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Abstract: In this work, an incorporated form of Sadik transform and Adomian decomposition method which is
called the Sadik decomposition method is presented. The method is applied to solve a system of nonlinear
fractional Volterra integro-differential equations in the convolution form. To avoid collecting the noise terms that
lead the method to fail for seeking the solution, the proposed method is modified by selecting a suitable initial
solution. The obtained results are expressed in the explicit form of a power series with easily computable terms. In
addition,illustrativeexamplesareshowntodemonstratetheeffectivenessofthemethod.
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1 Introduction
Fractional calculus is initially introduced by Leibniz
in 1695 [4]. It deals with the derivative and integral
of fractional order. The definition of fractional deriva-
tives is given by many mathematicians e.g. Riemann-
Liouville, Grünwald-Letnikow, Caputo and General-
ized Functions Approach [6]. Here we focus on the
Caputo idea since it is more useful and clear in the
real-life application. One of the most popular uses
of fractional derivatives is the modeling of physical
problems in the form of fractional differential equa-
tions and fractional integro-differential equations.

The fractional integro-differential equation is a
generalization of the integro-differential equation of
order integer. This kind of equation can be found
in various physical applications such as heat con-
duction in materials with memory. Not only frac-
tional integro-differential equations but also a sys-
tem of fractional integro-differential equations appear
in many mathematical modeling problems of many
phenomena. In recent years, the problem of find-
ing a solution to such a system is attracted many re-
searchers. Unfortunately, most systems of fractional
integro-differential equations do not have exact ana-
lytic solutions. Therefore, an approximate solution
for these systems has been investigating by many
numerical techniques. To mention a few, Adomian
decomposition method (ADM)[10], Least squares

method [2], Chebyshev spectral method [3], Gen-
eralized Spline Approach [13], Chebyshev wavelet
method [5], Chebyshev pseudo-spectral method [11]
and reference therein.

The Sadik transform was defined by S.L. Shaikh
[16] in 2018. This sort of transformation is a
generalization of many integral transforms such as
the Laplace Transform, Aboodh Transform, Kamal
Transform, Sumudu Transform, Elzaki Transform,
and Tarig Transform. The compulsive theorems for
Sadik transform were investigated in [17], [21] [22].
The Sadik decomposition method (SDM) is a conve-
nient and powerful mathematical tool in solving vari-
ous types of problems in science, technology, and en-
gineering. As linearization and discretization are not
required in the procedure, this new integral transform
method is attractive by many researchers for solving
different kinds of problems. Some applications of
SDM are found in [1], [14], [15], [18], [19],[20].

The motivation of this study relates to the pro-
gression of work in [21]. Besides the theorem of
Sadik transform for the fractional derivative is proved,
the sufficient conditions for the existence of Sadik
transform of fractional derivatives are established.
The present paper deals with a system of nonlinear
fractional Volterra integro-differential equations (SF-
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VIDEs)

Dγiui(x) = gi(x)

+λi

∫ x

0
κi(x, t)Fi(t, u1(t), u2(t), . . . , un(t))dt (1)

i = 1, 2, 3, . . . , n, where Dγi is fractional derivative
operator in Caputo sense, Fi is a nonlinear function,
gi(x) is a given function, ci,0, λi and γi are constant,
0 < γi < 1. This kind of system plays a vital role
in many areas of science and engineering [7]. Some
attentions have been paid to the approximate solution
of the system [9], [12].

The purpose of the paper is to give a solution of
the initial value problem for SFVIDE

Dγiui(x) = gi(x)

+λi

∫ x

0
κi(x− t)Fi(t, u1(t), u2(t), . . . , un(t))dt (2)

with initial condition ui(0) = ci,0, by modified Sadik
decomposition method. The existence solution of the
previous initial value problem is studied in [23].

This paper is organized as the follows. Section
2 gives the basic definition of fractional integral and
derivative whereas section 3 provides the elementary
definition, theorem and some properties of the Sadik
transform. Section 4 describes how to apply of Sadik
decomposition method to SFVIDE. Illustrative exam-
ples are shown in the last section.

2 The Fractional Integral and
Derivative

In this section, some necessary notions about frac-
tional calculus is provided.

