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Abstract: Fay-Herriot model assumes that the random effects between regions (areas) are independent of 
each other. This allows the regions to be mutually independent so that the estimators obtained are unbiased 
estimators. In cases where the regions are not mutually independent, it can develop a model in which the 
assumptions are violated (not fulfilled) or allow the regions to be dependent. The development of this model is 
known as small area estimation (SAE) with spatial effects. In small area estimation with spatial effects, one of 
the important parameters is the spatial autocorrelation parameter. In various small area estimation with spatial 
effects, it is still very rare to generate estimators of the spatial autocorrelation parameter. Most of the parameter 
values used are known, that is by trying to enter several spatial autocorrelation parameter values to show that 
the addition of regional aspects can increase the accuracy of the small area estimation. In addition, they have 
also tried a restricted maximum likelihood approach in estimating the spatial autocorrelation and component 
variance but they still assume that the sampling variance is known (assigned). Therefore, this research proposes 
a concentrated log-likelihood function by means of numerical procedure to find an optimum estimate value for 
spatial autocorrelation coefficient where both a sampling variance and a component variance are unknown. 
Parameters estimators obtained in the models, fixed and random effects parameters, are proved to be consistent. 
 
Key-Words: SAE, spatial autocorrelation, optimum, fixed and random effects, consistent
Received: May 25, 2021. Revised: October 3, 2021. Accepted: October 14, 2021. Published: October 29, 2021. 

 
 

 
1 Introduction 

As statistics progress, many policy makers use 
statistical modeling to make decisions easier. 
Statistical modeling provides an easier and more 
detailed description in explaining the actual 
conditions in the field [1]. 

Statistical modeling requires supporting data so 
that the modeling process can run as expected. 
Supporting data or commonly referred to as sample 
adequacy is data that can represent actual 
observations on the specific location [2]. Limited 
cost and available time as well as wide coverage can 
be obstacles in fulfilling data adequacy. This allows 
the data taken to be used for macro decision making 
[3]. 

The demand for large data availability is 
unavoidable, considering that many events or events 
at the smaller location level have an impact on 
policy makers having to take policies on a smaller 
level (micro scale). On the one hand, this demand is 
very difficult to annul because of the time and cost, 
which is sometimes impossible to fulfill it [3-4]. 

Recently, statistical modeling has developed in 
dealing with situations where supporting data are 
not available. One of the models used is small area 
estimation [5-9]. Small area estimation was first 
developed by Fay-Herriot. The Fay-Herriot model is 
known as the basic model in the development of 
small area estimation models [9-10]. 

In addition to the problem of sample adequacy, 
events or activities in one certain area can also be 
caused by events in other areas or surrounding 
areas. Events like this can add to the polemic in 
making decisions, so it is necessary to expand 
statistical modeling that can facilitate the decision-
making process by policy makers. One way that is 
mostly conducted by statisticians is by trying to add 
a regional aspect in statistical modeling which is 
known as the spatial aspect [11-12]. 

In small area estimation, the Fay-Herriot model 
assumes that the random effects between regions are 
independent of each other. This allows the regions 
to be mutually independent so that the estimators 
obtained are unbiased estimators [10]. However, in 
most conditions, this assumptions are difficult or 
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impossible to be fulfilled which results in the 
decisions taken being not on target because the 
estimators obtained are biased estimators [13]. 

In cases where the regions are not mutually 
independent, it can develop a model in which the 
assumptions are violated (not fulfilled) or allow the 
regions to be dependent. The development of this 
model is known as small area estimation with spatial 
effects [13-15]. 

In small area estimation with spatial effects, one 
of the important parameters is the spatial 
autocorrelation parameter. In various small area 
estimation with spatial effects, it is still very rare to 
generate estimators of the spatial autocorrelation 
parameter. Most of the parameter values used are 
known, that is by trying to enter several spatial 
autocorrelation parameter values to show that the 
addition of regional aspects can increase the 
accuracy of the small area estimation [14-15]. In 
addition, [14-15] have also tried the restricted 
maximum likelihood (REML) approach in 
estimating the spatial autocorrelation and 
component variance but they still assume that the 
sampling variance is known (assigned). 

