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Abstract: The purpose of the present article is to prove that the Diophantine equation nx + 13y = z2 has exactly
one solution (n, x, y, z) = (2, 3, 0, 3) where x, y and z are non-negative integers and n is a positive integer
with n ≡ 2 (mod 39) and n + 1 is not a square number. In particular, (3, 0, 3) is a unique solution (x, y, z) in
non-negative integers of the Diophantine equation 2x + 13y = z2.
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1 Introduction
In 2004, the Catalan’s conjecture, which was posed
by Catalan [1] in 1844, was proved by Mihailescu
[2]. After that, many mathematicians investigated the
non-negative solutions (x, y, z) of Diophantine equa-
tions of the type ax + by = z2, using the Catalan’s
conjecture, where a and b are fixed. In 2007, Acu [3]
proved that the Diophantine equation 2x + 5y = z2

has only two solutions (x, y, z) = (3, 0, 3), (2, 1, 3)
where x, y and z are non-negative integers. In 2011,
Suvarnamani [4] gave some non-negative solutions of
Diophantine equation 2x + py = z2 when p is an
odd prime number. In the same year, Suvarnamani,
Singta and Chotchaisthit [5] proved that the Diophan-
tine equations 4x+7y = z2 and 4x+11y = z2 have no
solution in non-negative integer. In 2013, Sroysang
[6] presented a completed proof that (0, 1, 2), (3, 0, 3)
and (4, 2, 5) are only three solutions (x, y, z) for the
Diophantine equation 2x + 3y = z2 where x, y
and z are non-negative integers. In the same year,
Chotchaisthit [7] showed that (3, 0, 3) is the only non-
negative integer solution (x, y, z) of the Diophantine
equation 2x + 11y = z2. In 2014, Sroysang [8]
proved that the Diophantine equation 8x + 13y = z2

has a unique non-negative integer solution (x, y, z) =
(1, 0, 3). In 2019, Mahesh and Sinari [9] gave that all
the solutions of the Diophantine equation 2x + py =
z2 for any odd prime p greater than 3 and x are y not
both positive odd integers together. In 2021, Tang-
jai and Chubthaisong showed that Diophantine equa-
tion 3x + py = z2 has a unique non-negative solution
(p, x, y, z) = (2, 0, 3, 3) when p is prime such that
p ≡ 2 (mod 3) and y is not divisible by 4.

In this paper, we find all non-negative solutions
of the Diophantine equation nx + 13y = z2 where
n ≡ 2 (mod 39) and n+ 1 is not a square number.

2 Preliminaries
In this section, we shall recall some basic properties of
congruences, which are an important and useful tool
for this work, see in [11] and [12].

Definition 1. Let a and b be two integers such that
b ̸= 0. We say that a divides b, and write a | b, if
b = ac for some integer c

Definition 2. Let a, b and m be three integers such
that m > 1. We say that a is congruent to b modulo
m, and write a ≡ b (mod m), if n | (b− a).

Remark 1. If a is an integer, then there is a unique
integer r such that a ≡ r (mod m) and 0 6 r < m.

Lemma 1. Let a, b, c, d and m be five integers such
that m > 1. Then the following statements hold.

1. a ≡ a (mod m).

2. If a ≡ b (mod m), then b ≡ a (mod m).

3. If a ≡ b (modm) and b ≡ c (modm), then
a ≡ c (mod m).

4. If a ≡ b (modm) and c ≡ d (modm), then
a+ c ≡ b+ d (mod m) and ac ≡ bd (mod m).

5. If a ≡ b (modm), then ak ≡ bk (modm) for
all integer k > 0.

Lemma 2. If n is an integer such that n ≡ 2 (mod
39), then n ≡ 2 (mod 3) and n ≡ 2 (mod 13).
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Proof. Assume that n is an integer such that n ≡
2 (mod 39). Then n − 2 = 39t for some integer t.
Thus n − 2 = 3(13t) and n − 2 = 13(3t). Hence
n ≡ 2 (mod 3) and n ≡ 2 (mod 13).

Now, we shall recall the Catalan’s conjecture in [1].
Theorem 1 (Catalan’s conjecture). (3, 2, 2, 3) is a
unique solution (a, b, x, y) of the Diophantine equa-
tion ax− by = 1 where a, b, x and y are integers with
min{a, b, x, y} > 1.

Next, we shall give two lemmas that follow from
the Catalan’s conjecture.
Lemma 3. [6] The Diophantine equation 1+ 13y =
z2 has no non-negative integer solution where y and
z are non-negative integers.
Lemma 4. Let n be a positive number such that n+1
is not a square. Then (n, x, z) = (2, 3, 3) is a unique
solution for the Diophantine equation nx + 1 = z2

where x and z are non-negative integers.
Proof. Let x and z be non-negative integers such that

nx + 1 = z2. (1)
If n = 1, then z2 = 2. It is impossible. Now, n > 1.
Next, we will divide the number x into three cases.
Case 1: x = 0. Then z2 = 2. It is impossible.