Definition 1 The Riemann-Liouville fractional inte-
gral operator of order γ ≥ 0 is defined as

Iγϕ(t) =

 1
Γ(γ)

∫ t

0

ϕ(τ)

(t− τ)1−γ
dτ, γ > 0, t > 0,

ϕ(t), γ = 0

For Riemann-Liouville fractional integral, one can
show that

1.) Iγ1Iγ2ϕ(t) = Iγ1+γ2ϕ(t),

2.) Iγ1Iγ2ϕ(t) = Iγ2Iγ1ϕ(t),

3.) Iγtµ = Γ(µ+1)
Γ(µ+γ+1) t

γ+µ, µ > −1.

The Riemann-Liouville fractional integral is a lin-
ear operator, that is for any constant c1, c2

Iγ(c1ϕ(t) + c2ψ(t)) = c1I
γϕ(t) + c2I

γψ(t).

Definition 2 [11] The Caputo fractional derivative
operator Dγ of order γ, (n − 1 < γ ≤ n, n ∈ N)
is defined in the following form,

Dγϕ(t) =
1

Γ(n− γ)

∫ t

0
(t− τ)−γ+n−1ϕ(n)(τ)dτ,

(3)
α > 0, t > 0, where the function ϕ(t) has absolutely
continuous derivatives up to order n−1. In particular,
if 0 < γ < 1, we have

Dγϕ(t) =
1

Γ(n− γ)

∫ t

0
(t− τ)−γϕ′(τ)dτ.

One can note that Caputo fractional derivative op-
erator is a linear operation

Dγ(c1ϕ(t) + c2ψ(t)) = c1D
γϕ(t) + c2D

γψ(t) (4)

where c1 and c2 are constants. For the Caputo deriva-
tive we have [6]

DγC = 0, C is a constant,

Dγxp =

0, for p ∈ N0 and p < ⌈γ⌉
Γ(p+ 1)

Γ(p+ 1− γ)
xp−γ , for p ∈ N0 and p ≥ ⌈γ⌉

where the ceiling function ⌈γ⌉ to denote the small-
est integer greater than or equal to γ and N0 =
{0, 1, 2, . . .}.

Moreover, the following two basic properties can
be proved

1.) DγIγϕ(t) = ϕ(t),

2.) IγDγϕ(t) = ϕ(t)−
n−1∑
k=1

ϕ(k)(0)

k!
tk.

3 Sadik Transform

In this section, we introduce some basic definitions
and properties of Sadik transform. As sufficient con-
ditions for the existence of the Sadik transform are
that of exponential order, this implies that the Sadik
transform may or may not exist. Hence, to guarantee
the existence let us consider the set F defined

F =
{
f(t)

∣∣ ∃M, k1, k2 > 0 such that
∣∣f(t)∣∣ ≤Me

|t|
kj

if t ∈ (−1)j × [0,∞), j = 1, 2
}

Then the Sadik transform of exponential ordered func-
tion can be stated as follows.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.34 Prapart Pue-On

E-ISSN: 2224-2880 336 Volume 20, 2021



Definition 3 [16] If f(t) is piecewise continuous
function on the interval 0 ≤ t ≤ A for any A > 0
and |f(t)| ≤ KeBt when t ≥ M, for any real con-
stant B and some positive constant K and M . Then
Sadik transform of f(t) is defined by

S [f(t)] =
1

vβ

∫ ∞

0
f(t)e−tvαdt = F (vα, β) (5)

where v is complex variable, α is any non zero real
number, and β is any real number. Here S is called
the Sadik transform operator.

Now the following table shows that the Sadik trans-
form can be convert into the all transforms which are
mentioned in Table 1 by changing values of α, β.

Table 1: Sadik transformation with values of α, β

Values of α, β Sadik transform converts into

α = 1, β = 0 Laplace Transform

α = 1, β = 1 Aboodh Transform

α = 1, β = −1 Laplace Carson transform

α = −1, β = 0 Kamal Transform

α = −1, β = 1 Sumudu Transform

α = −1, β = −1 Elzaki Transform

α = −2, β = 1 Tarig Transform

Theorem 4 If S[f(t)] = F (vα, β) and S[g(t)] =
G(vα, β) then

S[c1f(t) + c2g(t)] = c1S[f(t)] + c2S[g(t)] (6)

where c1 and c2 are any constant.

Theorem 5 [16] Let F (vα, β) and G(vα, β) are
Sadik Transforms of f(t) and g(t) respectively, and
(f ∗ g)(t) is a convolution of f(t) and g(t). Then,
Sadik transform of (f ∗ g)(t) is

S[(f ∗ g)(t)] = vβF (vα, β)G(vα, β) (7)

where ∗ denotes convolution.

