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Abstract: The development of spatial modeling for soil properties has progressed in recent decades. This 

responds to the growing demand for land spatial data and exact soil property prediction for agronomical 

reasons, particularly in precision farming, in order to speed up precision agricultural activities. In this regards a 

comparison of the GWR and RF models was carried out in order to determine which model is the best at 

forecasting surface soil texture and how dependable each model is at doing so. The purpose of this research is 

to get the best model in predicting particle soil fraction (PSF).  50 topsoil samples were collected from several 

locations in the Kalikonto Watershed, Indonesia, and the soil PSF (sand, silt, and clay) in the upper 10 cm 

varied. The LMV, slope, and elevation were calculated using DEM data and utilized as predictor variables. As 

a result, the weighting of the GWR model has a considerable impact on the final model, and all other factors 

have a major effect on the PSF determination. The RF, on the other hand, looks to be superior than the GWR 

variants. The RF model outperformed the other models in every PSF variable. This study reveals that topsoil 

quality and terrain attributes are linked, which may be assessed using field measurements and model 

projections. More research is needed to generate more efficient input parameters that will help with soil 

variability precision and accuracy of soil map products. 
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1 Introduction 
In the recent few decades, the development of 

spatial modeling for soil properties has advanced. 

This addresses the increased need for land spatial 

data information and precise soil property 

predictions for agronomical reasons, notably in 

precision farming, in order to accelerate precision 

agricultural activities [1]. Besides that soil 

modeling is also very important for foundation 

modelling [2]. One of the soil properties that cannot 

be overlooked is soil texture. The flow of water, 

heat, and nutrients, as well as the form and stability 

of the soil structure, are all influenced by soil 

texture and, of course, particle size distribution. It 

is required to model soil texture since it is a 

compositional data set that specifies the particle 

size of the soil mineral fraction with the variables 

of sand, silt, and clay [3] [4].  

The use of statistical approaches and 

geomorphology to correlate with landscape features 

produced from a digital elevation model (DEM) 

and remote sensing data tends to support spatial 

prediction of soil properties [3], [4]. Topographic 

variability can be determined using DEM data, and 

used as a predictor or independent variable in 

forecasting soil texture. Multiple Linear Regression 

is a widely used method for modeling or predicting 

an item by examining the relationship between the 

dependent variable and a set of independent factors 

as well as Regression Tress [1], [5], [6]. Other 

statistical modeling techniques, such as 

Geographically Weighted Regression (GWR) are 
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less popular for modelling the soil PSF. Therefore, 

the GWR technique was used in this study, which 

was combined with topographic variables and then 

compared to Random Forest (RF) approach, which 

has formerly been used in PSF modeling studies. 

The GWR model is a regression approach that 

provides locally linear regression estimators for 

each data point or location [7]. This method is an 

extension of linear regression analysis that takes 

into account spatial dimension [8]. Response 

variables are predicted using predictor variables, 

the regression coefficients of which are dependent 

on the location of the data [8], [9]. The GWR 

method is not the same as the RF method, which is 

based on the creation of a single Decision Tree 

method. 

Multiple trees are used in the RF approach, 

each of which is trained on a set of sample data. 

The class is determined by the amount of votes 

received from each tree. The ensemble learning 

methodology is more accurate than other machine 

learning approaches because it uses a mixture of 

several classifiers to provide more accurate results 

than a single classifier [10], [11].  The ability to 

model highly nonlinear dimensional relationships, 

the use of categorical and continuous variables, 

resistance to "overfitting," relative robustness in the 

presence of data noise, the establishment of an 

impartial measure of the error rate, the ability to 

determine the relevance of the variables used, and 

the requirement for few parameters for 

implementation are just some of the benefits [12]. 

The objectives of this paper is to compare the 

GWR and Random Forest models to find a best 

modelling in order to achieve high-accuracy 

prediction model for PSF projections. The two 

methods will be compared to see which is the most 

accurate model for predicting surface soil texture 

and how trustworthy each model is. It can be used 

as a reference in management to improve land use 

if there is a credible instrument for predicting 

surface soil texture. 

 

 

2 Problem Formulation 

2.1. Study Site 
The research study was conducted in the Kalikonto 

Watershed in East Java, Indonesia. The map of the 

area of study is shown in Figure 1. 

 
Fig 1. Location map of the study area 

 

This region is made up of the inter-volcanic 

plains between the Anjasmara Tua Mountain in the 

north and the Butak-Kawi Mountain in the south. 

