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Abstract: - The purpose of this work is to provide and analyzed the approximate analytical solutions for certain 
systems of fractional initial value problems (FIVPs) under the time-Caputo fractional derivatives by means of a 
novel attractive algorithm, called the Laplace residual power series (LRPS) algorithm. It combines the Laplace 
transform operator and the RPS algorithm. The proposed algorithm produces the fractional series solutions in 
the Laplace space based upon basically on the limit concept and then transforming bake them to original spaces 
to get a rapidly convergent series approximate solution. To validate the efficiency, accuracy, and applicability 
of the proposed algorithm, two illustrative examples are performed. Obtained solutions are simulated 
graphically and numerically. The analysis of results reached shows that the proposed algorithm is applicable, 
effective, and very fast in determining the solutions for many fractional problems arising in the various areas of 
applied mathematics 
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1 Introduction 
During the past years, a lot of prominent 
contributions were made to the subject of the theory 
and applications of fractional partial differential 
equations (FPDEs). These equations are more 
effectively used to analyze and describe several 
phenomena in various fields such as mechanical 
systems, dynamical systems, control theory, mixed 
convection flows, heat transfer, unification of 
diffusion, image processing, and wave propagation 
phenomenon [1]-[7]. The nonlocal property is the 
most significant for using FPDEs in aforesaid 
applications and others. As a fact, that the 
differential operators and the integral operators of 
integer orders are local; however, the differential 
operators of fractional order and the integral 
operators of fractional order are considered 
nonlocal. In other words, the system’s next state not 
only relies on its current state but also on its 
historical states. Actually, this is deemed the 
primary reason why the fractional order differential 
operators can present an outstanding instrument to 
describe the memory and hereditary properties of 
numerous mathematical processes. For more details 
about the FPDEs, together with their applications 
[8]-[12]. 

Several numerical methods are utilized to solve a lot 
of fractional problems in various areas. The most 
feature of the numerical method is that we can attain 
a numerical answer even if the given problem does 
not have an analytical solution. In certain situations, 
FPDEs are analytically solved, where it is limited to 
the linear one and hard to find their closed-form 
solutions to non-linear issues. Therefore, an 
effective, suitable analytical algorithm for the 
solutions of such equations is needed. Residual 
power series method, reproducing kernel method, 
homotopy analysis method, and differential 
transform method are some of advanced semi-
analytical methods that used to deal with different 
types of nonlinear PDEs [13]-[23]. The motivation 
of this article is to introduce the Laplace residual 
power series (LRPS) algorithm for solving systems 
of fractional initial value problems (FIVPs). The 
proposed method is suggested and proved by El-
Ajou [24] to investigate exact solitary solutions for a 
certain class of time-FPDEs. The LRPS solutions of 
the main problems can be obtained after converting 
and solving them in the Laplace space and then 
transform back the solutions into the main spaces. 
The method provides the components of the 
suggested fractional expansion via the concept of 
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limit when the transform variable approaches 
infinity. Unlike, the RPS method that used fractional 
differentiation and hence, our method doesn't need 
several calculations and time in steps of obtaining 
the series solutions [25]-[27]. So, the unknown 
functions can be found by fewer time computations, 
and hence the approximate analytical solution can 
be constructed as a convergent multiple fractional 
series. For more real-world applications of 
fractional operators in physics and engineering, 
including quantum mechanics, heat flow, 
Schrodinger equations, control theory and so on, we 
refer to [28]-[33] and references therein. 
 
The outline of this article as follows: In next section, 
some mathematical preliminaries are revisited. In 
Section 3, the procedure of finding the Laplace RPS 
series solutions is introduced. In Section 4, the 
efficiency and applicability of the proposed method 
are demonstrated via testing two suitable systems of 
FIVPs. Finally, a conclusion is made in the last 
section.  
 

 

2 Mathematical Preliminaries  
In this section, we recall the mathematical 
preliminaries of some fractional operators and 
Laplace transform operator. As well as, we review 
the essential theories and primary results related to 
fractional Taylor’s formula in the Laplace space. 
 
Definition 2.1 [1] For 𝛽 ∈ ℝ+, the Riemann-
Liouville fractional integral operator for a real-
valued function ⱳ(𝑥, 𝑡) is denoted by 𝒥𝑡

𝛽 and 
defined as: 
 
𝒥𝑡
𝛽
ⱳ(𝑥, 𝑡) =

{

1

𝛤(𝛽)
∫

ⱳ(𝑥,𝜂)

(𝑡−𝜂)1−𝛽
𝑑𝜂

𝑡

0
, 0 < 𝜂 < 𝑡, 𝛽 > 0

ⱳ(𝑥, 𝑡) 𝛽 = 0
. 

(1) 

 

Definition 2.2. [3] The time fractional derivative of 
order 𝛽 > 0, for the function ⱳ(𝑥, 𝑡) in the Caputo 
case is denoted by 𝔇𝑡

𝛽, and defined as: 
 
𝔇𝑡
𝛽
ⱳ(𝑥, 𝑡)

= {
𝒥𝑡
𝑛−𝛽(𝐷𝑥

𝑛ⱳ(𝑥, 𝑡)), 0 < 𝑛 − 1 < 𝛽 ≤ 𝑛 

𝐷𝑥
𝑛ⱳ(𝑥, 𝑡), 𝛽 = 𝑛

. 
(2) 

where 𝐷𝑥𝑛 =
𝜕𝑛

𝜕𝑥𝑛
,  and  𝑛 ∈ ℕ. 

 

Definition 2.3. [24] The Laplace transform of the 
piecewise continuous function ⱳ(𝑥, 𝑡) on 𝐼 × [0,∞) 
is defined as:  

 
ℒ {𝐷𝑡

𝛽
ⱳ(𝑥, 𝑡)} = 

     ⱳ(𝑥, 𝑠) = ∫ ⱳ(𝑥, 𝑡) 𝑒−𝑠𝑡𝑑𝑡, 𝑠 > 𝜎,

∞

0

 
(3) 

where 𝜎 is the exponential order of ⱳ(𝑥, 𝑡). 
 
Definition 2.4. [24] The Inverse Laplace transform 
of the function ⱳ(𝑥, 𝑠) is defined as:  
 
ⱳ(𝑥, 𝑡) = ℒ−1{ⱳ(𝑥, 𝑠)} 

= ∫ ⱳ(𝑥, 𝑠) 𝑒𝑠𝑡𝑑𝑠, 𝑎 = 𝑅𝑒(𝑠) > 𝑏,

𝑎+𝑖∞

𝑎−𝑖∞

 
(4) 
 

where  ⱳ(𝑥, 𝑠)  is analytic transform function on the 
right half plane of the absolute convergence of the 
Laplace integral. 
 
For ℒ{ⱳ(𝑥, 𝑡)} = ⱳ(𝑥, 𝑠), ℒ{ⱬ(𝑥, 𝑡)} = Ⱬ(𝑥, 𝑠), and 
𝜆, 𝜇 ∈ ℝ. Following, some of the useful 
characteristics of the Laplace transform operator and 
its inverse operator which will be needed in this 
work as follows: 

1) ℒ{𝜆ⱳ(𝑥, 𝑡) + 𝜇ⱬ(𝑥, 𝑡)} 
                      = 𝜆ⱳ(𝑥, 𝑠) + 𝜇Ⱬ(𝑥, 𝑠). 

2) ℒ−1{𝜆ⱳ(𝑥, 𝑠) + 𝜇Ⱬ(𝑥, 𝑠)} 
                      = 𝜆ⱳ(𝑥, 𝑡) + 𝜇ⱬ(𝑥, 𝑡). 

3) lim
𝑠→∞

𝑠ⱳ(𝑥, 𝑠) = ⱳ(𝑥, 0). 

4) ℒ{𝑡𝑚𝛽} = 𝛤(𝑚𝛽+1)

𝑠𝑚𝛽+1
, 𝛽 > −1. 

5) ℒ {𝔇𝑡
𝛽
ⱳ(𝑥, 𝑡)} = 𝑠𝛽ⱳ(𝑥, 𝑠) −

 ∑ 𝑠𝛽−𝑗−1ⱳ𝑡(𝑥, 0), 𝑛 − 1 < 𝛽𝑛, 𝑛 ∈ ℕ.
𝑛−1
𝑗=0  

6) ℒ {𝔇𝑡
𝑚𝛽
ⱳ(𝑥, 𝑡)} = 𝑠𝑚𝛽ⱳ(𝑥, 𝑠) −

∑ 𝑠(𝑚−𝑗)𝛽−1𝔇𝑡
𝑗𝛽
ⱳ(𝑥, 0), 0 < 𝛽 ≤𝑚−1

𝑗=0

1,𝑚 ∈ ℕ. 
 