Theorem 6 [21] Let F (vα, β) denote the Sadik
transform of f(t) and f ′(t), f ′′(t), f ′′′(t), . . . ,

f (n−1)(t) are continuous on [0,∞.) Then the Sadik
transform of f (n)(t) is

S
[
f (n)(t)

]
= vnαF (vα, β)−

n−1∑
k=0

vkα−βf (n−1−k)(0).

(8)

By the above definition and theorem, the following
results can be obtained

1. S[f ′(t)] = vαF (vα, β)− v−βf(0),

2. S[f ′′(t)] = v2αF (vα, β)−vα−βf(0)−v−βf(0),

3. S[f ′′′(t)] = v3αF (vα, β)− v2α−βf(0)

−vα−βf ′(0)− v−βf ′′(0),

Moreover, Sadik transform of some functions are
shown in Table 2. The proof can be found in [16].

Table 2: Sadik transformation of some functions
f(t) S[f(t)] = F (vα, β)

1
1

vα+β

t
1

v2α+β

t2
2!

v3α+β

tn, n ∈ N
n!

v(n+1)α+β

tn, n > −1
Γ(n+ 1)

v(n+1)α+β

eat
1

vβ(vα − a)

sin at
a

vβ(v2α + a2)

cos at
vα

vβ(v2α + a2)

sinh at
a

vβ(v2α − a2)

cosh at
vα

vβ(v2α − a2)

Theorem 7 [21] Let n − 1 < γ < n, (n = [γ] +

1) and f(t), f ′(t), . . . , f (n−1)(t) are continuous on
[0,∞) and of exponential order, while Dγf(t) is
piecewise continuous on [0,∞). Then Sadik trans-
form of Caputo fractional derivative of order γ of
function f is given by

S[Dγf(t)] = vγαF (vα, β)

−
n−1∑
k=0

v(γ−n+k)α−βf (n−1−k)(0+)
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4 Application of Sadik Decomposi-
tion Method to System of Non-
linear Fractional Volterra Integro-
Differential Equations

Let us consider the system of nonlinear Volterra
integro-differential equations (2) in form

Dγiui(x) = gi(x) + λiκi(x) ∗ Fi(t, u1, u2, . . . , un).
(9)

Applying the Sadik transform to (9) and using (7), one
obtains

S
[
Dγiui(x)

]
= S[gi(x)]

+λiv
βS[κi(x)]S[Fi(x, u1, u2, . . . , un)].

Let S[ui(x)] = Ui(v
α, β), then by Theorem7 one gets

Ui(v
α, β) = v−γiαS[gi(x)] + v−α−βci,0

+ λiv
−γiα+βS[κi(x)]S[Fi(x, u1, u2, . . . , un)]

Taking inverse Sadik transform, then

ui(x) = S−1
[
v−γiαS[gi(x)]

]
+ S−1

[
v−α−βci,0

]
(10)

+S−1
[
λiv

−γiα+βS[κi(x)]S[Fi(x, u1, u2, . . . , un)]

Suppose the solution of (9) expressed in form

ui =

∞∑
k=0

ui,k(x) (11)

and nonlinear term Fi(x, u1(x), u2(x), . . . , un(x)) is
represented by Adomian polynomial Ai,k

Fi(x, u1, u2, . . . , un) =

∞∑
k=0

Ai,k(x, u1, u2, . . . , un).

(12)
Specific algorithm for multivariables Adomian Poly-
nomials is provided in [8]. Substituting (11) and (12)
into (10), it becomes

∞∑
k=0

ui,k(x) = S−1
[
v−γiαS[gi(x)]

]
+ S−1

[
v−α−βci,0

]
+ S−1

[
λiv

−γiα+βS[κi(x)]S[
∞∑
k=0

Ai,k]
]
.

Thus, the recursive relation for standard Sadik decom-
position method (SSDM) is defined

ui,0(x) = S−1
[
v−γiαS[gi(x)]

]
+ S−1

[
v−α−βci,0

]
= Hi(x)

ui,k+1(x) = S−1
[
λiv

−γiα+βS[κi(x)]S[Ai,k]
]
,

k = 0, 1, 2, . . . , here the function Hi(x) represents
the term arising from source equation and prescribed
initial condition. The initial solution is important, and
the choice ofHi(x) as the initial solution always leads
to noise oscillation during the iteration procedure.

