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1 Introduction 
Market competitiveness makes it necessary for 
companies to produce highly reliable products 
having longer life time, particularly, electronic 
devices, computer equipment, missiles, etc. 
However, for such reliable products/items, it is not 
easy to obtain enough failure information under 
normal operating conditions within a specific time 
period. To overcome such problems, ALT is the 
most common approach used to ensure rapid failure 
of products in order to obtain enough failure data or 
information about life characteristics economically 
in a short period of time. For greater details, see [1] 
and [2]. However, in practice, in CSALT the test 
needs a longer time at low stress levels to yield 
sufficient failure data. 

[1] pointed out that the stress can be applied in 
different ways such as constant stress ALT 
(CSALT), step-stress, progressive stress, etc and 

each stress level has its own advantages and 
disadvantages. In CSALT, each unit is tested/run at 
a pre-specified stress level until failure or the test is 
terminated for any reason. Usually, electronic items 
like semiconductors, capacitors, etc., run at a 
constant stress. Due to simplicity in test design and 
data analysis, CSALTs are frequently adopted in 
appliance manufacture industries. Conventionally, 
engineering experience is needed to determine the 
stress levels of CSALT plans ([3]; [4]). [1] provided 
excellent review on past developments of CSALT. 
[5] observed that insufficient failures may cause 
difficulty in estimating reliability of the product 
design. In the recent past, CSALT has been studied 
by many authorsin varied contexts. Readers may 
refer to the works of [6]; [7]; [8] ; [9]; [10]; [11] ; 
[12] ; [13]; [14] and many others. If the parameters 
of the model are known and precise, then one can 
apply maximum likelihood approach for optimal test 
plan by using the optimization criterion which 
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defines as minimization of the asymptotic variance 
(AV) of the MLE of tp (100pth percentile of the 
lifetime distribution at the normal stress condition). 
Using the Delta method and the Fisher information 
matrix ([15], [16]), AV of the MLE of tp can be 
obtained. Since the true values parameters are 
unknown, planning information is usually dependent 
on uncertainty [17]. Bayesian methods [18] is an 
alternative for dealing with the uncertainty. The 
criterion that minimizes the preposterior variance of 
a quantity of interest determines the optimal test 
plan which is generally used in Bayesian ALT 
designs (see, [5]; [19] and [17]). The pre-posterior 
variance can be computed using Monte Carlo 
simulation.  

This paper presents CSALT model for 
exponentiated Lomax (ELomax) distribution based 
on Type I censored failure data. It is assumed that at 
constant stress level the shape parameter of the 
distribution follows log linear model. Our aim is to 
obtain Bayes point estimates and credible intervals 
under uniform and log-normal priors of the model 
parameters and to perform sensitivity analysis to 
investigate how prior distribution and sample size 
affects the optimal stress changing point. As far as 
our knowledge goes, no work was carried out to 
study how prior distribution and sample size affects 
the optimal stress changing point. We aim to fill up 
this gap through this work. 
The rest of article is organized as follows. In Section 
2, we review the ELomax model. In Section 3, we 
describe the Bayesian approach and Optimization 
criterion. Simulation study is conductedand findings 
are listed in Section 4. The importance of ELomax 
distribution is illustrated by means of aircraft 
windshield failure time’s data set in Section 5. 
Finally, Section 6 offers some concluding remarks. 
 
 
2 The Model 

[20] introduced the ELomax distribution. The 
ELomax is more flexible than Lomax distribution, 
for more details see [21]. The cdf, pdf, reliability 
function and hazard rate function of the ELomax 
distribution are defined as follows: 

𝐹(𝑡|𝜑, 𝛽, 𝜃) = [1 − (1 + 𝜑𝑡)−𝛽]
𝜃

,                         
t, 𝛽, 𝜃, 𝜑 > 0,                (1) 

𝑓(𝑡|𝜑, 𝛽, 𝜃) = 𝛽𝜃𝜑(1 + 𝜑𝑡)−(𝛽+1)[1 −

(1 + 𝜑𝑡)−𝛽]
𝜃−1

, t, 𝛽, 𝜃, 𝜑 > 0,    (2) 

 𝑅(𝑡|𝜑, 𝛽, 𝜃) = 1 − [1 − (1 + 𝜑𝑡)−𝛽]
𝜃

,                                 
t> 0,                                                                   (3) 

and 

 

ℎ(𝑡|𝜑, 𝛽, 𝜃) =
𝛽𝜃𝜑(1+𝜑𝑡)−(𝛽+1)[1−(1+𝜑𝑡)−𝛽]

𝜃−1

1−[1−(1+𝜑𝑡)−𝛽]
𝜃 , 

t> 0. (4) 
where𝜃 and 𝛽 are the shape parameters and 𝜑 is a scale 
parameter of this distribution. When 𝜑= 1, ELomax 
reduces to the Exponentiated Pareto distribution. Also, 
when 𝜑=𝜃=1, ELomax reduces to Lomax distribution. 
The shape of the hazard rate function could be 
decreasing and inverted bathtub. 
 