However, El-Ajou [24] has been introduced and 
proved new results related to the generalized Taylor 
series formula in the Laplace space to identify the 
series solution of linear and non-linear FPDEs. 
Further, the requirements for convergence of the 
new series expansion is clarified and proved as 
follows: 
 

Theorem 2.1 [24] Assume that the multiple 
fractional series of the transform function ⱳ(𝑥, 𝑠) =
ℒ{ⱳ(𝑥, 𝑡)} has the following shape: 

ⱳ(𝑥, 𝑠) = ∑
ⱳ𝑘(𝑥)

𝑠𝑘𝛽+1
, 𝑠 > 0

∞

𝑘=0

, 𝛽 ∈ (0, 1]. (5) 
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then the unknown functions ⱳ𝑘(𝑥) will be in the 
form ⱳ𝑘(𝑥) = 𝔇𝑡

𝑘𝛽
ⱳ(𝑥, 0), where 𝔇𝑡

𝑘𝛽
= 𝔇𝑡

𝛽
∙ 𝔇𝑡

𝛽
∙

∙∙ 𝔇𝑡
𝛽 (𝑘-times). 

 
Remark 2.1: The inverse Laplace transform of the 
series expansion in Theorem 2.1 has the following 
shape: 

ⱳ(𝑥, 𝑡) = ∑
𝔇𝑡
𝑘𝛽
ⱳ(𝑥, 0)

𝛤(𝑘𝛽 + 1)
𝑡𝑘𝛽 ,

∞

𝑘=0

  𝑡 ≥ 0, 𝛽

∈ (0, 1]. 

(6) 

Theorem 2.3. [24] For 𝛽 ∈ (0, 1]. If 
| 𝑠 ℒ{𝐷𝑡

(𝑛+1)𝛽
ⱳ(𝑥, 𝑡)}| ≤ 𝑀(𝑥), on 𝐼 × (𝛿, 𝑑]  

where ℒ{ⱳ(𝑥, 𝑡)} = ⱳ(𝑥, 𝑠), can be expanded as a 
multiple fractional series in Theorem 2.1, then the 
reminder 𝑅𝑚(𝑥, 𝑠) of the  multiple fractional series 
(6) satisfies the following inequality: 

|𝑅𝑚(𝑥, 𝑠)| ≤
𝑀(𝑥)

𝑠1+(𝑚+1)𝛽
, 𝑥 ∈ 𝐼,

𝛿 < 𝑠 ≤ 𝑑. 
(7) 

 

 

3 General Principle of the Laplace 

RPS Method 
In this section, we clarify the principle of the 
Laplace RPS algorithm to obtain the series solutions 
for fractional PDEs systems. Our strategy to use the 
proposed scheme depends on coupling the Laplace 
transform operator and fractional residual power 
series approach by means transferring the main 
system from the original space into the Laplace 
space, then solving the obtained Laplace system via 
employing the RPS approach, and as a last step, we 
transfer back the obtained Laplace series solutions 
to the original space to get on the multiple fractional 
PS approximate series solutions for the main 
system. More specifically, we consider the 
following initial value problems for a system of 
FPDEs: 
 

{

𝔇𝛽𝑢 − 𝐹(𝑢, 𝑣, 𝐷𝑥
𝑛𝑢, 𝐷𝑥

𝑛𝑣, 𝐷𝑥
𝑛𝑢𝑣) = 0

𝔇𝛽𝑣 − 𝐺(𝑢, 𝑣, 𝐷𝑥
𝑛𝑢, 𝐷𝑥

𝑛𝑣, 𝐷𝑥
𝑛𝑢𝑣) = 0

𝑢(𝑥, 0) = 𝜑(𝑥), 𝑣(𝑥, 0) = 𝜔(𝑥)

. (8) 

where 𝑡 ≥ 0, 𝑥 ∈ ℝ, 𝔇𝛽 refers to 𝛽-th Caputo 
fractional derivative for 𝛽 ∈ (0,1], 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) 
are two unknown functions to be determined. In this 
work, we assume that 𝑢(𝑥, 𝑡), and 𝑣(𝑥, 𝑡) satisfy the 
requirements for the existence of a unique solution 
and satisfies all conditions to have a multiple 
fractional PS representation at 𝑡 = 0.  
To construct the approximate solutions of (8) by 
using the Laplace RPS approach, one can perform 
the following algorithm: 

Step A: Apply the Laplace transform on both sides 
of (8), to get: 
 
𝑈(𝑥, 𝑠)

=
𝜑(𝑥)

𝑠
+ ℒ{𝐹(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)}, 
 
𝑉(𝑥, 𝑠)

=
𝜔(𝑥)

𝑠
+ ℒ{𝐺(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)}, 
 

(9) 

Step B:  Assume that the approximate solutions of 
the Laplace system (9) take the following fractional 
expansions: 

𝑈(𝑥, 𝑠) =
𝜑(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

∞

𝑚=1

,

𝑉(𝑥, 𝑠) =
𝜔(𝑥)

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

∞

𝑚=1

.

 (10) 

and the 𝑘-th Laplace series solutions takes the 
following forms.  

𝑈𝑘(𝑥, 𝑠) =
𝜑(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

∞

𝑚=1

,

𝑉𝑘(𝑥, 𝑠) =
𝜔(𝑥)

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

∞

𝑚=1

.

 (11) 

Step C: We define the 𝑘-th Laplace fractional 
residual functions of (9) as: 
 
ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)}

= 𝑈𝑘(𝑥, 𝑠) −
𝜑(𝑥)

𝑠
− ℒ{𝐹(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)}, 
 
 
ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)}

= 𝑉𝑘(𝑥, 𝑠) −
𝜔(𝑥)

𝑠
− ℒ{𝐺(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)}, 
 

(12) 

and the Laplace residual function of (9) are defined 
as: 
 
lim
𝑘→∞

ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = ℒ{𝑅𝑒𝑠𝑈(𝑥, 𝑠)}

= 𝑈(𝑥, 𝑠) −
𝜑(𝑥)

𝑠
− ℒ{𝐹(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)}, 
 
lim
𝑘→∞

ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = ℒ{𝑅𝑒𝑠𝑉(𝑥, 𝑠)}

= 𝑉(𝑥, 𝑠) −
𝜔(𝑥)

𝑠
− ℒ{𝐺(𝑢, 𝑣, 𝐷𝑥

𝑛𝑢, 𝐷𝑥
𝑛𝑣, 𝐷𝑥

𝑛𝑢𝑣)} 

(13) 
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As in [24], some useful facts of Laplace residual 
function which are essential in finding the 
approximate solutions are listed as follows: 
 

 lim
𝑘→∞

ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = ℒ{𝑅𝑒𝑠𝑈(𝑥, 𝑠)}, and 
lim
𝑘→∞

ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = ℒ{𝑅𝑒𝑠𝑉(𝑥, 𝑠)}, 
    for  𝑥 ∈ ℝ, and 𝑠 > 0. 
 

 ℒ{𝑅𝑒𝑠𝑈(𝑥, 𝑠)} = 0, and ℒ{𝑅𝑒𝑠𝑉(𝑥, 𝑠)} =
0, for 𝑥 ∈ ℝ, and 𝑠 > 0. 

 
 lim

𝑠→∞
𝑠1+𝑘𝛽ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 0, and 

lim
𝑠→∞

𝑠1+𝑘𝛽ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 0, 
             for 𝑥 ∈ ℝ, 𝑠 > 0, and 𝑘 = 1,2,3,… 
 
Step D: Substitute the 𝑘-th Laplace series solution    
              (11) into the 𝑖-th Laplace fractional residual  
             functions of (12). 
Step E: The unknown coefficients  𝑢𝑘(𝑥), and  
              𝑣𝑘(𝑥), , 𝑘 = 1,2,3,…, could be founded by  
             solving the systems 
                       lim

𝑠→∞
𝑠1+𝑘𝛽ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 0,  

              and lim
𝑠→∞

𝑠1+𝑘𝛽ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 0. Then, 
              we collect the obtained coefficients in term  
             of fractional expansions series (11)  
              𝑈𝑘(𝑥, 𝑠), and  𝑉𝑘(𝑥, 𝑠). 
Step F: Applying the inverse Laplace transform  
             operator on both sides of the obtained series  
            approximate solutions to get the multiple  
            fractional PS approximate solutions 𝑢𝑘(𝑥, 𝑡),  
            and 𝑣𝑘(𝑥, 𝑡) of the target system(8). 
 