Modified Sadik Decomposition Method
(MSDM)

In order to overcome the shortcoming, we assume that
Hi(x) can be divided into the sum of two parts namely
Hi0(x) and Hi1(x), therefore we get

Hi(x) = Hi0(x) +Hi1(x)

Instead of the iteration procedure expressed above one
suggests the following modification

ui,0(x) = Hi0(x),

ui,1(x) = Hi1(x) + S−1
[
λiv

−γiα+βS[κi(x)]S[Ai,1]
]
,

ui,k+1(x) = S−1
[
λiv

−γiα+βS[κi(x)]S[Ai,k]
]
,

k = 1, 2, . . . . The solution through the modified
Sadik decomposition method highly depends upon the
choice of Hi0(x) and Hi1(x).

5 Illustrative Examples

This section gives examples which illustrate an appli-
cation of MSDM to the system of nonlinear fractional
Volterra integro-differential equations.

Example 8 Consider a system of nonlinear fractional
Volterra integro-differential equations

D
1
2u(x) =

2x
1
2

Γ
(
3
2

) +
x4

3
+
x8

56
−

x∫
0

(x− t)(u2(t) + w2(t))dt,

D
1
2w(x) =

6x
5
2

Γ
(
7
2

) +
x6

15
−

x∫
0

(x− t)(u(t)w(t))dt

with initial conditions

u(0) = 0, w(0) = 0.

The exact solution is u(x) = 2x, w(x) = x3.
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Here g1(x) = 2x
1
2

Γ
(

3
2

) +
x4

3
+
x8

56
, g2(x) = 6x

5
2

Γ
(

7
2

) +

x6

15 , F1(u,w) = u2 + w2, F2(u,w) = uw, γi =
1
2 , λi = −1 and κi(x) = x, i = 1, 2.

Suppose the solution of this system is written as
follows

u =

∞∑
n=0

un(x) and w =

∞∑
n=0

wn(x). (13)

By utilizing SSMD, one can define recursive re-
lation as

u0(x) = 2x+
8x

9
2

Γ(112 )
+

720x
17
2

Γ(192 )
,

un+1(x) = −S−1

[
1

v
5
2
α
S
[
An(x)

]]
, n ≥ 0,

and

w0(x) = x3 +
48x

13
2

Γ(152 )
,

wn+1(x) = −S−1

[
1

v
5
2
α
S
[
Bn(x)

]]
, n ≥ 0

where An and Bn are the Adomian polynomials for
nonlinear functions F1(u,w) and F2(u,w) respec-
tively. The specific algorithm for multivariable Ado-
mian polynomials gives [8],

A0 =u
2
0 + w2

0,

A1 =2u0u1 + 2w0w1,

A2 =2u0u2 + 2w0w2 + u21 + w2
1,

and

B0 =u0w0,

B1 =u0w1 + w0u1,

B2 =u2w0 + w2u0 + u1w1.

For n = 0, we have

u1(x) = − 8x
9
2

Γ( 11
2
)
− 11x8

2520 − 720x
17
2

Γ(192 )
− (64)(9!)x

23
2

Γ2( 11
2
)Γ( 25

2
)
+ . . . ,

w1(x) = −48x
13
2

Γ(152 )
− 19x10

43200 − (192)(11!)x
27
2

Γ( 11
2
)Γ( 15

2
)Γ( 29

2
)
+ . . . .

We can note that the noise terms appeared and these
will lead to the complexity computation in the next

iteration. On the other side, by applying MSDM, the
recursive relation is defined by

u0(x) = 2x,

u1(x) =
8x

9
2

Γ(112 )
+

720x
17
2

Γ(192 )
− S−1

[
1

v
5
2
α
S
[
A0(x)

]]
,

un+1(x) = −S−1

[
1

v
5
2
α
S
[
An(x)

]]
, n ≥ 1,

and

w0(x) = x3,

w1(x) =
48x

13
2

Γ(152 )
− S−1

[
1

v
5
2
α
S
[
B0(x)

]]
,

wn+1(x) = −S−1

[
1

v
5
2
α
S
[
Bn(x)

]]
, n ≥ 1

By direct calculation, the components of the unknown
functions un(x) and wn(x) are given

u0(x) = 2x, w0(x) = x3

un(x) = 0, wn(x) = 0, n ≥ 1.