 
3 Inference based on Type I Censored 

Samples 
Suppose, in an experiment,there are r 
levels of high stress xj, j=1, 2, ..., r and 
the stress underuse condition is denoted 
by xuwhere xu< x1< x2< ...< xr. Using 
Type I censoring, at each stress level, the 
experiment terminates once all the items 
fail or when a fixed censoring time tcj is 
reached. Assuming that the lifetime at 
stress level xj , tij , i = 1, 2, . . . , n, j = 1, 
2, . . . , r, follows ELomax distribution 
with pdf as given in (2). It is assumed that 
the stress xj affects only on the shape 
parameter θj of the ELomax distribution 
through a log linear model as follows: 

𝜃𝑗 = 𝑒𝑥𝑝(𝑎 + 𝑏𝑥𝑗),   𝑗 = 1, 2, … , 𝑟                 (5)  

where a and b are two unknown parameters 
depending on the nature of the product. 

Based on (1) and (2), the likelihood function is 
given by:  

𝐿(β, φ, θ|𝑡) = ∏ ∏ [𝛽𝜑𝜃𝑗(1 +
𝑛𝑗

𝑖=1
𝑟
𝑗=1

𝜑𝑡𝑖𝑗)
−(𝛽+1)[1 − (1 + 𝜑𝑡𝑖𝑗)

−𝛽]
𝜃−1

]
𝛿𝑖𝑗

[1 −

[1 − (1 + 𝜑𝑡)−𝛽]
𝜃
]
1−𝛿𝑖𝑗

,                                                      
(6)                                                                                                             

where 𝛿𝑖𝑗  is an indicator variable such that: 
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𝛿𝑖𝑗= {
1    𝑓𝑜𝑟   𝑡𝑖𝑗 ≤ 𝑡𝑐𝑗
0    𝑓𝑜𝑟   𝑡𝑖𝑗 > 𝑡𝑐𝑗

,                                   (7)                                                                                                

In our Bayesian analysis, the two sets of 
prior distributions are assumed and are 
reported in Table 1. We assume 
continuous uniform and log-normal prior 
distributions for the parameters a, b, β 
and φ to express our uncertainty in the 
values of the parameters. Since we do not 
have prior information, for illustrative 
purposes we use the following priors:  

Table 1. Priors distribution for Bayesian analysis 

Types   a   b    𝜑 

P I   U(0,6)   U(0,8)   U(0,5)   U(0,7)  

P II  lnor 
(0.001,1000)  

lnor 
(0.001,1000) 

lnor 
(0.001,1000) 

lnor 
(0.001,1000) 

where prior PI stands for non-informative 
prior and considered as, uniform 
distribution (U). For simplicity, let 𝛺 =
(𝑎, 𝑏, 𝛽, 𝜑) and the joint prior for the 
parameters are considered  

𝜀(𝑎, 𝑏, 𝛽, 𝜑) ∝ 1/𝑎𝑏𝛽𝜑, 𝜎1 ≤ 𝑎 ≤
𝜎2, 𝜎3 ≤ 𝑏 ≤ 𝜎4, 𝜎5 ≤ 𝛽 ≤ 𝜎6, 𝜎7 ≤ 𝜑 ≤
𝜎8,                                                          (8)                                                                             

where 𝜎1, 𝜎2, … , 𝜎8    are constants. 
Assume that the prior PII is informative 
prior. The informative prior pdf of 
𝛺 follows lognormal (lnor) distribution 
which are totally uncorrelated with the 
location and scale parameters 
𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, 𝜇6, 𝜇7, 𝜇8, respectively 
and its pdf has the following form 

𝜀1(𝑎) =
1

𝑎𝜇2√2𝜋
𝑒

−(
𝑙𝑛(𝑎)−𝜇1

2𝜇2
2 )

2

, 𝑎 > 0,    (9)                                                     

𝜀2(𝑏) =
1

𝑏𝜇4√2𝜋
𝑒

−(
𝑙𝑛(𝑏)−𝜇3

2𝜇4
2 )

2

, 𝑏 > 0,   (10)                                                      