 
4 General Principle of the Laplace 

RPS Method 
This section is devoted to illustrate the applicability 
and performance of the proposed method for solving 
two systems of FIVPs. All calculations have been 
carried out using the Mathematica software 12.   
 
Example 4.1: consider the following linear system 
of FIVPs [36]: 
 

{
 
 

 
 𝔇𝑡

𝛽
𝑢 − 𝐷𝑥𝑣 + 𝑢 + 𝑣 = 0

𝔇𝑡
𝛽
𝑣 − 𝐷𝑥𝑢 + 𝑢 + 𝑣 = 0

𝑢(𝑥, 0) = sinh 𝑥 ,
𝑣(𝑥, 0) = cosh 𝑥

,
  𝑥 ∈ 𝑅, 𝑡 ≥ 0,
 𝛽 ∈ (0,1]

 (14)      

For 𝛽 = 1, the exact solutions of (14) are 𝑢(𝑥, 𝑡) =
sinh(𝑥 − 𝑡), and 𝑣(𝑥, 𝑡) = cosh(𝑥 − 𝑡). 
  

Firstly, By applying the Laplace transform operator 
on the system (14) and using the facts 
{𝔇𝑡

𝛽
𝑢(𝑥, 𝑡)} = 𝑠𝛽𝑈(𝑥, 𝑠) − 𝑠1−𝛽 sinh 𝑥 , and 

{𝔇𝑡
𝛽
𝑣(𝑥, 𝑡)} = 𝑠𝛽𝑉(𝑥, 𝑠) − 𝑠1−𝛽 cosh𝑥, then we 

have the following Laplace system:  
 

{
 
 
 
 

 
 
 
 𝑈(𝑥, 𝑠) =

sinh𝑥

𝑠
+
1

𝑠𝛽
𝐷𝑥𝑉(𝑥, 𝑠)                                                    

−
1

𝑠𝛽
𝑈(𝑥, 𝑠) −

1

𝑠𝛽
𝑉(𝑥, 𝑠)             

𝑉(𝑥, 𝑠) =
cosh𝑥

𝑠
+
1

𝑠𝛽
𝐷𝑥𝑈(𝑥, 𝑠)                                                        

−
1

𝑠𝛽
𝑈(𝑥, 𝑠) −

1

𝑠𝛽
𝑉(𝑥, 𝑠)            

. (15) 

 
Secondly, we identify the following 𝑘-th Laplace 
fractional residual functions of (15) as: 

ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 𝑈𝑘(𝑥, 𝑠) −
sinh𝑥

𝑠

 −
1

𝑠𝛽
𝐷𝑥𝑉𝑘(𝑥, 𝑠) +

1

𝑠𝛽
𝑈𝑘(𝑥, 𝑠) +

1

𝑠𝛽
𝑉𝑘(𝑥, 𝑠),

ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 𝑉𝑘(𝑥, 𝑠) −
cosh𝑥

𝑠

   −
1

𝑠𝛽
𝐷𝑥𝑈𝑘(𝑥, 𝑠) +

1

𝑠𝛽
𝑈𝑘(𝑥, 𝑠) +

1

𝑠𝛽
𝑉𝑘(𝑥, 𝑠).

     (16) 

 
where 𝑈𝑘(𝑥, 𝑠), and 𝑉𝑘(𝑥, 𝑠), represent the 𝑘-th 
Laplace series solutions of (15) and which are 
defined as: 

𝑈𝑘(𝑥, 𝑠) =
sinh𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

𝑘

𝑚=1

𝑉𝑘(𝑥, 𝑠) =
cosh𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑠 > 0

𝑖

𝑚=1

 (17) 

Now, to find out the forms of 𝑢1(𝑥), and 𝑣1(𝑥), we 
write the 1st- Laplace series solutions of (18) into the 
1st- Laplace fractional residual functions such that: 

ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)} =
𝑢1(𝑥)

𝑠𝛽+1

−
1

𝑠𝛽
𝐷𝑥 (

cosh𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
)

+
1

𝑠𝛽
(
sinh𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)

+
1

𝑠𝛽
(
cosh𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
) 

=
𝑢1(𝑥)

𝑠𝛽+1
−
𝑣1
′(𝑥)

𝑠2𝛽+1
+
𝑢1(𝑥)

𝑠2𝛽+1
+
cosh𝑥

𝑠𝛽+1

+
𝑣1(𝑥)

𝑠2𝛽+1
, 

(18) 
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ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} =
𝑢1(𝑥)

𝑠𝛽+1
−
cosh𝑥

𝑠

−
1

𝑠𝛽
𝐷𝑥 (

sinh 𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)

+
1

𝑠𝛽
(
sinh 𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)

+
1

𝑠𝛽
(
cosh 𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
) 

=
𝑣1(𝑥)

𝑠𝛽+1
−
𝑢1
′ (𝑥)

𝑠2𝛽+1
+
𝑢1(𝑥)

𝑠2𝛽+1
+
sinh𝑥

𝑠𝛽+1
+
𝑣1(𝑥)

𝑠2𝛽+1
. 

 
Then, we multiply (18) by 𝑠𝛽+1, to get  
 
𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)}

= 𝑢1(𝑥) + cosh𝑥 −
𝑣1
′(𝑥)

𝑠𝛽+1

+
𝑢1(𝑥)

𝑠𝛽+1
+
𝑣1(𝑥)

𝑠𝛽+1
, 

 
𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)}

= 𝑣1(𝑥) + sinh𝑥 −
𝑢1
′ (𝑥)

𝑠𝛽+1

+
𝑢1(𝑥)

𝑠𝛽+1
+
𝑣1(𝑥)

𝑠𝛽+1
. 

(19) 

Thereafter, by finding the limits of the obtained 
equation when 𝑠 → ∞, we conclude that 𝑢1(𝑥) =
− cosh𝑥, and 𝑣1(𝑥) = − sinh 𝑥. 
 
For 𝑘 = 2, the 2nd- Laplace fractional residual 
functions could be written as: 

ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)} = 𝑈2(𝑥, 𝑠) −
sinh 𝑥

𝑠
−
1

𝑠𝛽
𝐷𝑥𝑉2(𝑥, 𝑠)

+
1

𝑠𝛽
𝑈2(𝑥, 𝑠) +

1

𝑠𝛽
𝑉2(𝑥, 𝑠),

ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)} = 𝑉2(𝑥, 𝑠) −
cosh 𝑥

𝑠
−
1

𝑠𝛽
𝐷𝑥𝑈2(𝑥, 𝑠)

+
1

𝑠𝛽
𝑈2(𝑥, 𝑠) +

1

𝑠𝛽
𝑉2(𝑥, 𝑠).

 (20 

Where 
             𝑈2(𝑥, 𝑠) =

sinh𝑥

𝑠
−
cosh𝑥

𝑠𝛽+1
+

𝑢2(𝑥)

𝑠2𝛽+1
,  

And      𝑉2(𝑥, 𝑠) =
cosh𝑥

𝑠
−
sinh𝑥

𝑠𝛽+1
+

𝑣2(𝑥)

𝑠2𝛽+1
.  

 
Thus, we have 

ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)} = −
cosh𝑥

𝑠𝛽+1
+
𝑢2(𝑥)

𝑠2𝛽+1

−
𝑣2
′ (𝑥)

𝑠3𝛽+1
+
𝑢2(𝑥)

𝑠3𝛽+1
+
cosh𝑥

𝑠𝛽+1

−
sinh𝑥

𝑠2𝛽+1
+
𝑣2(𝑥)

𝑠3𝛽+1
, 

(21) 

ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)} = −
sinh 𝑥

𝑠𝛽+1
+
𝑣2(𝑥)

𝑠2𝛽+1
−
𝑢2
′ (𝑥)

𝑠3𝛽+1

+
𝑢2(𝑥)

𝑠3𝛽+1
+
cosh𝑥

𝑠𝛽+1
−
sinh𝑥

𝑠2𝛽+1

+
𝑣2(𝑥)

𝑠3𝛽+1
. 

Consequently, multiply (21) by 𝑠2𝛽+1 to get: 
 
𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)}

= 𝑢2(𝑥) −
𝑣2
′ (𝑥)

𝑠𝛽
+
𝑢2(𝑥)

𝑠𝛽

− sinh𝑥 +
𝑣2(𝑥)

𝑠𝛽
, 

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)}

= 𝑣2(𝑥) −
𝑢2
′ (𝑥)

𝑠𝛽
+
𝑢2(𝑥)

𝑠𝛽

− cosh𝑥 +
𝑣2(𝑥)

𝑠𝛽
. 