Therefore, this research proposes a concentrated 
log-likelihood function by means of numerical 
procedure to find an optimum estimate value for 
spatial autocorrelation coefficient where both a 
random error variance of sampling (sampling 
variance) and a random error variance between 
regions (component variance) are unknown.  

In this paper, we are motivated to develop linear 
mixed models especially containing spatial effects 
in all regions. The objective of this paper is to find 
the closed-form and the numerical approximation 
estimators of parameter models and to prove their 
consistency, especially for closed-form estimators. 
 
 
2 Linear Mixed Models 

The general form of the mixed linear model [16] 
is as follows 

,  y Xα Zβ ε       (1) 
where y  is a 1n  observation vector, X  is a 

 1n p   observation matrix (design matrix), α  is 
a  1n p   parameters vector of x  variables (fixed 
effects), Z  is a n q  design matrix, β  and ε  are 
respectively a 1q  parameters vector of z  variables 
(random effects) and a 1n  sampling variance 
vector and they are assumed to be independent. This 
models assume ( , )Nε 0 Σ  and ( , )Nβ 0 G  in 

which 2
nΣ I  and 2 .qG I  2

  and 2
  are 

respectively sampling variance and component 
variance. nI  dan qI  are identity matrices in which a 

1n  and a 1,q  respectively. 
 
 
3 Spatial Analysis 

In spatial analysis there is a correlation between 
spaces which is commonly referred to as spatial 
correlation. In this case, each observation is not 
stochastically independent [17]. 

Two-dimensional spatial information is 
mathematically represented by a matrix. The matrix 
that describes the spatial dependencies or spatial 
structure is called the spatial weight matrix. This 
spatial weight matrix plays an important role in 
spatial analysis [18]. 

We refer to [18-20] for the use first-order queen 
contiguity to find the row-standardized spatial 
weight matrix. 

If there is a spatial effect between regions in (1) 
then 

, β Wβ u    (2) 
where   is a spatial autocorrelation coefficient, W  
is a q q  spatial weight matrix and u  is a 1q  
random error vector among regions. It is assumed 
that ( , )Nu 0 H  in which 2 .u qH I  

2
u  is a 

random error variance between regions. ε  and u  
are assumed to be independent. 

From (2) we have  
1

q 


 β I W u  and obtain 

 , ,Nβ 0 F     
1 1

,
t

q q 
    

  
F I W H I W   

where F  is a q q  symmetric matrix. 
We can rewrite (1) as follows 

 
1

.q 


   y Xα Z I W u ε   (3) 

If we consider  
1

,q 


  θ Z I W u ε  then (3) can 
be rewritten as follows 

. y Xα θ    (4) 
Now, we have ( , ),Nθ 0 L  ,t L ZFZ Σ  where 
L  is a n n  symmetric matrix. Therefore,

( , ).Ny Xα L  
If we assume β  fixed, then ( , )Nθ 0 Σ  and the 

conditional distribution of y  given β  is 
| ( , ).N y β Xα Zβ Σ  We can then rewrite (1) as 

follows ,    y Xα Zβ ε Tγ ε  

where  T X Z  and   .t
γ α β  

T  is a less than full rank matrix and therefore, we 
need to reparameterization [21]. We reparameterize 
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γ  to be *γ  and change T  to be *.T  Now, *T  is a 
full rank matrix, we obtain the least-square 
estimator of *γ  is 

   
1

* * * *ˆ .t t


γ T T T y   (5) 
 
 
4 Estimating the Parameters 

Maximum likelihood function of (2) is as follows 

 

11
2

1
2 2

1( ) .
2

t

q
L e






u H u

u
H

  (6) 