𝜀3(𝛽) =
1

𝛽𝜇6√2𝜋
𝑒

−(
𝑙𝑛(𝛽)−𝜇5

2𝜇6
2 )

2

, 𝛽 > 0, (11) 

𝜀4(𝜑) =
1

𝜑𝜇8√2𝜋
𝑒

−(
𝑙𝑛(𝜑)−𝜇7

2𝜇8
2 )

2

, 𝜑 > 0,  (12) 

The joint informative prior pdf for the parameter a, 
b, β  and φ is provided as 

𝛹(𝑎, 𝑏, 𝛽, 𝜑) =

𝑒
−(

𝑙𝑛(𝑎)−𝜇1
2𝜇2

2 +
𝑙𝑛(𝑏)−𝜇3

2𝜇4
2 +

𝑙𝑛(𝛽)−𝜇5
2𝜇6

2 +
𝑙𝑛(𝜑)−𝜇7

2𝜇8
2 )

2

𝑎𝑏𝛽𝜑𝜇2𝜇4𝜇6𝜇8(2𝜋)2
, 

𝑎, 𝑏, 𝛽, 𝜑 > 0,                                                     (13) 

As a result, the posterior pdf with non-informative 
prior becomes: 

𝛹1(𝑎, 𝑏, 𝛽, 𝜑) ∝ 𝛺(𝑎, 𝑏, 𝛽, 𝜑)𝐿(a, β, φ, θ|𝑡), (14)                                                                             

Then  

𝛹1(𝑎, 𝑏, 𝛽, 𝜑) ∝ (1/𝑎𝑏𝛽𝜑)∏ ∏ [𝛽𝜑𝜃𝑗(1 +
𝑛𝑗

𝑖=1
𝑟
𝑗=1

𝜑𝑡𝑖𝑗)
−(𝛽+1)[1 − (1 + 𝜑𝑡𝑖𝑗)

−𝛽]
𝜃−1

]
𝛿𝑖𝑗

[1 −

[1 − (1 + 𝜑𝑡)−𝛽]
𝜃
]
1−𝛿𝑖𝑗

,                               (15)                                                                                             

Similarly we can write the posterior distribution 
using informative priors and can obtained Bayes 
estimators. 

Inference on each parameter is based on its marginal 
posterior density. Thus the marginal posterior 
density for the parameter a, b, β  and φ,respectively, 

𝑓(𝑎|𝑡) = ∭𝑓(φ, β, b|𝑡)𝑑𝜑𝑑𝛽𝑑𝑏,               (16)                                                                                                      

 𝑓(𝑏|𝑡) = ∭𝑓(φ, a, β|𝑡)𝑑𝜑𝑑𝑎𝑑𝛽,              (17)                                    

𝑓(𝛽|𝑡) = ∭𝑓(φ, a, b|𝑡)𝑑𝜑𝑑𝑎𝑑𝑏,                (18)                                                                            

𝑓(𝜑|𝑡) = ∭𝑓(b, a, β|𝑡)𝑑𝑏𝑑𝑎𝑑𝛽.                    (19)                                  

Gibbs sampling is used to draw a random sample of 
the parameters a, b, β  and φ from their own 
marginal posterior distribution  
𝑓(𝑎|𝑡), 𝑓(𝑏|𝑡), 𝑓(𝛽|𝑡)  and 𝑓(𝜑|𝑡), respectively, 
and then estimate the expected value using the 
sample mean. The squared error loss (SEL ) 
function is used in order to obtain Bayes estimators 
from marginal posterior pdf. 
 

3.1 Bayesian Estimators under the Squared 

Loss Function 
The posterior mean is a well-known Bayesian 
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estimate based on the SEL function. The SEL 
function is a symmetric loss function with the 
following formula: 

𝑆𝐸𝐿(𝑎, �̂�) = 𝑐(�̂� − 𝑎)2, 

where �̂� is an estimator of a and c is a constant. 
When the parameters are unknown, the Bayes 
estimators of a, b, β  and  φ     under SEL can be 
obtained as follows:  

�̂�𝑆𝐸𝐿 = 𝐸1(𝑎|𝑡) = ∭𝑐(�̂�

∞

0

− 𝑎)2 𝜀1(𝑎, 𝑏, 𝛽, 𝜑)𝑑𝑏𝑑𝛽𝑑𝜑, 

�̂�𝑆𝐸𝐿 = 𝐸1(𝑏|𝑡) = ∭𝑐(�̂�

∞

0

− 𝑏)
2
𝜀1(𝑎, 𝑏, 𝛽, 𝜑)𝑑𝑎𝑑𝛽𝑑𝜑, 

�̂�𝑆𝐸𝐿 = 𝐸1(𝛽|𝑡) = ∭𝑐(�̂�

∞

0

− 𝛽)
2
𝜀1(𝑎, 𝑏, 𝛽, 𝜑)𝑑𝑏𝑑𝑎𝑑𝜑, 

�̂�𝑆𝐸𝐿 = 𝐸1(𝜑|𝑡) = ∭ 𝑐(�̂� −
∞

0

𝜑)2 𝜀1(𝑎, 𝑏, 𝛽, 𝜑)𝑑𝑏𝑑𝛽𝑑𝑎,            (20). 