(22) 

Depending on the results 
        lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)} = 0, and 
        lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)} = 0, 
gives 𝑢2(𝑥) = sinh𝑥, and 𝑣2(𝑥) = cosh𝑥. 
For 𝑘 = 3, substitute 𝑈3(𝑥, 𝑠) =

sinh𝑥

𝑠
−
cosh𝑥

𝑠𝛽+1
+

sinh𝑥

𝑠2𝛽+1
+

𝑢3(𝑥)

𝑠3𝛽+1
 and 𝑉3(𝑥, 𝑠) =

cosh𝑥

𝑠
−
sinh𝑥

𝑠𝛽+1
+

cosh𝑥

𝑠2𝛽+1
+

𝑣3(𝑥)

𝑠3𝛽+1
 into ℒ{𝑅𝑒𝑠𝑈3(𝑥, 𝑠)}, ℒ{𝑅𝑒𝑠𝑉3(𝑥, 𝑠)} 

of (16) so that 

ℒ{𝑅𝑒𝑠𝑈3(𝑥, 𝑠)} =
𝑢3(𝑥)

𝑠3𝛽+1
−
𝑣3
′ (𝑥)

𝑠4𝛽+1
+
𝑢3(𝑥)

𝑠4𝛽+1

+
cosh 𝑥

𝑠3𝛽+1
+
𝑢3(𝑥)

𝑠4𝛽+1
, 

ℒ{𝑅𝑒𝑠𝑉3(𝑥, 𝑠)} =
𝑣3(𝑥)

𝑠3𝛽+1
−
𝑣3
′ (𝑥)

𝑠4𝛽+1
+
sinh𝑥

𝑠3𝛽+1

+
𝑢3(𝑥)

𝑠4𝛽+1
+
𝑢3(𝑥)

𝑠4𝛽+1
. 

(23) 

Then, multiply (23) by 𝑠3𝛽+1 to get: 
𝑠3𝛽+1ℒ{𝑅𝑒𝑠𝑈3(𝑥, 𝑠)}

= 𝑢3(𝑥) −
𝑣3
′ (𝑥)

𝑠𝛽
+
𝑢3(𝑥)

𝑠𝛽

+ cosh𝑥 +
𝑢3(𝑥)

𝑠𝛽
, 

𝑠3𝛽+1ℒ{𝑅𝑒𝑠𝑉3(𝑥, 𝑠)}

= 𝑣3(𝑥) −
𝑣3
′ (𝑥)

𝑠𝛽
+ sinh𝑥

+
𝑢3(𝑥)

𝑠𝛽
+
𝑢3(𝑥)

𝑠𝛽
. 

(24) 

Depending on the results 
lim
𝑠→∞

𝑠3𝛽+1ℒ{𝑅𝑒𝑠𝑈3(𝑥, 𝑠)} = 0 and 
lim
𝑠→∞

𝑠3𝛽+1ℒ{𝑅𝑒𝑠𝑉3(𝑥, 𝑠)} = 0, gives 𝑢3(𝑥) =
−cosh𝑥, and 𝑣3(𝑥) = − sinh𝑥. 
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Continue with the same argument and based on the 
results of lim

𝑠→∞
𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 0, and 

lim
𝑠→∞

𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 0, for 𝑘 = 4,5,6,…, it 
yields: 
 
𝑢4(𝑥) = sinh𝑥, 𝑣4(𝑥) = cosh𝑥,  
𝑢5(𝑥) =
− cosh𝑥, 

𝑣5(𝑥) =
− sinh𝑥. 

 

𝑢6(𝑥) = sinh𝑥, 𝑣6(𝑥) = cosh𝑥,  
⋮ ⋮  
Therefore, the Laplace series solutions of (15) could 
be written as: 

𝑈(𝑥, 𝑠) =
sinh𝑥

𝑠
−
cosh𝑥

𝑠𝛽+1
+
sinh𝑥

𝑠2𝛽+1

−
cosh𝑥

𝑠3𝛽+1
+
sinh𝑥

𝑠4𝛽+1
+⋯, 

𝑉(𝑥, 𝑠) =
cosh𝑥

𝑠
−
sinh𝑥

𝑠𝛽+1
+
cosh𝑥

𝑠2𝛽+1

−
sinh𝑥

𝑠3𝛽+1
+
cosh𝑥

𝑠4𝛽+1
+⋯. 

(25) 

Finally, we apply the inverse transform on both 
sides of (25) to get the following multiple fractional 
PS approximate solutions for the original system 
(14) as: 
𝑢(𝑥, 𝑡)

= sinh𝑥 ∑
𝑡2𝑚𝛽

𝛤(2𝑚𝛽 + 1)

∞

𝑚=0

− cosh𝑥 ∑
𝑡(2𝑚+1)𝛽

𝛤((2𝑚 + 1)𝛽 + 1)

∞

𝑚=0

, 

 

(26) 

𝑣(𝑥, 𝑡)

= cosh𝑥 ∑
𝑡2𝑚𝛽

𝛤(2𝑚𝛽 + 1)

∞

𝑚=0

− sinh𝑥 ∑
𝑡(2𝑚+1)𝛽

𝛤((2𝑚 + 1)𝛽 + 1)

∞

𝑚=0

, 

which are coinciding with the McLaurin expansion 
series of the exact solutions 𝑢(𝑥, 𝑡) = sinh(𝑥 − 𝑡) 
and 𝑣(𝑥, 𝑡) = cosh(𝑥 − 𝑡) when 𝛽 = 1. Further, the 
results are the same as in [36]. 
 

Numerical simulation of the exact and tenth 
multiple fractional PS approximate solutions are 
performed for Example 4.1, at 𝛽 = 1, for some 
selected grid points with step size 0.2 on the interval 
[0,1] that shown in Table 1. Graphically, the tenth 
multiple fractional PS approximate solutions versus 
the exact solutions for system (14) is plotted in 3-
dimensional space for 𝑡 ∈ [0,1], and 𝑥 ∈ [−2,2], 
when 𝛽 = 1, as in Fig.1. Notice that the pattern of 
the exact solutions consistent and in good agreement 
with the pattern of the approximated solutions in 
their domains, which confirms the effectiveness and 
performance of the LRPS method. 
 
 

Table 1. Numerical results at 𝛽 = 1 and 𝑛 = 10 with different values of  𝑡 of Example 4.1. 
𝒙𝒊 𝒕𝒊 𝒖(𝒙, 𝒕) 𝒖𝟏𝟎(𝒙, 𝒕) |𝒖(𝒙, 𝒕) − 𝒖𝟏𝟎(𝒙, 𝒕)| 

0 

0.00 0.0 0.0 0.0 
0.20 −0.2013360025410940 −0.2013360025410935 4.996003610813204 × 10−16 
0.40 −0.4107523258028155 −0.4107523258017637 1.051825293529873 × 10−12 
0.60 −0.6366535821482414 −0.6366535820571430 9.109846210719752 × 10−11 
0.80 −0.8881059821876230 −0.8881059800268079 2.160815193441578 × 10−9 
1.00 −1.1752011936438014 −1.1752011684303352 2.521346620376619 × 10−8 

1 

0.00 1.1752011936438014 1.17520119364380140 0.00 
0.20 0.8881059821876230 0.88810598218762380 7.771561172376096 × 10−16 

0.40 0.63665358214824130 0.63665358214982330 1.581956787788385 × 10−14 

0.60 0.41075232580281540 0.41075232593803670 1.352212786187578 × 10−12 
0.80 0.20133600254109393 0.20133600570621280 3.165118861447880 × 10−10 
1.00 0.00 3.6439436135183 × 10−8 3.6439436135182740 × 10−8 

𝒙𝒊 𝒕𝒊 𝒗(𝒙, 𝒕) 𝒗𝟏𝟎(𝒙, 𝒕) |𝒗(𝒙, 𝒕) − 𝒗𝟏𝟎(𝒙, 𝒕)| 

0 

0.00 1.00 1.00 0.00 
0.20 1.0200667556190760 1.0200667556190760 0.00 
0.40 1.0810723718384547 1.0810723718384199 3.486100297322991 × 10−14 
0.60 1.1854652182422678 1.1854652182377146 4.553246668592692 × 10−12 
0.80 1.3374349463048447 1.337434946160875 1.43969725030502 × 10−10 
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1.00 1.5430806348152437 1.5430806327160496 2.099194151838901 × 10−9 

1 

0.00 1.5430806348152437 1.5430806348152437 0.00 
0.20 1.3374349463048447 1.3374349463048452 4.440892098500626 × 10−16 
0.40 1.1854652182422676 1.1854652182434500 1.182387521225791 × 10−12 
0.60 1.0810723718384547 1.0810723719384878 1.000330929201709 × 10−10 
0.80 1.0200667556190760 1.0200667579363119 2.317235958670949 × 10−9 
1.00 1.00 1.0000000263916695 2.639166951645677 × 10−8 

(a) 
 
 

 
 
 
           𝑢(𝑥, 𝑡)      𝑣(𝑥, 𝑡)   
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 𝑢10(𝑥, 𝑡)       𝑣10(𝑥, 𝑡) 
 
Fig.1 (a) 3D-Surfaces Plot of Exact solutions 𝑢(𝑥, 𝑡) 
and 𝑣(𝑥, 𝑡) at 𝛽 = 1; (b) 3D-Surfaces Plot of tenth  
multiple fractional PS approximate solutions 
𝑢10(𝑥, 𝑡) and 𝑣10(𝑥, 𝑡) at 𝛽 = 1 for Example 4.1. 
 
