244 5.1220 
S50Z15C900 0.0023 0.6543 7.1021 8.3212 
S50Z15C875 0.0021 1.1435 6.1213 7.0092 
S50Z15C850 0.0032 1.1354 3.2103 3.9326 

Put option T = 60 

S50Z15P950 0.1423 0.5424 8.0329 7.8023 
S50Z15P925 0.1124 0.9043 5.2923 4.2922 
S50Z15P900 0.0942 0.4214 4.3232 5.9201 
S50Z15P875 0.0032 1.9323 4.9324 6.2873 
S50Z15P850 0.0012 1.5932 3.3200 4.6700 

Table 7 Model comparison for 2016 
contracts. 

 

Contract GARCH EGARCH GJR BS 
Call option T = 30 

S50Z16C1000 0.1424 0.1644 1.0432 1.3020 
S50Z16C975 0.1242 0.1453 1.3252 1.5234 
S50Z16C950 0.4522 0.5543 2.4325 3.2992 
S50Z16C925 0.6434 0.6389 1.0093 1.5236 
S50Z16C900 0.8422 1.3042 2.9432 3.42321 

Put option T = 30 

S50Z16P1000 0.4233 1.2325 3.4252 4.5823 
S50Z16P975 0.2394 0.5352 0.4256 1.2832 
S50Z16P950 0.3827 0.5623 3.4256 4.2324 
S50Z16P925 0.3235 1.0992 3.9342 5.2312 
S50Z16P900 0.1125 0.3453 4.4256 5.9921 
Call option T = 60 

S50Z16C1000 0.0024 0.1235 1.2425 1.5422 
S50Z16C975 0.0425 0.2352 2.2452 3.9812 
S50Z16C950 0.1842 1.2423 3.2425 2.9902 
S50Z16C925 0.0242 1.3523 1.2014 1.1021 
S50Z16C900 0.0083 1.5042 0.3256 1.6202 

Put option T = 60 

S50Z16P1000 0.0923 0.3425 2.5326 3.2201 
S50Z16P975 0.0031 0.0212 1.4256 2.3324 
S50Z16P950 0.0892 0.0993 3.2362 4.9821 
S50Z16P925 0.0523 0.5242 2.2567 3.0583 
S50Z16P900 0.1100 1.2154 3.42264 4.9122 

 
From year 2016, the contracts under study are 

S50Z16C1000, S50Z16C975, S50Z16C950, 
S50Z16C925, S50Z16C900, S50Z16P1000, 
S50Z16P975, S50Z16P950, S50Z16P925 and 
S50Z16P900. Table 7 shows that the option prices 
from all of our randomized contracts with both times 
to maturity of 30 days and 60 days under GARCH 
model are the nearest to the option prices in the 
market, except only for the contract S50Z16C925 
under the EGARCH model with time to maturity of 
30 days that has slightly less RMSE, 0.6389, 
compared to the RMSE of the contract under the 
GARCH model, 0.6434.  
 From the results it is obvious that BS model 
performs the highest RMSE in most of the contracts 
compared to GARCH, EGARCH and GJRGARCH. 
It is noted that, among GARCH models, all contracts 
under the GJRGARCH model have higher RMSE 
than the other contracts under the other models but 
lower RMSE than BS model. Also, clearly, most 
contracts under the GARCH model have the lowest 
RMSE. Although, there are few contracts that show 
a slightly better performance with the EGARCH 
model, the differences in RMSE are insignificant 
when compared to that of the GARCH model. As a 
result, it could be concluded that the GARCH model 
may be a more suitable model for option pricing for 
SET50 in Thailand, based on our sample of data. 
 

 

 

5 Conclusion 
In this paper, we studied the GARCH, EGARCH 

and GJRGARCH models in finding the option price 
for the SET50 index of Thailand. We followed the 
method of Sui, Tong and Yang’s [5] which uses the 
conditional Esscher transform to find the risk neutral 
version of the GARCH, EGARCH and GJRGARCH 
model which is required for finding option prices.  

We carried out the exercise of simulating option 
prices using the GARCH, EGARCH and 
GJRGARCH models in the risk neutral measure Q. 
Our computations of the risk neutral version of the 
models are in agreement with those of Duan’s [2] and 
Schmitt’s [4].  

The contracts that we studied were randomized 
from two years, 2015 and 2016. The option contracts 
from year 2015 are S50Z15C950, S50Z15C925, 
S50Z15C900, S50Z15C875, S50Z15C850, 
S50Z15P950, S50Z15P925, S50Z15P900, 
S50Z15P875 and S50Z15P850. The option contracts 
from year 2016 are S50Z16C1000, S50Z16C975, 
S50Z16C950, S50Z16C925, S50Z16C900, 
S50Z16P1000, S50Z16P975, S50Z16P950, 
S50Z16P925 and S50Z16P900. All of our sample 
option contracts are traded in the Thailand Futures 
Exchange (TFEX). In most of the contracts, we 
observed that the option prices under the GARCH 
model is the closest to the actual option prices in the 
market. Especially, when the GARCH model is 
compared to the well-known Black-Sholes (BS) 
model, GARCH model can significantly outperform 
BS model. Only three out of twenty contracts in this 
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study, which are S50Z15C850 with time to maturity 
of 30 days, S50Z15C950 S50Z15C850 with time to 
maturity of 60 days and S50Z16C925 S50Z15C850 
with time to maturity of 30 days, show that the option 
prices under the EGARCH model is the closest to the 
actual prices in the market. However, the results of 
these three contracts under the EGARCH model only 
slightly outperform the results of the GARCH model. 
It can be concluded that the GARCH model might be 
a good candidate for these three contracts as well. 
This implies that the GARCH option pricing model 
may be the most suitable tool, compared to the 
EGARCH and GJRGARCH models, including the 
well-known benchmark of BS model, for the 
investors to valuate the options in Thailand.  

In conclusion, the advantages of this study is to 
indicate that option prices in Thailand under SET50 
have the ARCH effect based on Ljung-Box’s 2 ( )Q n

test. As a result, it is suggested to use GARCH 
models for option pricing. Our study indicates that 
GARCH model obviously outperform the other 
pricing models, including the well-known Black-
Schole model because of the least RMSE in our 
option price samples. This illustrates the main benefit 
for the investor to analyze the option pricing in 
Thailand. The GARCH option pricing model is a 
good candidate as an attractive tool for model pricing 
in SET50 options of Thailand. The investor can 
confidently use GARCH model as the most important 
tool to valuate option prices of SET50 and to 
determine the status of being overpriced and 
underpriced of the underlying assets. Moreover, it is 
suggested that GARCH model can be applied to 
predict the option price in the future as well based on 
our study of data samples of SET50 in Thailand. 
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