The credible intervals for a, b, β  and φ under SEL 
can be obtained easily, so the 100(1 − α)%  CIs for 
the parameters at (La, Ua), (Lb, Ub), (Lβ, Uβ) and 
(Lφ, Uφ),are respectively satisfying 

𝑝(𝐿𝑎 ≤ 𝑎 ≤ 𝑈𝑎) = 1 − 𝛼

= ∫ 𝑓(𝑎|𝑡)𝑑𝑎
𝑈𝑎

𝐿𝑎

,                         (21) 

 𝑝(𝐿𝑏 ≤ 𝑏 ≤ 𝑈𝑏) = 1 − 𝛼 =

∫ 𝑓(𝑏|𝑡)𝑑𝑏
𝑈𝑏

𝐿𝑏
                                                     (22)                                                                                                                           

 𝑝(𝐿𝛽 ≤ 𝛽 ≤ 𝑈𝛽) = 1 − 𝛼 =

∫ 𝑓(𝛽|𝑡)𝑑𝛽
𝑈𝛽

𝐿𝛽
,                                                    (23)                                       

𝑝(𝐿𝜑 ≤ 𝜑 ≤ 𝑈𝜑) = 1 − 𝛼 =

∫ 𝑓(𝜑|𝑡)𝑑𝜑
𝑈𝜑

𝐿𝜑
,                                                   (24)                                         

where the L and U are the lower and upper limit of 
the interval, respectively. 
 

3.2 Optimization Criterion 
The posterior mean and posterior variance of tp are 
given by 

𝐸(𝑡𝑝(𝑥𝑢)|𝑡) = ∫ 𝑡𝑝
∞

0
𝑓(𝑡𝑝(𝑥𝑢)|𝑡)𝑑𝑡𝑝(𝑥𝑢), (25) 

and  

𝑉(𝑡𝑝(𝑥𝑢)|𝑡) = ∫ [𝑡𝑝(𝑥𝑢) −
∞

0

𝐸 (𝑡𝑝(𝑥𝑢))]
2
𝑓(𝑡𝑝(𝑥𝑢)|𝑡)𝑑𝑡𝑝(𝑥𝑢)       (26) 

respectively. The variance given by (21) cannot be 
used as an optimization criterion because it depends 
on the data. However, the preposterior variance of 
tp, which is defined as:  

𝐸(𝑉 (𝑡𝑝(𝑥𝑢)|𝑡)) =

∫ 𝑉𝑡𝑝(𝑥𝑢)
∞

0
𝑓(𝑡𝑝(𝑥𝑢)|𝑡)𝑑𝑡𝑝(𝑥𝑢).                         (27) 

does not depend on t and therefore it will be used as 
the objective function. The optimal changing time 
will be the one to minimize𝐸(𝑉 (𝑡𝑝(𝑥𝑢)|𝑡)) 

where  𝑡𝑝 =
1

𝜑
[1 − (1 − 𝑝

1

𝜃)

−1

𝛽
], and p is the 𝑝𝑡ℎ 

percentile. 
 

 

4 Simulation Algorithm 
It's simple to simulate a data vector with 

𝑡𝑝 =
1

𝜑

[
 
 
 
 

1 − (1 −)𝑝

1

,u

−1

𝛽

]
 
 
 
 

 two-step 

process. To begin, the joint prior 
distribution is used to generate a set of 
values for the model parameters a, b, β 
and φ. Second, the conventional inverse 
transformation method is used to simulate 
n i.i.d. failure times from the distribution 
function provided by (2). The right-
censored observations are simulated 
failure times that are longer than the 
censoring time tc. The posterior variance 
V(tp|t) supplied by (21) must be evaluated 
for each simulated data vector. The Gibbs 
sampling method is utilized in this work 
to select a random sample of tp from the 
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marginal posterior distribution f(tp|t) and 
estimate V(tp|t) using the sample variance. 
The preposterior variance of tp is 
estimated by averaging V(tp|t) over all 
simulated data vectors. The preposterior 
variance of tp is evaluated at discrete 
points in time to determine the ideal 
stress changing time of the preposterior 
variance of tp, in order to discover the 
ideal stress changing point. 
 