Example 4.2: Consider the following non-linear 
system of FIVPs [36,37]: 

 
 

{

𝔇𝑡
𝛽
𝑢 + 𝐷𝑥

2𝑢 + 2𝑢𝐷𝑥𝑢 + 𝐷𝑥(𝑢𝑣) = 0

𝔇𝑡
𝛽
𝑣 + 𝐷𝑥

2𝑣 + 2𝑣𝐷𝑥𝑣 + 𝐷𝑥(𝑢𝑣) = 0

𝑢(𝑥, 0) = 𝑒𝑥, 𝑣(𝑥, 0) = −𝑒𝑥

,  

        where 𝑥 ∈ 𝑅 , 𝑡 ≥ 0, 𝛽 ∈ (0,1]. 
 
For 𝛽 = 1, the exact solutions of (27) are 𝑢(𝑥, 𝑡) =
𝑒𝑥−𝑡, and 𝑣(𝑥, 𝑡) = −𝑒𝑥−𝑡. 
According to the Laplace RPS approach, we employ 
the Laplace transform to both sides of (27), we can 
get the following Laplace system: 
 
𝑈(𝑥, 𝑠)

=
𝑒𝑥

𝑠
−
1

𝑠𝛽
𝐷𝑥
2𝑈(𝑥, 𝑠)

−
2

𝑠𝛽
ℒ{(ℒ−1𝑈(𝑥, 𝑠))(ℒ−1𝐷𝑥𝑈(𝑥, 𝑠))}

−
1

𝑠𝛽
𝐷𝑥ℒ{(ℒ

−1𝑈(𝑥, 𝑠))(ℒ−1𝑉(𝑥, 𝑠))}, 
 
 
 
𝑉(𝑥, 𝑠)

=
𝑒𝑥

𝑠
−
1

𝑠𝛽
𝐷𝑥
2𝑉(𝑥, 𝑠)

−
2

𝑠𝛽
ℒ{(ℒ−1𝑉(𝑥, 𝑠))(ℒ−1𝐷𝑥𝑉(𝑥, 𝑠))}

−
1

𝑠𝛽
𝐷𝑥ℒ{(ℒ

−1𝑉(𝑥, 𝑠))(ℒ−1𝑉(𝑥, 𝑠))}. 
 

(28) 

Suppose that the 𝑘-th Laplace series solutions of 
(28) have the forms: 
 

𝑈𝑘(𝑥, 𝑠) =
𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 , 𝑠 > 0,

𝑘

𝑚=1

𝑉𝑘(𝑥, 𝑠) = −
𝑒𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 , 𝑠 > 0.

𝑘

𝑚=1

 (29) 

 
Consequently, the 𝑘-th Laplace fractional residual 
functions can be reformulated as: 
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ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

+
1

𝑠𝛽
𝐷𝑥
2(
𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

)

+
2

𝑠𝛽
ℒ {(ℒ−1(

𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1𝐷𝑥 (
𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}

+
1

𝑠𝛽
𝐷𝑥ℒ{(ℒ

−1(
𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1(−
𝑒𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}, 

ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} =

= ∑
𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

+
1

𝑠𝛽
𝐷𝑥
2(−

𝑒𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

)

+
2

𝑠𝛽
ℒ {(ℒ−1(−

𝑒𝑥

𝑠
+ ∑

𝑣(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1𝐷𝑥 (−
𝑒𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}

+
1

𝑠𝛽
𝐷𝑥ℒ{(ℒ

−1(−
𝑒𝑥

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1(
𝑒𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}. 

 

(30) 

 For 𝑘 = 1, the 1st- Laplace fractional residual 
functions will be as: 
 

ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)} =
𝑢1(𝑥)

𝑠𝛽+1
 +

1

𝑠𝛽
(
𝑒𝑥

𝑠
+
𝑢1
′′(𝑥)

𝑠𝛽+1
 ) +

2

𝑠𝛽
ℒ {(ℒ−1 (

𝑒𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
 ))(ℒ−1 (

𝑒𝑥

𝑠
+
𝑢1
′ (𝑥)

𝑠𝛽+1
 ))}

+
1

𝑠𝛽
𝐷𝑥ℒ {(ℒ

−1 (
𝑒𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
 ))(ℒ−1 (−

𝑒𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
 ))} 

ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} =

=
𝑣1(𝑥)

𝑠𝛽+1
+
1

𝑠𝛽
𝐷𝑥
2 (−

𝑒𝑥

𝑠
+
𝑣1
′′(𝑥)

𝑠𝛽+1
)

+
2

𝑠𝛽
ℒ {(ℒ−1 (−

𝑒𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
))(ℒ−1 (−

𝑒𝑥

𝑠
+
𝑣1
′(𝑥)

𝑠𝛽+1
))}

+
1

𝑠𝛽
𝐷𝑥ℒ {(ℒ

−1 (−
𝑒𝑥

𝑠
+
𝑣1(𝑥)

𝑠𝛽+1
))(ℒ−1 (

𝑒𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
))}. 

(31) 

Multiplication the obtained equations by 𝑠𝛽+1, we 
get  

 

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)}

= 𝑒𝑥 + 𝑢1(𝑥) + 𝑒
𝑥
𝑢1(𝑥)

𝑠𝛽
+ 𝑒𝑥

𝑣1(𝑥)

𝑠𝛽
+ 𝑒𝑥

𝑢1
′ (𝑥)

𝑠𝛽
+
2𝛤(2𝛽 + 1)𝑢1(𝑥)𝑢1

′ (𝑥)

𝛤2(𝛽 + 1)𝑠2𝛽

+
𝛤(2𝛽 + 1)𝑣1(𝑥)𝑢1

′ (𝑥)

𝑠2𝛽𝛤2(𝛽 + 1)
+ 𝑒𝑥

𝑣1
′(𝑥)

𝑠𝛽
+
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑣1

′(𝑥)

𝛤2(𝛽 + 1)𝑠2𝛽
+
𝑢1
′′(𝑥)

𝑠𝛽
 

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} =

= −𝑒𝑥 + 𝑣1(𝑥) − 𝑒
𝑥
𝑢1(𝑥)

𝑠𝛽
− 𝑒𝑥

𝑣1(𝑥)

𝑠𝛽
− 𝑒𝑥

𝑢1
′ (𝑥)

𝑠𝛽
+
𝛤(2𝛽 + 1)𝑣1(𝑥)𝑢1

′ (𝑥)

𝑠2𝛽𝛤2(𝛽 + 1)

− 𝑒𝑥
𝑣1
′(𝑥)

𝑠𝛽
+
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑣1

′(𝑥)

𝑠2𝛽𝛤2(𝛽 + 1)
+
2𝛤(2𝛽 + 1)𝑢1(𝑥)𝑣1

′(𝑥)

𝛤2(𝛽 + 1)𝑠2𝛽
+
𝑣1
′′(𝑥)

𝑠𝛽
. 

(32) 
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and by solving the systems 
lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)} = 0, and 
lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} = 0, gives 𝑢1(𝑥) =
−𝑒𝑥, and 𝑣1(𝑥) = 𝑒𝑥. 