Based on (6), the maximum likelihood function of β  
is as follows 

 

   11
2

1
2 2

1( ) ,
2

tt
q q

q
L e J

 



  


β I W H I W β

β
H

 (7) 

where J  is Jacobian of tansformation and 

qJ  I W  is a absolute value of the 

determinant of .q I W  
We then can find maximum likelihood function 

of |y β  as follows 

 

   11
2

1
2 2

1( | ) .
2

t

n
L e



    


y Xα Zβ Σ y Xα Zβ

y β
Σ

 (8) 

By means of (7) and (8), we obtain 
( , ) ( | ) ( ),L L Lα β y β β  

and take natural logarithm, obtained 

   

   

   

1

1

1log ( , ) log 2 log
2 2

1
2
1
2
log .                                (9)

t

tt
q q

q

n q
L 

 







 
   

 

    

  

 

α β Σ H

y Xα Zβ Σ y Xα Zβ

β I W H I W β

I W

 

If we take derivative respective for  and ,α β  then 
set this derivative equal to zero so we obtain the 
estimator of  and ,α β  respectively, as follows 

 
11 1 ˆˆ t t


    α X Σ X X Σ y Zβ   (10) 

   
 

1
1 1

1

ˆ

ˆ .                                      (11)

tt
q q

t


 



    
  
 

β Z Σ Z I W H I W

Z Σ y Xα

   

Equations (10) and (11) show that there is a 
dependency or relationship between ˆˆ  and α β  so that 

ˆˆ  and α β  can be combined by modifying the matrix. 
This technique aims to make it easier to obtain 

ˆˆ  and α β  simultaneously. Now, we have 

   

11 1

1 1 1

1

1

ˆ
ˆ

.                                                        (12)

t t

tt t
q q

t

t

 


 

  





  
  
      

 
  
  

X Σ X X Σ Zα

β Z Σ X Z Σ Z I W H I W

X Σ y

Z Σ y
 

   

1

2

2

ˆ
ˆ

.                                                   (13)

t t

tt t
q q

u

t

t


 

   
        
 
 

  
  

X X X Zα

Z X Z Z I W I Wβ

X y

Z y

  
  

If we recall 2
nΣ I  and 2

u qH I  then 

 
11 2

n


 Σ I  and  
11 2 .u q


 H I  Therefore, we 
can rewrite (12) and obtain the result in (13). 

We recall again 2
nΣ I  and 2

u qH I  and 

obtain the determinant of Σ  and H   Σ  and H  

are  2 n

  and  2 ,
q

u  respectively, and therefore 
(9) can be rewritten  as follows 

     

   

   

   

2

2

2

2

log , log 2 log
2 2

1
2

log 2 log
2 2

1
2
log . (14)

t

u

tt
q q

u

q

n n
L

q q





 



 

 




  

    

 

  

 

α β

y Xα Zβ y Xα Zβ

β I W I W β

I W

 

The values of 2
  and 2

u  are unknown and its 
values can be estimated from sample. If we take 
derivative respective for 2

  and 2 ,u  then set this 
derivative equal to zero so we obtain the estimator 
of 2

  and 2 ,u  respectively, as follows 

   2 1 ˆ ˆˆ ˆˆ .
t

n
     y Xα Zβ y Xα Zβ   (15) 

and 

   2 1 ˆ ˆˆ .
tt

u q q
q

    β I W I W β  (16) 

   

1

2

2

ˆ
ˆˆ
ˆ

.                                                   (17)

t t

tt t
q q

u

t

t


 

   
        
 
 

  
  

X X X Zα

Z X Z Z I W I Wβ

X y

Z y

  
  
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By means of (15) and (16), so (13) can be 
rewritten as obtained in (17). 
 