4.1 Simulation 
The following are the simulation steps: The R 
language is used to produce accelerated life data 
from the ELomax distribution at different sample 
sizes (20,40) at 𝜑 = 1.2 𝛽 = 1.1, 𝜃 = 1.9. To 
eliminate posterior dependency on a simulation's 
starting point, numerous chains with over-dispersed 
beginning points should be conducted in a single 
MCMC simulation. 

 For three chains, the initial values of a, b, 
𝛽 𝑎𝑛𝑑 𝜑are as follows: The first chain has 
beginning values of a = 0.1, b = 0.1,𝛽 =
  0.1  𝑎𝑛𝑑 𝜑 = 0.3; the second chain has 
beginning values of a = 0.3, b = 0.7, 𝛽 =
  0.2 𝑎𝑛𝑑 𝜑 =  0.4; and the third chain has 
beginning values of a =0.5, b=0.9,𝛽 =
0.3 𝑎𝑛𝑑 𝜑 = 0.5. 

 This is a non-formal method of determining 
convergence. The Monte Carlo standard 
error (MC error) of the mean is used to 
calculate the precision of a posterior 
estimate. According to [22], MC error for 
each estimate should be less than 5% of the 
sample standard deviation (SSD. This rule 
has been followed in this situation; see 
Appendix B for more information. 

 Assume the experiment ends when all of the 
items fail or when a specific censoring time 
t is reached (Type I censoring). When n =n 
=10, tc1=15,tc2=7, n =n =20, tc1=19,tc2=7, 
and n =n =30, tc1=19,tc2=7. 

 It is assumed that values of parameters are 
known and apply Bayesian method to 
determine the optimal stress changing point. 
The objective function is to minimize the 
asymptotic variance of the pth percentile at 
normal stress, low stress and high stress. 
Tables 2-5 summarizes the optimal stress 
changing times tc

∗and the corresponding 
posterior variance of tp at p = 0.1. The 
summary of the samples are displayed in 

Tables 2-5. It is observed that as sample 
size increases, accuracy of the estimates 
improves. Although the stress level saves 
the experiment time, the results are better in 
usual conditions. As expected, we observe 
that the variance of the estimated 
parameters decreases when we assume 
informative prior. It is also reasonably to 
conclude that the interval length is narrower 
with informative priors. The interval of the 
parameters a, b, β, φ ,𝜃𝑢, 𝑡𝑝(𝑥𝑢),  𝑡𝑝(𝑥𝑙) 
and  𝑡𝑝(𝑥ℎ),  becomes narrower as the 
sample size increases. Tables 2-5 
summarise the results of the samples. As the 
sample size grows larger, the accuracy of 
the estimates improves. The results are 
better in normal conditions, despite the fact 
that the stress level saves the experiment 
time. When we assume an informative prior, 
the variance of the calculated parameters 
appears to decrease, as expected. With 
informative priors, it is likewise reasonable 
to conclude that the interval length is 
shorter. As the sample size grows, the 
interval of the parameters a, b, β, φ 
,𝜃𝑢, 𝑡𝑝(𝑥𝑢),  𝑡𝑝(𝑥𝑙) and  𝑡𝑝(𝑥ℎ),   becomes 
narrower. 
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Table 2. Posterior summaries of the model parameter at n = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P   Estimate   Mean  Sd  MC error   median   95% CI   Interval length 

 

 

 

 

 

 

I  

 â  0.3588 0.2067 0.00142 0.3443 (0.0265, 0.7994) 0.7729 

b̂  
0.12040 0.1013 5.011E-4 0.09409 ( 0.0037,0.3724 ) 0.3687 

̂  
3.8210 0.827 0.00917 3.961 ( 2.025, 4.953 ) 2.928 

�̂� 0.0511 0.03035 3.916E-4 0.043 (0.0258,0.1213) 0.0955 

û  
1.5490 0.3146 0.002336 1.495 (1.115,2.297) 1.1820 

t̂ )( up x  
1.6600 0.3365 0.001105 1.639 (1.065,2.3710) 1.3060 

t̂ )( lp x  
1.8360 0.3782 0.00101 1.819 (1.149,2.6260) 1.4770 

t̂ )( hp x  
1.5011 0.3508 0.001473 1.47 (0.9223,2.2590) 1.3367 

 

 

 

 