For 𝑘 = 2, we have  
𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)}

= 𝑒𝑥 + 𝑢2(𝑥) + 𝑒
𝑥
𝑢2(𝑥)

𝑠𝛽

+ 𝑒𝑥
𝑣2(𝑥)

𝑠𝛽
+ 𝑒𝑥

𝑢2
′ (𝑥)

𝑠𝛽

+
𝑒𝑥𝛤(3𝛽 + 1)𝑢2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

−
𝑒𝑥𝛤(3𝛽 + 1)𝑣2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+ 𝑒𝑥
𝑣2
′ (𝑥)

𝑠𝛽

−
𝑒𝑥𝛤(3𝛽 + 1)𝑢2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

−
𝑒𝑥𝛤(3𝛽 + 1)𝑣2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝛤(4𝛽 + 1)𝑣2(𝑥)𝑢2

′ (𝑥)

𝛤2(2𝛽 + 1)𝑠3𝛽

+
𝛤(4𝛽 + 1)𝑢2(𝑥)𝑣2

′ (𝑥)

𝛤2(2𝛽 + 1)𝑠3𝛽
+
𝑢2
′′(𝑥)

𝑠𝛽
, 

(33) 
𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)}

= 𝑒𝑥 + 𝑣2(𝑥) − 𝑒
𝑥
𝑢2(𝑥)

𝑠𝛽

− 𝑒𝑥
𝑣2(𝑥)

𝑠𝛽
− 𝑒𝑥

𝑢2
′ (𝑥)

𝑠𝛽

+
𝑒𝑥𝛤(3𝛽 + 1)𝑢2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝑒𝑥𝛤(3𝛽 + 1)𝑣2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

− 𝑒𝑥
𝑣2
′ (𝑥)

𝑠𝛽

+
𝑒𝑥𝛤(3𝛽 + 1)𝑢2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝑒𝑥𝛤(3𝛽 + 1)𝑣2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝛤(4𝛽 + 1)𝑣2(𝑥)𝑢2

′ (𝑥)

𝛤2(2𝛽 + 1)𝑠3𝛽

+
𝛤(4𝛽 + 1)𝑢2(𝑥)𝑣2

′ (𝑥)

𝛤2(2𝛽 + 1)𝑠3𝛽
+
𝑣2
′′(𝑥)

𝑠𝛽
 

 

Depending on the fact lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)} =

0, and lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)} = 0, we get 
𝑢2(𝑥) = 𝑒

𝑥, and 𝑣2(𝑥) = −𝑒𝑥. 
Following the procedure of Laplace RPS method, 
the unknown functions in the expansions (29) can be 
obtained by solving the system, 
lim
𝑠→∞

𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 0, and 
lim
𝑠→∞

𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 0, for 𝑢𝑘(𝑥), and 
𝑣𝑘(𝑥). Hence, the Laplace series solutions of (28) 
can be given as: 

U(x, s) =  
ⅇx

s
−

ⅇx

sβ+1
+

ⅇx

s2β+1
−

ⅇx

s3β+1

+
ⅇx

s4β+1
−

ⅇx

s5β+1
+⋯

= ⅇx ∑
(−1)m

smβ+1
 

∞

m=0

, 

V(x, s) =  −
ⅇx

s
+

ⅇx

sβ+1
−

ⅇx

s2β+1
+

ⅇx

s3β+1

−
ⅇx

s4β+1
+

ⅇx

s5β+1
+⋯

= −ⅇx ∑
(−1)m

smβ+1
 

∞

m=0

, 

 
Finally, we operate the inverse Laplace 
transform to the Laplace series solutions 
(34), to conclude that the multiple fractional 
PS approximate solutions for the IVPs 
system (27) can be expressed as: 
 

(34) 

𝑢(𝑥, 𝑡) = 𝑒𝑥 ( 1 −
𝑡𝛽

𝛤(𝛽 + 1)
+

𝑡2𝛽

𝛤(2𝛽 + 1)

−
𝑡3𝛽

𝛤(3𝛽 + 1)
+

𝑡4𝛽

𝛤(4𝛽 + 1)

+⋯), 

𝑣(𝑥, 𝑡) = −𝑒𝑥 ( 1 −
𝑡𝛽

𝛤(𝛽 + 1)
+

𝑡2𝛽

𝛤(2𝛽 + 1)

−
𝑡3𝛽

𝛤(3𝛽 + 1)
+

𝑡4𝛽

𝛤(4𝛽 + 1)

+⋯), 

 

 

 

(35) 

If we substitute 𝛽 = 1, then the multiple fractional 
PS solutions (35) reduce to 
 

𝑢(𝑥, 𝑡) = 𝑒𝑥 ( 1 − 𝑡 +
𝑡2

2!
−
𝑡3

3!
+
𝑡4

4!
+⋯).        

(36) 
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𝑣(𝑥, 𝑡) = −𝑒𝑥 ( 1 − 𝑡 +
𝑡2

2!
−
𝑡3

3!
+
𝑡4

4!

+ ⋯). 
which agree with McLaurin series expansions of the 
exact solutions 𝑢(𝑥, 𝑡) = 𝑒𝑥−𝑡, and 𝑣(𝑥, 𝑡) =
−𝑒𝑥−𝑡. Further, the results are the same as in [36] 
and [37]. 
 
Graphically, to demonstrate the impact of 
parameters 𝛽, on the behavior solutions, we plot the 
exact and tenth approximate solutions for Example 
4.2 that shown in Fig.2. Further, numerical 
comparisons are performed to validate the accuracy 
of our approach by establishing the recurrence 
errors for the obtained approximate solutions of the 
IVPs system (27) at various values of 𝛽, and fixed 
value of  𝑥 = 0 as in Table 2. 

(a)  

 

 

 

 

 

 
 

 
(b) 

 
 

 
Fig.2 (a) Plots of exact 𝑢(𝑥, 𝑡), and 10th- 
approximate solution 𝑢10(𝑥, 𝑡), at various values of 
𝛽 and 𝑥 = 0 , (b) Plots of exact 𝑣(𝑥, 𝑡), and 10th- 
approximate solution 𝑣10(𝑥, 𝑡) at various values of 
𝛽 and 𝑥 = 0. 
 
 
of our approach by establishing the recurrence 
errors for the obtained approximate solutions of 
the IVPs system (27) at various values of 𝛽, and 
fixed value of  𝑥 = 0 as in Table 2. 

Table 2. The recurrence errors of the approximate solution with different values of  𝛽 of Example 4.2. 
|𝒖𝟖(𝒙, 𝒕) − 𝒖𝟕(𝒙, 𝒕)| 

𝒕𝒊 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 𝜷 = 𝟏. 𝟎𝟎 

0.15 7.057767437 × 10−8 3.460084330 × 10−9 1.545980012 × 10−10 6.356470905 × 10−12 
0.30 3.423224005 × 10−6 2.921989519 × 10−7 2.273106625 × 10−8 1.627232349 × 10−9 
0.45 3.315479673 × 10−5 3.914377550 × 10−6 4.211888542 × 10−7 4.170417999 × 10−8 
0.60 1.660363947 × 10−4 2.467576504 × 10−5 3.342225695 × 10−6 4.165714286 × 10−7 
0.75 5.792944496 × 10−4 1.029187989 × 10−4 1.666433039 × 10−5 2.482959202 × 10−6 
0.90 1.608104789 × 10−3 3.305633372 × 10−4 6.1928824850 × 10−5 1.067627009 × 10−7 
 |𝒗𝟖(𝒙, 𝒕) − 𝒗𝟕(𝒙, 𝒕)| 

𝒕𝒊 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 𝜷 = 𝟏. 𝟎𝟎 

0.15 7.057767437 × 10−8 3.460084330 × 10−9 1.545980012 × 10−10 6.356470905 × 10−12 
0.30 3.423224005 × 10−6 2.921989519 × 10−7 2.273106625 × 10−8 1.627232349 × 10−9 
0.45 3.315479673 × 10−5 3.914377550 × 10−6 4.211888542 × 10−7 4.170417999 × 10−8 
0.60 1.660363947 × 10−4 2.467576504 × 10−5 3.342225695 × 10−6 4.165714286 × 10−7 
0.75 5.792944496 × 10−4 1.029187989 × 10−4 1.666433039 × 10−5 2.482959202 × 10−6 
0.90 1.608104789 × 10−3 3.305633372 × 10−4 6.1928824850 × 10−5 1.067627009 × 10−7 
 

Example 4.3: Consider the following non-linear 
system of FIVPs [36]: 
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{

𝔇𝑡
𝛽
𝑢 − 𝐷𝑥

2𝑢 + 𝑢𝐷𝑥𝑢 − 𝑢𝑣 = 0

𝔇𝑡
𝛽
𝑣 − 𝐷𝑥

2𝑣 + 𝑣𝐷𝑥𝑣 + 𝑢𝑣 = 0

𝑢(𝑥, 0) = sin(𝑥) , 𝑣(𝑥, 0) = cos(𝑥)

 (37) 

 
where 𝑥 ∈ 𝑅 , 𝑡 ≥ 0, 𝛽 ∈ (0,1]. 
 