 
5 Concentrated Log-likelihood 

If we change respective 2
  and 2

u    with   their 
estimators in (14) then we obtain the result as 
follows 

     

   

1ˆ ˆ ˆˆ ˆ ˆlog , log
2

1 ˆ ˆlog
2
log .                                    (18)

t
con

tt
q q

q

n
L C

n

q

q
 



 
      

 
 

   
 

 

α β y Xα Zβ y Xα Zβ

β I W I W β

I W

 

where   log 2 1 .
2

n q
C 

 
   

 
 We refer (18) to 

as a concentrated log-likelihood function. 
Suppose that 1 2, , , n    are the eigenvalues  of 
,W  [23] shows that the acceptable spatial 

autocorrelation coefficients is 
minimum

1 1.


   In 

this research, we use numerical method in (18) to 
find an optimum estimate of ̂  by means of R 
program version 3.0.3. The numerical method is a 
forming of sequence of   [22, 24-27]. The 
procedures are as follows: 
1. Recall (5) to find *γ̂  and use it to find ˆ.γ  Now, 

we have α̂  and β̂  because γ̂  consist of them. 
2. Make a sequences of   and the sequences are 

seq(start value, end value, increasing).λ   In 
this research, the increasing is 0.01. 

3. Based on the results obtained in steps 1 and 2, 
use the values in (18). 

4. Finding a value of   that gives a largest value 
of log con

hL  and it will be an optimum estimate of 
ˆ.  

We can also find the estimates of 2ˆ  and 2ˆ
u

based on the results obtained in the first and fourth 
steps of the procedures. Now, we have all the 
estimate values, that is ˆ,   

2ˆ  and 2ˆ .u  
Finally, we can rewrite (17) as follows 

   

1
*

2
*

2

ˆ
ˆ ˆ ˆˆ
ˆ

.                                                 (19)

t t

t
t t

q q

u

t

t


 

   
         
 
 

  
  

X X X Z
α

Z X Z Z I W I Wβ

X y

Z y

  
  

 

The parameters estimates obtained in equation 
(19) are called linear mixed model parameters 
estimators with spatial influence among regions 
based on an optimum estimate of autocorrelation 
coefficient. 
 
 
6 Properties of Estimators 

A good estimator has a minimum requirement 
for consistency. An estimator is said to be consistent 
if a sample size taken is very large or a result is 
always correct or at least very close to the true value 
[28]. 

Theorem (Consistency). Estimators of α  and α  

as obtained in (12) are consistent estimators. 
Proof. Recall (12), and it can be rewritten as 
follows 

1

ˆ
ˆ ,





Vδ Sg
δ V Sg

 

where 

   

1 1

1 1 1
,

t t

tt t
q q

 

  

 
 
   
 

X Σ X X Σ Z
V

Z Σ X Z Σ Z I W H I W 

1
*

1

ˆˆ , ,ˆ

t

t





  
    

    

α X Σ 0
δ S

β 0 Z Σ
 and . 

  
 

y
g

y  
*0  is a p n  vector and 0  is a q n  vector. 

Now, we have an  asy.var g  and asy.var( )y  as 
follows 

 

 

 

 

 

 

 

 

 

asy.var asy.var

t

t

tt

E E E

E E
E

E E

E E
E

E E

  
   

  
           

            
           

          
             

          

      
        

       



y
g

y

y y y y
y y y y

y yy y
y yy y

y yy y
y yy y

 

 

   

       

       

t t

t t

t t

t t

t t

t t

E
E

E

E E

E

E E E E

E E E E

  
       

   
 
 
 

  
 
 
 
 
 

yy
y y

yy
y y

yy yy
yy yy

y y y y

y y y y  
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 
     

     
     

     
   

   

asy.var

asy.var asy.var
,

asy.var asy.var

t t

t t

t t

t t

E E E

E E E

E E E

E E E

 

 







 
  
 

yy y y
g

yy y y

yy y y

yy y y
y y
y y

 

and 

   
1 1

asy.var( )

.

t

t
t

q q

 

  

    
  

y L ZFZ Σ

Z I W H I W Z Σ 

Therefore, 

   
  
   

1

1 1

1 1

ˆasy.var asy.var

asy.var

asy.var

t

t
t


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where ,V V  and S  are nonsingular constant 
matrices. 
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and thus,  ˆlimasy.var .
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δ 0  

This shows that δ̂  is consistent estimator, and 
thus α̂  and β̂  are also consistent estimators. 
 