II  

 â  0.9607 0.02867 7.598E-5 0.9603 (0.9057,1.0180 ) 0.1123 

b̂  
0.9421 0.02744 7.369E-5 0.9417 ( 0.8893,0.9971 ) 0.1078 

̂  
1.0660 0.03015 8.116E-5 1.065 ( 1.008 , 1.126 ) 0.1180 

�̂� 1.0340 0.0319 8.778E-5 1.033 ( 0.9727, 1.097 ) 0.1243 

û  
4.1880 0.1289 3.345E-4 4.185 ( 3.945 , 4.4500 ) 0.505 

t̂ )( up x  
2.1240 0.1322 3.131E-4 2.119 ( 1.877,2.3950) 0.5180 

t̂ )( lp x  
3.5770 0.2548 6.099E-4 3.566 (3.1050, 4.1050 ) 1.000 

t̂ )( hp x  
1.2040 0.06838 1.623E-4 1.203 ( 1.076,1.345 0) 0.2690 
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Table 3. Optimum Bayesian design under Type I censoring at n=20 

 

 

 

 

 n  

 

 P   stress   E( ))|t( tvar p   t 1c   t 2c  

 

 

 I  

 

 x u  0.1925 3.6575 1.3475 

 x l  0.2324 4.4156 1.6268 

 x h  0.2846 5.4075 1.9922 

 

 

II  

 

 x u  0.07556 1.4383 0.5293 

 x l  0.1573 2.9887 1.1011 

 x h  0.3158 6.0002 2.2106 

 
Table 4. Posterior summaries of model parameters at n=40 

P   Estimate   Mean  Sd  MC error   median   95% CI  Interval length 

 

 

 

 

 

 

I  

 â  0.1409 0.1117 7.427E-4 0.1155 )0.0047,0.4103) 0.4056 

b̂  0.1786 0.1064 8.383E-4 0.1695 (0.0117,0.4076) 0.3959 

̂  3.691 0.8279 0.01215 3.764 (2.0360,4.9400) 2.9040 

�̂� 0.03417 0.01657 2.636E-4 0.02919 (0.0181,0.0786) 0.0605 

û  1.265 0.1313 0.001108 1.24 (1.0800,1.5870) 0.5070 

t̂ )( up x  1.903 0.2525 8.067E-4 1.889 (1.4470,2.4330) 0.9860 

t̂ )( lp x  2.245 0.3598 0.00123 2.23 (1.5890,2.9870) 1.3980 

t̂ )( hp x  1.603 0.2675 0.001632 1.566 (1.1760,2.2190) 1.0430 

 

 

 

 â  0.9475 0.0278 7.621E-5 0.9472 (0.894,1.003) 0.1090 

b̂  0.9317 0.02618 7.47E-5 0.9315 (0.8813,0.9836) 0.1023 

̂  1.073 0.02712 7.744E-5 1.072 (1.0200,1.1270) 0.1070 
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Table 5. Optimum Bayesian design under Type I censoring at n=40 

 

 

 

 

 n  

 

 P   stress   E( ))|t( tvar p   t 1c   t 2c  

 

 

 I  

 

 x u  0.1192   1.192   2.384  

 x l  0.1662  1.662 3.324  

 x h  0.2333   2.333  4.666  

 

 

II  

 

 x u  0.0603 0.603   1.206  

 x l  0.1856 1.856   3.712  

 x h  0.5206   5.206   10.412  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II  

�̂� 1.042 0.03185 9.015E-5 1.042 (0.9813,1.106) 0.1247 

û  4.112 0.1204 3.399E-4 4.108 (3.884, 4.356) 0.4720 

t̂ )( up x  2.025 0.104 2.179E-4 2.022 (1.8300, 2.2380) 0.4080 

t̂ )( lp x  3.391 0.1976 4.162E-4 3.385 (3.0220, 3.7960) 0.7740 

t̂ )( hp x  1.155 0.05573 1.215E-4 1.153 (1.0500,1.2680) 0.2180 
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5 Application 
In this section, for illustration purpose, we analyse 
one real data set which represents the failure times 
of 84 Aircraft windshield. This data set was first 
discussed by [23]. These data were recently studied 
by [24] and [25]. The data set is divided into two 
samples, n1 and n2 where (n1 + n2 = 84). n1 units 
have failed during the interval (0, tc) and n2(84 − n1) 
units are still active, where 𝑎, b, 𝛽, 𝜑 are the 
population parameters. For achieving the 
convergence, we apply three chains of the Brooks-
Gelman-Rubin statistics for a given parameter. The 
summary of the real data set with respect to the 
unknown parameters𝑎, b, 𝛽, 𝜑 ,𝜃𝑢, 𝑡𝑝(𝑥𝑢),  𝑡𝑝(𝑥𝑙) 
and  𝑡𝑝(𝑥ℎ),   where p = 0.1, are displayed in Table 
6. 
 