For 𝛽 = 1, the exact solutions of (37) are 𝑢(𝑥, 𝑡) =
sin(𝑥) 𝑒−𝑡 and 𝑣(𝑥, 𝑡) = cos(𝑥) 𝑒−𝑡. 
As stated previously, we employ firstly the Laplace 
transform to both sides of (37), we can get the 
following Laplace system: 
 
𝑈(𝑥, 𝑠)

=
sin(𝑥)

𝑠
−
1

𝑠𝛽
𝐷𝑥
2𝑈(𝑥, 𝑠)

+
1

𝑠𝛽
ℒ{(ℒ−1𝑈(𝑥, 𝑠))(ℒ−1𝐷𝑥𝑈(𝑥, 𝑠))}

−
1

𝑠𝛽
ℒ{(ℒ−1𝑈(𝑥, 𝑠))(ℒ−1𝑉(𝑥, 𝑠))}, 

 
𝑉(𝑥, 𝑠)

=
cos(𝑥)

𝑠
−
1

𝑠𝛽
𝐷𝑥
2𝑉(𝑥, 𝑠)

+
1

𝑠𝛽
ℒ{(ℒ−1𝑉(𝑥, 𝑠))(ℒ−1𝐷𝑥𝑉(𝑥, 𝑠))}

+
1

𝑠𝛽
ℒ{(ℒ−1𝑉(𝑥, 𝑠))(ℒ−1𝑉(𝑥, 𝑠))}. 

 

(38) 

Suppose that the 𝑘-th Laplace series solutions of 
(38) have the forms: 
 

𝑈𝑘(𝑥, 𝑠) =
sin(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 , 𝑠 > 0,

𝑘

𝑚=1

𝑉𝑘(𝑥, 𝑠) =
cos(𝑥)

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 , 𝑠 > 0.

𝑘

𝑚=1

 (39) 

 
Consequently, the 𝑘-th Laplace fractional residual 
functions can be reformulated as: 
 

ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

−
1

𝑠𝛽
𝐷𝑥
2(
sin(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

) 

+
1

𝑠𝛽
ℒ {(ℒ−1(

sin(𝑥)

𝑠

+ ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1𝐷𝑥 (
sin(𝑥)

𝑠

+ ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}

−
1

𝑠𝛽
ℒ {(ℒ−1(

sin(𝑥)

𝑠

+ ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1(
cos(𝑥)

𝑠

+ ∑
𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}, 

ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} =

= ∑
𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

−
1

𝑠𝛽
𝐷𝑥
2(
cos(𝑥)

𝑠
+ ∑

𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

)

+
1

𝑠𝛽
ℒ {(ℒ−1(

cos(𝑥)

𝑠

+ ∑
𝑣(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1𝐷𝑥 (
cos(𝑥)

𝑠

+ ∑
𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}

+
1

𝑠𝛽
ℒ {(ℒ−1(

cos(𝑥)

𝑠

+ ∑
𝑣𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))(ℒ−1(
sin(𝑥)

𝑠

+ ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑘

𝑚=1

))}. 

For 𝑘 = 1, the 1st- Laplace fractional residual 

(40) 
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functions will be as: 
  

ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)} =
𝑢1(𝑥)

𝑠𝛽+1

−
1

𝑠𝛽
(
sin(𝑥)

𝑠
+
𝑢1
′′(𝑥)

𝑠𝛽+1
 )

+
1

𝑠𝛽
ℒ {(ℒ−1 (

sin(𝑥)

𝑠

+
𝑢1(𝑥)

𝑠𝛽+1
 ))(ℒ−1 (

sin(𝑥)

𝑠

+
𝑢1
′ (𝑥)

𝑠𝛽+1
 ))}

−
1

𝑠𝛽
ℒ {(ℒ−1 (

sin(𝑥)

𝑠

+
𝑢1(𝑥)

𝑠𝛽+1
 ))(ℒ−1 (

cos(𝑥)

𝑠

+
𝑣1(𝑥)

𝑠𝛽+1
 ))}, 

ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} =
𝑣1(𝑥)

𝑠𝛽+1

−
1

𝑠𝛽
𝐷𝑥
2 (
cos(𝑥)

𝑠
+
𝑣1
′′(𝑥)

𝑠𝛽+1
)

+
2

𝑠𝛽
ℒ {(ℒ−1 (

cos(𝑥)

𝑠

+
𝑣1(𝑥)

𝑠𝛽+1
))(ℒ−1 (

cos(𝑥)

𝑠

+
𝑣1
′(𝑥)

𝑠𝛽+1
))}

+
1

𝑠𝛽
𝐷𝑥ℒ {(ℒ

−1 (
cos(𝑥)

𝑠

+
𝑣1(𝑥)

𝑠𝛽+1
))(ℒ−1 (

sin(𝑥)

𝑠

+
𝑢1(𝑥)

𝑠𝛽+1
))}. 

(41) 

Multiplication the obtained equations by 𝑠𝛽+1, we 
get  
𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)}

= sin(𝑥) + 𝑢1(𝑥) − sin(𝑥)
𝑣1(𝑥)

𝑠𝛽

+ sin(𝑥)
𝑢1
′ (𝑥)

𝑠𝛽

−
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑣1(𝑥)

𝛤2(𝛽 + 1)𝑠2𝛽

+
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑢1

′ (𝑥)

𝑠𝛽𝛤2(𝛽 + 1)
−
𝑢1
′′(𝑥)

𝑠𝛽
 

 
𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} =

= cos(𝑥) + 𝑣1(𝑥)

+ cos(𝑥)
𝑢1(𝑥)

𝑠𝛽

+ cos(𝑥)
𝑣1
′(𝑥)

𝑠𝛽

−
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑣1(𝑥)

𝛤2(𝛽 + 1)𝑠2𝛽

+
𝛤(2𝛽 + 1)𝑣1(𝑥)𝑣1

′(𝑥)

𝑠𝛽𝛤2(𝛽 + 1)

−
𝑣1
′′(𝑥)

𝑠𝛽
. 

 

(42) 

and by solving the systems 
lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑈1(𝑥, 𝑠)} = 0, and 
lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠𝑉1(𝑥, 𝑠)} = 0, gives 𝑢1(𝑥) =
− sin(𝑥), and 𝑣1(𝑥) = −cos(𝑥). 
 
For 𝑘 = 2, we have  
𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)}

= − sin(𝑥) + 𝑢2(𝑥)

− sin(𝑥)
𝑣2(𝑥)

𝑠𝛽

+ sin(𝑥)
𝑢2
′ (𝑥)

𝑠𝛽

−
𝛤(3𝛽 + 1) sin(𝑥) 𝑣2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

−
𝛤(4𝛽 + 1)𝑢2(𝑥)𝑣2(𝑥)

𝑠3𝛽𝛤2(2𝛽 + 1)

−
𝛤(3𝛽 + 1) sin(𝑥) 𝑢2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝛤(4𝛽 + 1)𝑢2(𝑥)𝑢2

′ (𝑥)

𝑠3𝛽𝛤2(2𝛽 + 1)

−
𝑢2
′′(𝑥)

𝑠𝛽
, 

(43) 
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𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)}
= −cos(𝑥) + 𝑣2(𝑥)

+ cos(𝑥)
𝑢2(𝑥)

𝑠𝛽

+ cos(𝑥)
𝑣2
′ (𝑥)

𝑠𝛽

−
𝛤(3𝛽 + 1) cos(𝑥) 𝑢2(𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝛤(4𝛽 + 1)𝑢2(𝑥)𝑣2(𝑥)

𝑠3𝛽𝛤2(2𝛽 + 1)

−
𝛤(3𝛽 + 1) cos(𝑥) 𝑣2

′ (𝑥)

𝛤(𝛽 + 1)𝛤(2𝛽 + 1)𝑠2𝛽

+
𝛤(4𝛽 + 1)𝑣2(𝑥)𝑣2

′ (𝑥)

𝑠3𝛽𝛤2(2𝛽 + 1)

−
𝑣2
′′(𝑥)

𝑠𝛽
. 

Depending on the fact lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑈2(𝑥, 𝑠)} =

0, and lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠𝑉2(𝑥, 𝑠)} = 0, we get 
𝑢2(𝑥) = sin(𝑥), and 𝑣2(𝑥) = cos(𝑥). 
 