 
7 Illustration 

Suppose that there are one dependent variable, 
say ,y  and three independent variables, say 

1 2 3, , .x x x  It is observed in two time periods and  in 
each time period consists of 10 locations. We can 
write an equation models as follows: 

,  y Xα Zβ ε   (20) 
, β Wβ u    (21) 
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Fig. 1: Illustration of the 10 neighboring locations 
 

Table 1 Data for dependent and indepedent 
variables 

Time Location 
Variables 

Dependent  Independent 
Y  x1 x2 x3 

1 1 25  46 50 45 
 2 28  41 54 43 
 3 27  40 55 41 
 4 26  42 57 42 
 5 29  48 56 44 
 6 28  47 55 45 
 7 31  44 57 46 
 8 33  45 54 47 
 9 29  48 58 43 
 10 27  45 51 44 

2 1 20  51 64 50 
 2 23  50 65 51 
 3 21  58 67 57 
 4 24  57 63 58 
 5 22  56 64 61 
 6 26  60 66 60 
 7 29  61 67 59 
 8 31  59 69 60 
 9 28  60 70 62 
 10 25  59 68 58 

Note: data illustration 

We first check spatial influence in the equation 
models. Based on Fig. 1, we have row-standardized 
spatial weight matrix as follows 
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The formulation of Moran Index is as follows 
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
 

If  I E I  then there is a spatial influence in 
the equation models. We calculate from data in 
Table 1 and obtain the result, that is 0.4861I   and 
  -0.0526.E I   Therefore, there is spatial 

influence in the equation models. 
We then estimate spatial autocorrelation by 

means of (18). By using W  matrix, we have the 
acceptable spatial autocorrelation parameter, that is 
-1.6242 1.   By means of the procedures, we 
have: 
1.  ˆ 26.6000 0.1212 -0.2098 -0.1663 t

α  and 

 ˆ 9.8840 13.6888 14.0666 t
β  

2. seq(-1.6142, 0.99, 0.01).  
3. Based on ˆ ,α  β̂  and   obtained in steps 1 and 

2, we set all the values in (18). 
4. We find ˆ 0.9258  that gives a largest value 

log conL  and it is to be an optimum ˆ.  The graph 
of function of lambda is given in Fig. 2. 
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Fig. 2: Graph of function of lambda 

 
Based on (15) and (16), we obtain 2ˆ 1.2446  

and 2ˆ 9.0974,u   respectively. We then continue to 

(19), and obtain * *ˆˆ
t

 
 
α β  as follows 
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Estimation of the model is as follows 

 
1 2 3ˆ 41.1846 0.0840 0.1833 0.1505

ˆ0.9258 ,
j

t

j

y x x x   

 w β
 

for 1,2, ,10.j   
 
 
8 Conclusion 

This research emphasizes an assumption that a 
random error variance of sampling (sampling 
variance) and a random error variance between 
regions (component variance) are unknown. 

In this research, we restrict to find an optimum 
spatial autocorrelation coefficient estimate by means 
of a sequence of the acceptable spatial 
autocorrelation coefficients that gives a largest value 
of concentrated log-likelihood function. 

The parameters estimates, *α̂  and *ˆ ,β  obtained 
in this research are consistent estimators and called 

linear mixed model parameters estimators with 
spatial influence among regions based on an 
optimum estimate of autocorrelation coefficient. 

In this paper, we use the numerical procedures to 
find the spatial autocorrelation estimator. In the next 
research, we motivate you to find the closed-form of 
its estimator. 
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