 Assume that the experiment is terminated 
once all the items fail or when a fixed 
censoring time tcj is reached (Type I 

censoring) . tc1=2.49 and tc2=3.69 at  n1 and 
n2, respectively.  

 From Table 7 ,it is observed that the MC 
error for each estimate is less than 5% of the 
SSD, thus the rule of MC error has been 
achieved. Also, to check the convergence, 
Gelman-Rubin convergence statistic, R, is 
applied. 

 For WinBUGS simulation convergence, R 
should be one, or close to one. 

 The two-sided 95% credible intervals for 

the estimates of parameters  u , t p (x u ), t p

(x l ) and t p (x h )  of ELomax distribution 
are reported in Table 6. As the sample size 
increases, length of the interval becomes 
narrower.  

 It appears that in case of informative prior, 
the variance of estimated parameters 
decreases. 
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Table 6. Posterior statistics of model parameters under Type I censoring 

 

 

 

 

 

P   Estimate   Mean  Sd  MC error   median   95% CI  Interval length 

 

 

 

 

 

I 

 â   0.4155  0.2634  0.004032  0.3840 (0.0245,0.9966)  0.9721 

b̂   0.9960  0.1998  0.003059  1.0190 (0.5565,1.3100)  0.7535 

̂   0.9950  0.0049  2.102E-5  0.9966 (0.9819,0.9999)  0.0180 

�̂�  1.9110  0.0828  3.600E-4  1.9350 (1.6900,1.9980)  0.3080 

û   2.5300  0.4535  0.006768  2.4450 (1.9260,3.616)  1.6900 

t̂ )( up x   0.3560  0.0781  0.001457 0.3370 (0.2300,0.5890)  0.3590 

t̂ )( lp x   0.7041  0.0963  9.33E-4  0.6960 (0.5754,0.8769)  0.3015 

t̂ )( hp x   1.3040  0.1165  8.598E-4  1.3010 (1.0830,1.5390)  0.4560 

 

 

 

 

II  

 â  0.9351 0.0276 7.934E-5 0.9347 (0.8824, 0.9904) 0.1080 

b̂  0.9233 0.02633 8.242E-5  0.923 ( 0.8726, 0.9758)  0.1032 

̂  1.411 0.03529 1.212E-4  1.41 ( 1.342, 1.481)  0.1395 

�̂� 1.126 0.03286 1.002E-4  1.126 ( 1.063, 1.192)  0.1290 

û  4.044 0.1193 3.484E-4  4.041  ( 3.819, 4.287)  0.4680 

t̂ )( up x  0.7171 0.02729 5.838E-5  0.7165 (1.7200 ,2.031)  1.3110 

t̂ )( lp x  1.191 0.0458 8.642E-5  1.19  ( 1.283, 1.1030)  0.1800 

t̂ )( hp x  1.87 0.07924 1.504E-4  1.869  ( 2.031, 1.72)  0.3110 
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Table7. Optimum Bayesian design under Type I censoring 

 P   stress   E( )|)t( tvar p   t 1c   t 2c  

 I  

 

 

 

 x u  0.0026  0.0065   0.0182  

 x l  0.0096  0.0239  0.0672 

 x h  0.0329  0.0819  0.2303 

II  x u  0.0099 0.0247 0.0365 

  x l  0.0273 0.0679 0.1007 

  x h  0.0673 0.1676 0.2483 

 

6 Conclusion 
In this study, we present Bayesian analysis for the 
type I censored data under CSALT for the 
exponentiated Lomax distribution usinglog-linear 
life-stress function. We have investigated how prior 
distribution and sample size affects the optimal 
stress changing point. We observe that the variance 
of the estimated parameters decreases when we 
assume informative prior. We also observe that 
length of the credible intervals for the parameters of 
interest becomes narrower as the sample size 
increases. Similar results echoed in the real data 
analysis.It would be of great interest for statistician/ 
reliability engineers to study the different classical 
methods of estimation under CSALT for the 
exponentiated Lomax distribution and log linear 
acceleration model based on type II, progressive 
type II censoring data. The work in this direction is 
in progress and will be reported later. Although we 
have considered log-linear acceleration model, 
however, there are several other models where it can 
be applied. 
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Appendix A 

tp1 chains 3:1

iteration

499504990049850

   -4.0

   -3.0

   -2.0

   -1.0

    0.0

tp2 chains 3:1

iteration

499504990049850

   -4.0

   -3.0

   -2.0

   -1.0

    0.0

 
                                Trace of low stress (t p (x l ))                     Trace of high stress t p (x h ) 

tp3 chains 3:1

iteration

499504990049850

   -4.0

   -3.0

   -2.0

   -1.0

    0.0

 
                          Trace of normal condition t p (x u ) 