By (13), the solution of this problem is u(x) =
2x, w(x) = x3.

Example 9 Now, consider the system of nonlinear
fractional Volterra integro-differential equations

D
1
2u(x) =

x
1
2

Γ
(
3
2

) +
x4

12
+

2x6

15
−

x∫
0

(x− t)(u2(t)+ w2(t))dt

D
2
3w(x) =

4x
4
3

Γ
(
7
3

)+ 2x6

15
− x4

12
−

x∫
0

(x− t)(w2(t)− u2(t))dt

subject to the initial conditions

u(0) = 0, w(0) = 0,

which exact solution is u(x) = x, w(x) = 2x2.

Note that g1(x) = x
1
2

Γ
(

3
2

) + x4

12 +
2x6

15 , g2(x) = 4x
4
3

Γ
(

7
3

) +
2x6

15 − x4

12 , F1(u,w) = u2 + w2, F2(u,w) = w2 −
u2, γ1 = 1

2 , γ2 = 2
3 , λ1 = λ2 = −1 and κi(x) =

x. Suppose the solution of this system is written as
follows

u =

∞∑
n=0

un(x) and w =

∞∑
n=0

wn(x), (14)
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After applying Standard Sadik decomposition
method, the recursive relation is defined by

u0(x) = x+
2x

9
2

Γ(112 )
+

96x
13
2

Γ(152 )
,

un+1(x) = −S−1

[
1

v
5
2
α
S
[
An(x)

]]
, n ≥ 0

and

w0(x) = 2x2 +
96x

20
3

Γ(233 )
− 2x

14
3

Γ(173 )
,

wn+1(x) = −S−1

[
1

v
8
3
α
S
[
Bn(x)

]]
, n ≥ 0

where An and Bn are the Adomian polynomials for
nonlinear functions F1(u,w) and F2(u,w) respec-
tively. Here,

A0 =u
2
0 + w2

0,

A1 =2u0u1 + 2w0w1,

A2 =2u0u2 + 2w0w2 + u21 + w2
1,

and

B0 =w
2
0 − u20,

B1 =2w0w1 − 2u0u1,

B2 =2w0w2 − 2u0u2 + w2
1 − u21,

After one step, we obtain

u1(x) = − 2x
9
2

Γ(112 )
− 96x

13
2

Γ(152 )
− 11x8

20160
+

2720x
55
6

9Γ(616 )
+ . . . ,

w1(x) =
2x

14
3

Γ(173 )
− 96x

20
3

Γ(233 )
+

22x
49
6

Γ(556 )
+

2720x
28
3

9Γ(313 )
+ . . . .

The noise terms are found. Therefore, we apply the
MSDM, the recursive relation is defined by

u0(x) = S−1

[
1

v2α+β

]
= x,

u1(x) =
2x

9
2

Γ(112 )
+

96x
13
2

Γ(152 )
− S−1

[
1

v
5
2
α
S
[
A0(x)

]]
,

un+1(x) = −S−1

[
1

v
5
2
α
S
[
An(x)

]]
,

and

w0(x) = S−1

[
4

v3α+β

]
= 2x2,

w1(x) =
96x

20
3

Γ(233 )
− 2x

14
3

Γ(173 )
− S−1

[
1

v
8
3
α
S
[
B0(x)

]]
,

wn+1(x) = −S−1

[
1

v
8
3
α
S
[
Bn(x)

]]
, n ≥ 1.

By direct calculation, the components of the un-
known functions un(x) and wn(x) are given

u0(x) = x, w0(x) = 2x2,

un(x) = 0, wn(x) = 0, n ≥ 1.

By (14), the solution of this problem is u(x) = x,
w(x) = 2x2.

Example 10 Consider the following system of non-
linear fractional Volterra integro-differential equa-
tions

Dγ1u(x) =
x1−γ1

Γ(2− γ1)
− 2x2−γ1

Γ(3− γ1)
− 4x2

+

x∫
0

(x− t)
(
u(t) + w(t)

)3
dt,

Dγ2w(x) =
2x2−γ2

Γ(3− γ2)
− x1−γ2

Γ(2− γ2)
− x4

+

x∫
0

(x− t)3
(
u2(t) + 2u(t)w(t) + w2(t)

)
dt

subject to
u(0) = 1, w(0) = 1,

where 0 < γ1, γ2 ≤ 1. The exact solution of this
system is u(x) = 1 + x− x2, w(x) = 1− x+ x2.