Following the procedure of Laplace RPS method, 
and by solving the system, 
lim
𝑠→∞

𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑈𝑘(𝑥, 𝑠)} = 0, and 
lim
𝑠→∞

𝑠𝑘𝛽+1ℒ{𝑅𝑒𝑠𝑉𝑘(𝑥, 𝑠)} = 0, for the required 
coefficients. On can conclude that  𝑢𝑘(𝑥) =
(−1)𝑘 sin(𝑥), and 𝑣𝑘(𝑥) = (−1)𝑘 cos(𝑥), for 𝑘 =
0,1,2,…. Therefore, the Laplace series solutions of 
(38) can be written as: 
 

𝑈(𝑥, 𝑠) =  
sin(𝑥)

𝑠
−
sin(𝑥)

𝑠𝛽+1
+
sin(𝑥)

𝑠2𝛽+1

−
sin(𝑥)

𝑠3𝛽+1
+⋯

= sin(𝑥) ∑
(−1)𝑚

𝑠𝑚𝛽+1
 

∞

𝑚=0

, 

 

𝑉(𝑥, 𝑠) =  
cos(𝑥)

𝑠
−
cos(𝑥)

𝑠𝛽+1
+
cos(𝑥)

𝑠2𝛽+1

−
cos(𝑥)

𝑠3𝛽+1
+⋯

= cos(𝑥) ∑
(−1)𝑚

𝑠𝑚𝛽+1
 

∞

𝑚=0

, 

(44) 

  
Finally, we operate the inverse Laplace transform to 
the Laplace series solutions (44), to conclude that 
the multiple fractional PS approximate solutions for 
the IVPs system (37) can be expressed as: 

𝑢(𝑥, 𝑡) = sin(𝑥) ( 1 −
𝑡𝛽

𝛤(𝛽 + 1)

+
𝑡2𝛽

𝛤(2𝛽 + 1)
−

𝑡3𝛽

𝛤(3𝛽 + 1)

+
𝑡4𝛽

𝛤(4𝛽 + 1)
+⋯), 

𝑣(𝑥, 𝑡) = cos(𝑥) ( 1 −
𝑡𝛽

𝛤(𝛽 + 1)

+
𝑡2𝛽

𝛤(2𝛽 + 1)
−

𝑡3𝛽

𝛤(3𝛽 + 1)

+
𝑡4𝛽

𝛤(4𝛽 + 1)
+⋯), 

(45) 

If we substitute 𝛽 = 1, then the multiple fractional 
PS solutions (45) reduce to  

𝑢(𝑥, 𝑡) = sin(𝑥) ( 1 − 𝑡 +
𝑡2

2!
−
𝑡3

3!
+
𝑡4

4!

+ ⋯). 

𝑣(𝑥, 𝑡) = cos(𝑥) ( 1 − 𝑡 +
𝑡2

2!
−
𝑡3

3!
+
𝑡4

4!

+ ⋯). 

(46) 

which agree with Maclaurin series expansions of the 
exact solutions 𝑢(𝑥, 𝑡) = sin(𝑥) 𝑒−𝑡, and 𝑣(𝑥, 𝑡) =
cos(𝑥) 𝑒−𝑡. Further, the results are the same 
obtained in [36]. 
In Table 3, the numerical simulation of exact and 
tenth approximate solutions for IVP’s system (37) is 
presented for various values of 𝑡𝑖 with step size 0.15 
on [0,1], fixed values of 𝑥, and for 𝛽 = 1. From the 
gained results, one can be noted that fully harmony 
between the obtained solutions by LRPS method 
and exact solutions. 
 

Table 3. Numerical results at 𝛽 = 1 and 𝑛 = 10 with different values of  𝑡 for Example 4.3. 
𝒙𝒊 𝒕𝒊 𝒖(𝒙, 𝒕) 𝒖𝟏𝟎(𝒙, 𝒕) |𝒖(𝒙, 𝒕) − 𝒖𝟏𝟎(𝒙, 𝒕)| 

π

3
 

0.00 0.8660254037844386 0.8660254037844386 0.0 
0.15 0.7453949728239977 0.7453949728239977 0.0 
0.30 0.6415673986967540 0.6415673986967916 3.752553823233029 × 10−14 
0.45 0.5522021774725715 0.5522021774757754 3.203881604463276 × 10−12 
0.60 0.4752848187499277 0.47528481882487794 7.495026821402462 × 10−11 
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0.75 0.4090814345718006 0.40908143543398934 8.621887648274651 × 10−10 
0.90 0.3520996537433542 0.3520996600742949 6.330940660603801 × 10−9 

−
π

3
 

0.00 −0.8660254037844386 −0.8660254037844386 0.0 
0.15 −0.7453949728239977 −0.7453949728239977 0.0 
0.30 −0.6415673986967540 −0.6415673986967916 3.752553823233029 × 10−14 
0.45 −0.5522021774725715 −0.5522021774757754 3.203881604463276 × 10−12 
0.60 −0.4752848187499277 −0.47528481882487794 7.495026821402462 × 10−11 
0.75 −0.4090814345718006 −0.40908143543398934 8.621887648274651 × 10−10 
0.90 −0.3520996537433542 −0.3520996600742949 6.330940660603801 × 10−9 

𝒙𝒊 𝒕𝒊 𝒗(𝒙, 𝒕) 𝒗𝟏𝟎(𝒙, 𝒕) |𝒗(𝒙, 𝒕) − 𝒗𝟏𝟎(𝒙, 𝒕)| 

π

3
 

0.00 0.5 0.5 0.00 
0.15 0.43035398821252890 0.4303539882125289 5.551115123125783 × 10−17 
0.30 0.37040911034085894 0.3704091103408806 2.164934898019055 × 10−14 
0.45 0.31881407581088667 0.3188140758127364 1.849742581327973 × 10−12 
0.60 0.27440581804701325 0.2744058180902858 4.327255220815118 × 10−11 
0.75 0.23618327637050734 0.2361832768682923 4.977849243914534 × 10−10 
0.90 0.20328482987029958 0.2032848335254699 3.655170305316702 × 10−9 

−
π

3
 

0.00 0.5 0.5 0.00 
0.15 0.43035398821252890 0.4303539882125289 5.551115123125783 × 10−17 
0.30 0.37040911034085894 0.3704091103408806 2.164934898019055 × 10−14 
0.45 0.31881407581088667 0.3188140758127364 1.849742581327973 × 10−12 
0.60 0.27440581804701325 0.2744058180902858 4.327255220815118 × 10−11 
0.75 0.23618327637050734 0.2361832768682923 4.977849243914534 × 10−10 
0.90 0.20328482987029958 0.2032848335254699 3.655170305316702 × 10−9 

 
Furthermore, the curves of exact and multiple 
fractional PS approximate solutions for the IVPs 
system (37) for 𝛽 ∈ {0.3,0.5,0.7,0.9,1} have been 
drawn as shown Fig.3, when 𝑡 = 1. By increasing 
the 𝛽 values to the classical-order value 𝛽 = 1, we 
can note that the approximate solutions curves are 
consistent with each other and approach the exact 
curve. 
(a)  

 
(b) 
 

 

 

 

 

 

 

 

 
Fig.3 (a) Curves of exact 𝑢(𝑥, 𝑡), and 10th- 
approximate solution 𝑢10(𝑥, 𝑡), at various values of 
𝛽 and 𝑡 = 1; (b) Curves of exact 𝑣(𝑥, 𝑡) and 10th- 
approximate solution 𝑣10(𝑥, 𝑡) at various valuesof 𝛽 
and 𝑥 = 0. 
 
 
4 Conclusion 
In this manuscript, the multiple fractional PS 
approximate solutions were profitably obtained for 
certain classes of FIVPs in terms of Caputo 
differentiability sense using the LRPS method. The 
effectiveness and applicability of the proposed 
algorithm have been investigated by doing linear 
and non-linear systems of FIVPs. The proposed 
algorithm produced accurate approximate solutions 
converge with the exact solutions without involving 
linearization, discretization, or any other limited 
conditions. There is an important point to make here 
regarding the practical applicability of the LRPS 
algorithm that it uses a new technicality easier and 
faster than the classical RPS algorithm in obtaining 
the coefficients of the proposed expansion, where 
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one does not need to use the fractional derivatives 
through implementation some of mathematical 
operations in finding symbolic calculations and 
simulation of the problem via employing 
MATHEMATICA software. Obtained approximate 
solutions have been compatible with each other at 
various values of 𝛽, and the exact solutions. The 
results confirm that the LRPS algorithm is a 
straightforward and convenient tool to treat a 
various range of non-linear time fractional-PDEs 
that arise in engineering and science problems. 
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