Fig. 1 The trace of t p (x l ), t p (x h ) and t p (x u ) for informative prior at n=20 
 
 

tp1 chains 3:1

iteration

499504990049850

   -2.6
   -2.4
   -2.2
   -2.0
   -1.8
   -1.6

tp2 chains 3:1

iteration

499504990049850

   -4.5

   -4.0

   -3.5

   -3.0

   -2.5

 
                                  Trace of low stress (t p (x l ))                      Trace of high stress t p (x h ) 

tp3 chains 3:1

iteration

499504990049850

   -1.4

   -1.2

   -1.0

   -0.8

 
       Trace of normal condition t p (x u ) 

Fig. 2 The trace of t p (x l ), t p (x h ) and t p (x u ) for informative prior at n=40 
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tp1 chains 3:1

iteration

499504990049850

   -1.2

   -1.0

   -0.8

   -0.6

   -0.4

tp2 chains 3:1

iteration

499504990049850

   -2.0
  -1.75
   -1.5
  -1.25
   -1.0
  -0.75

 
                         Trace of low stress (t p (x l ))                                        Trace of high stress (t p (x h )) 

tp3 chains 3:1

iteration

499504990049850

   -0.8

   -0.6

   -0.4

   -0.2

 
                    Trace of normal condition (t p (x u )) 

Fig. 3 Trace of non-informative prior for t p (x l ), t p (x h ) and t p (x u ) in real data 
 

tp1 chains 3:1

iteration

499504990049850

   -1.4

   -1.3

   -1.2

   -1.1

   -1.0

tp2 chains 3:1

iteration

499504990049850

   -2.2

   -2.0

   -1.8

   -1.6

 
                         Trace of low stress (t p (x l ))                                   Trace of high stress (t p (x h )) 

tp3 chains 3:1

iteration

499504990049850

   -0.9

   -0.8

   -0.7

   -0.6

 
                  Trace of normal condition (t p (x u )) 

Fig. 4 Trace of non-informative prior for t p (x l ), t p (x h ) and t p (x u ) in real data 
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Appendix B 

tp1 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5

    1.0

tp2 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5

    1.0

 
                The Gelman Rubin of low stress (t p (x l ))                   The Gelman Rubin of high stress t p (x h ) 

tp3 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5

    1.0

 
              The Gelman Rubin of normal condition t p (x u ) 

Fig. 5 The Gelman Rubin of t p (x l ), t p (x h ) and t p (x u ), at n=20 with informative prior 
 

tp1 chains 1:3

start-iteration
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    1.0

tp2 chains 1:3

start-iteration

748 10000 20000
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    0.5

    1.0

 
               The Gelman Rubin of low stress (t p (x l ))                         The Gelman Rubin of high stress t p (x h ) 

tp3 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5

    1.0

 
                  The Gelman Rubin of normal condition t p (x u ) 

Fig.6 The Gelman Rubin of t p (x l ), t p (x h ) and t p (x u ), at n=40 with informative prior 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.33 Refah Alotaibi, H. Rezk, Sanku Dey

E-ISSN: 2224-2880 333 Volume 20, 2021



tp1 chains 1:3

start-iteration
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tp2 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5

    1.0

 
              The Gelman Rubin of low stress (t p (x l ))                    The Gelman Rubin of high stress t p (x h ) 

tp3 chains 1:3

start-iteration
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    0.5
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    1.5

 
             The Gelman Rubin of normal condition t p (x u ) 

Fig. 7 The Gelman Rubin of t p (x l ), t p (x h ) and t p (x u ), in real data with  informative prior 

 

tp1 chains 1:3

start-iteration

748 10000 20000

    0.0

    0.5
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tp2 chains 1:3

start-iteration
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            The Gelman Rubin of low stress (t p (x l ))                       The Gelman Rubin of high stress t p (x h ) 

tp3 chains 1:3

start-iteration

748 10000 20000

    0.0
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    1.0

 
               The Gelman Rubin of normal condition t p (x u ) 

Fig. 8 The Gelman Rubin of t p (x l ), t p (x h ) and t p (x u ), in real data with non informative prior 
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