Case 2: x = 1. Then z2 = n + 1 which is a contra-
diction with n+ 1 is not a square.

Case 3: x > 1. Then z2 = nx + 1 > n+ 1 > 2, and
so z > 1. By Theorem 1, (n, x, z) = (2, 3, 3) is
only solution for the Diophantine equation (1).

Therefore, (n, x, z) = (2, 3, 3) is a unique solution
for the Diophantine equation nx + 1 = z2 where x
and z are non-negative integers.

3 Main Results
In this section, we begin by introducing three lemmas
which will be useful in our work.
Lemma 5. If x is an odd positive integer, then

2x ≡ 2, 5, 6, 7, 8, 11 (mod 13).

Proof. We will establish by induction that

22n−1 ≡ 2, 5, 6, 7, 8, 11 (mod 13)

for all n ∈ N. If n = 1, we have

21 ≡ 2 (mod 13).

Thus the statement is true for n = 1.
Assume that it is true for n = k. Then

22k−1 ≡ 2, 5, 6, 7, 8, 11 (mod 13).

Case 1: 22k−1 ≡ 2 (mod 13).
Then, we obtain 22k+1 ≡ 8 (mod 13).

Case 2: 22k−1 ≡ 5 (mod 13).
Then, we obtain 22k+1 ≡ 20 (mod 13), and so
22k+1 ≡ 7 (mod 13).

Case 3: 22k−1 ≡ 6 (mod 13).
Then we get 22k+1 ≡ 24 (mod13), and so
22k+1 ≡ 11 (mod 13).

Case 4: 22k−1 ≡ 7 (mod 13).
Then, we obtain 22k+1 ≡ 28 (mod 13), and so
22k+1 ≡ 2 (mod 13).

Case 5: 22k−1 ≡ 8 (mod 13).
Then, we obtain 22k+1 ≡ 32 (mod 13), and so
22k+1 ≡ 6 (mod 13).

Case 6: 22k−1 ≡ 11 (mod 13).
Then, we obtain 22k+1 ≡ 44 (mod 13), and so
22k+1 ≡ 5 (mod 13).

Hence 22k+1 ≡ 2, 5, 6, 7, 8, 11 (mod 13). Thus the
statement is true for n = k + 1. This proof is com-
plete.

Lemma 6. If z is an integer, then z2 ≡ 0, 1 (mod 3).

Proof. Let z be an integer. Then z ≡ r (mod 3) for
some r ∈ {0, 1, 2}.

Case 1: z ≡ 0 (mod 3). Then z2 ≡ 0 (mod 3).

Case 2: z ≡ 1 (mod 3). Then z2 ≡ 1 (mod 3).

Case 3: z ≡ 2 (mod 3). Then z2 ≡ 4 (mod 3). and
so z2 ≡ 1 (mod 13).

Hence z2 ≡ 0, 1 (mod 13).

Lemma 7. If z is an integer, then

z2 ≡ 0, 1, 3, 4, 9, 10, 12 (mod 13).

Proof. Let z be an integer. Then z ≡ r (mod 13) for
some r ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Case 1: z ≡ 0 (mod 13). Then z2 ≡ 0 (mod 13).

Case 2: z ≡ 1 (mod 13). Then z2 ≡ 1 (mod 13).

Case 3: z ≡ 2 (mod 13). Then z2 ≡ 4 (mod 13).

Case 4; z ≡ 3 (mod 13). Then z2 ≡ 9 (mod 13).

Case 5: z ≡ 4 (mod 13). Then z2 ≡ 16 (mod 13),
and so z2 ≡ 3 (mod 13).

Case 6: z ≡ 5 (mod 13). Then z2 ≡ 25 (mod 13),
and so z2 ≡ 12 (mod 13).
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Case 7: z ≡ 6 (mod 13). Then z2 ≡ 36 (mod 13),
and so z2 ≡ 10 (mod 13).

Case 8: z ≡ 7 (mod 13). Then z2 ≡ 49 (mod 13),
and so z2 ≡ 10 (mod 13).

Case 9: z ≡ 8 (mod 13). Then z2 ≡ 64 (mod 13),
and so z2 ≡ 12 (mod 13).

Case 10: z ≡ 9 (mod 13). Then we obtain
z2 ≡ 81 (mod 13), and so z2 ≡ 3 (mod 13).

Case 11: z ≡ 10 (mod 13). Then we obtain
z2 ≡ 100 (mod 13), and so z2 ≡ 9 (mod 13).