Here, we have g1(x) = x1−γ1

Γ(2−γ1)
− 2x2−γ1

Γ(3−γ1)
− 4x2,

g2(x) =
2x2−γ2

Γ(3−γ2)
− x1−γ2

Γ(2−γ2)
− x4, κ1(x) = x, κ2(x) =

x3, F1(u,w) = (u + w)3 and F2(u,w) = (u + w)2.
Let the solution of this problem be represented by

u =
∞∑
n=0

un(x) and w =
∞∑
n=0

wn(x) (15)

By using SSDM, the recursive relation for this prob-
lem are

u0(x) = 1 + x− x2 − 8x2+γ1

Γ(3 + γ1)
,

un+1(x) = S−1

[
1

v(2+γ1)α
S
[
An(x)

]]
, n ≥ 0

and

w0(x) = 1− x+ x2 − 24x4+γ2

Γ(5 + γ2)
,

wn+1(x) = S−1

[
6

v(4+γ2)α
S
[
Bn(x)

]]
, n ≥ 0

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.34 Prapart Pue-On

E-ISSN: 2224-2880 340 Volume 20, 2021



where An and Bn are the Adomian polynomials for
nonlinear functions F1(u,w) and F2(u,w) respec-
tively. Here,

A0 =(u0 + w0)
3,

A1 =3(u1 + w1)(u0 + w0)
2,

A2 =3(u2 + w2)(u0 + w0)
2 + 3(u0 + w0)(u

2
1 + w2

1)

+ 6u1w1(u0 + w0),

and

B0 =(u0 + w0)
2,

B1 =2(u1 + w1)(u0 + w0),

B2 =2(u2 + w2)(u0 + w0) + u21 + w2
1 + 2u1w1.

After one iteration, we get

u1(x) = 8x2+γ1

Γ(3+γ1)
− 96x2(2+γ1)

Γ(5+2γ1)
+ . . . ,

w1(x) = 24x4+γ2

Γ(5+γ2)
− 192x6+γ1+γ2

Γ(7+γ1+γ2)
+ . . . .

Because the noise terms are detected, the MSDM is
considerate and the recursive relation are

u0(x) = 1 + x,

u1(x) = −x2 − 8x2+γ1

Γ(3 + γ1)
+ S−1

[
1

v(2+γ1)α
S
[
A0(x)

]]
,

un+1(x) = S−1

[
1

v(2+γ1)α
S
[
An(x)

]]
,

and

w0(x) = 1− x,

w1(x) = x2 − 24x4+γ2

Γ(5 + γ2)
+ S−1

[
6

v(4+γ2)α
S
[
B0(x)

]]
,

wn+1(x) = S−1

[
6

v(4+γ2)α
S
[
Bn(x)

]]
, n ≥ 1.

Using the above relations, we easily obtain the com-
ponents of the unknown functions un(x) and wn(x),

u0(x) = 1 + x, w0(x) = 1− x,

u1(x) = −x2, w1(x) = x2

un(x) = 0, wn(x) = 0, n ≥ 2.

By (15), we found that the solution of this problem is
u(x) = 1 + x− x2, w(x) = 1− x+ x2.

6 Discussion

The initial approximate solution in the iteration is cru-
cial for applying the SDM to the SFVIDEs. As seen

in the previous examples, the iteration for SSDM al-
ways constructs the noise terms from the first itera-
tion. Gradually accumulated noise terms in each iter-
ative step can be caused to the approximate series so-
lution to converge slowly or even diverge. However,
these concerns can be managed in the MSDM itera-
tion by selecting the suitable initial approximation. In
the MSDM iteration, the noise oscillating terms are
eliminated and the solution can be found in a few it-
eration steps with easily computable terms. The key
to choosing the proper initial approximate solution is
trying a simple part of non-homogeneous terms that
satisfied the initial conditions.

7 Conclusion
This work shows that we have succeeded in searching
for the solution of the SFVIDEs by the MSDM. The
advantage of the MSDM is constructing a productive
approximate series solution in a few iterations. The
MSDM is also practical and convenient to use. The
effectiveness of the method is performed by the ini-
tial problem for the SFVIDEs involving a convolution
form. Others form of SFVIDES has been investigat-
ing.
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