Case 12: z ≡ 11 (mod 13). Then we obtain
z2 ≡ 121 (mod 13), and so z2 ≡ 4 (mod 13).

Case 13: z ≡ 12 (mod 13). Then we obtain
z2 ≡ 144 (mod 13), and so z2 ≡ 1 (mod 13).

Hence z2 ≡ 0, 1, 3, 4, 9, 10, 12 (mod 13).

Now, we shall give our main result.

Theorem 2. Let n be a positive number such that
n ≡ 2 (mod 39) and n + 1 is not a square. Then
nx + 13y = z2 has a unique solution (n, x, y, z) =
(2, 3, 0, 3) where x, y, and z are non-negative inte-
gers.

Proof. Let x, y and z be non-negative integers such
that

nx + 13y = z2. (2)

If y = 0, then, by Lemma 4, (n, x, y, z) = (2, 3, 0, 3)
is a solution of the equation (2). Now, we assume that
y > 1. By Lemma 3, we have x > 1. We will divide
the number x into two cases.

Case 1: x is even. Since n ≡ 2 (mod3), n ≡
−1 (mod3). Then nx ≡ 1 (mod3). Since
13y ≡ 1 (mod 3), by (2), we obtain that z2 ≡
2 (mod 3). It is a contradiction with Lemma 6.

Case 2: x is odd. Since n ≡ 2 (mod 3), by Lemma
5, we obtain

nx ≡ 2, 5, 6, 7, 8, 11 (mod 13).

Since 13y ≡ 0 (mod 13), by (2), we obtain that
z2 ≡ 2, 5, 6, 7, 8, 11 (mod 13). It is a contradic-
tion with Lemma 7.

Therefore, (2, 3, 0, 3) is a unique solution (n, x, y, z)
in non-negative integers of the Diophantine equation
nx + 13y = z2.

Next, we shall give some special cases of Theorem 2
when n = 2, 41, 119.

Corollary 1. (3, 0, 3) is a unique solution (x, y, z)
in non-negative integers of the Diophantine equation
2x + 13y = z2.
Proof. Since 2 ≡ 2 (mod 39) and 2 + 1 = 3 is not a
square, by Theorem 2, (x, y, z) = (3, 0, 3) is a unique
solution in non-negative integers of the Diophantine
equation 2x + 13y = z2.

Corollary 2. The Diophantine equation 41x+13y =
z2 has no non-negative integer solution where x, y
and z are non-negative integers.
Proof. Since 41 ≡ 2 (mod 39), 41 + 1 = 42 is not
a square and 41 ̸= 2, by Theorem 2, the Diophantine
equation 41x+13y = z2 has no non-negative integer
solution.

Corollary 3. TheDiophantine equation 119x+13y =
z2 has no non-negative integer solution where x, y
and z are non-negative integers.
Proof. Since 119 ≡ 2 (mod 39), 119 + 1 = 120 is
not a square and 119 ̸= 2, by Theorem 2, the Dio-
phantine equation 119x + 13y = z2 has no non-
negative integer solution.

Finally, we shall consider the main theorem in [8].
The Diophantine equation 8t + 13y = z2 is a special
case of the Diophantine equation 2x + 13y = z2. It
easy to prove the following corollary.
Corollary 4. (1, 0, 3) is a unique solution (x, y, z) for
the Diophantine equation 8t + 13y = z2. where t, y
and z are non-negative integers.
Proof. Let t, y and z be non-negative integers such
that 8t + 13y = z2. Set x = 3t. Thus 2x + 13y = z2.
By Corollary 1, we have (x, y, z) = (3, 0, 3). Then
t = 1. Hence (1, 0, 3) is a unique solution for the
equation 8t + 13y = z2 where t, y and z are non-
negative integers.

4 Conclusion
In this article, we obtain that the Diophantine equa-
tion nx + 13y = z2 has a unique non-negative solu-
tion (n, x, y, z) = (2, 3, 0, 3) where n ≡ 2 (mod 39)
and n + 1 is not a square, using basic properties of
congruences and the Catalan’s conjecture. The main
result can apply to the case where n is not a prime,
see in Corrollary 3. In case the first positive num-
ber n = 2 satisfying the conditions of the main re-
sult, the Diophantine equation 2x + 13y = z2 has
a unique non-negative solution (x, y, z) = (3, 0, 3).
This above result is generalization of the Sroysang’
s result in [8]. In main result, we study the Diophan-
tine equation nx+13y = z2 on the positive number n
that n ≡ 2 (mod 39). Hence, it is still an interesting
problem that all findings of the solutions of Diophan-
tine equation nx + 13y = z2 on the other case.
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