The majority of the land in the study area was in 

agricultural regions. The physiography of the area 

is made up of 235.7 km2 of undulating hills and 

plains. 50 topsoil samples were collected at diverse 

sites to determine the topsoil layer quality, and 

these samples had varying soil PSF (sand, silt, and 

clay) in the topmost 10 cm. 

 

2.2. Data Set 
Based on DEM data, the LMV, slope, and elevation 

were computed to be used as predictor variables. 

The DEM data served as the analyses' principal 

input. For the entire watershed, we took 30 m 

SRTM (Shuttle Radar Topography Mission) DEM 

data from the USGS data source to get topographic 

variables. Slope, Elevation, and 6 Local 

Morphologic Factors (LMV) that revealed the 

diversity of the curvature of a topography [13] were 

the variables in this investigation: 

 

1. Vertical Curvature (Kv) 

 
2. Horizontal Curvature (Kh) 

 
3. Accumulation Curvature (Ka) 

 
4. Ring Curvature (Kr) 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.72

Henny Pramoedyo, Novi Nur Aini, 
Sativandi Riza, Danang Ariyanto

E-ISSN: 2224-2880 684 Volume 20, 2021



 
 

 

5. Northness Aspects (An) 

 
6. Eastness Aspects (Ae) 

 
 

However, in order to acquire these variables, an 

analysis of the DEM data must first be performed 

in order to obtain the derivative value of the 

elevation, which is the DEM data's digital number 

value. The following formula is used to calculate 

the elevation derivative value: 

 

 

 

 

 

 

The elevation is z, and the cell size is w in pixels 

[14]. To obtain the z value, a measuring window 

must be used, as shown: 

 
Fig. 2: Illustration of the measurement window 

to get the elevation derivative value (p, q, r, s and 

t). 

 

2.3.  Statistical Analysis 

2.3.1. Geographically Weighted Regression (GWR) 
Geographically weighted regression is a localized 

version of classic multiple linear regression, in 

which regression coefficients are particular to an 

area rather than worldwide estimates. A basic GWR 

model's specification is as follows: 

 
(1) 

 

where yi is the dependent variable at location i, xik 

is the value of the kth explanatory variable at the i 

location, the  is the local regression 

coefficient for the kth explanatory variable at 

location i,  is the intercept parameter at 

location i, and  is the random disturbance at 

location i, which may follow an independent 

normal distribution with zero mean and 

homogeneous variance[9]. The GWR model can be 

expressed in matrix notation to make it easier to 

understand:  

                                (2) 

 

For parameter estimation in Geographically 

Weighted Regression, Weighted Least Square 

(WLS) is utilized, so: 

 

 

 

           (3) 

 

A univariate optimization, as we learnt in 

calculus, entails taking the derivative and putting it 

equal to 0. This provides us with, 
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                               (4) 

If        is equal to 

   so, 

 

 

           (5)

      

The Geographically Weighted Regression model 

parameter estimation is achieved by matrix 

operation for each i-th point: 

 

 

                     (6) 

with, 

 
 

The spatial weighting matrix, which can be 

constructed in a variety of ways, is the initial stage 

in estimating parameters in GWR. Wij can be 

specified as a continuous and monotonic decreasing 

function of the distance dij between points i and j, 

for example. The weight of each point can be 

determined using the Gaussian function [15] for 

adaptive kernel size: 

                           (7) 

And the Bisquare Function follow as : 

                                                       

 (8) 

where  is the weight of position j in the 

space where data are seen for estimating the 

dependent variable at location i, and   is referred 

as a bandwidth.  is  eucledian distance between 

points i and j,  and 

 is the adaptive bandwidth that sets q as the 

nestest neighbor from i location for each location. 

The term bandwidth is used to describe how the 

kernel's size should be determined. It determines 

how smooth the model will be. Cross-validation 

(CV) is an iterative procedure for finding the kernel 

bandwidth that minimizes the prediction error of all 

y(s) using only a fraction of the data[16]. 

      (9) 

 

where  is the predicted value of observation i 

with calibration location i left out of the estimation 

dataset.  

The test for spatial autocorrelation is the next 

stage. For spatial autocorrelation, Moran's I is a 

well-known test. Covariance and correlation 

statistics are analogous to the index. The product of 

the divergence between each value and the estimate 

of the global mean x is used to calculate the degree 

of similarity between values at two locations I and 

j. The sum of the resulting values for all pairs of 

places is the spatial autocovariance, which is 

weighted by their spatial proximity. The 

standardized index is expressed in the following 

way:             (10) 

Where : 

                                                     

The test of GWR’s parameters model partially 

using t test with hypothesis as follows [1]: 

H0 :  

H1 :    

t test statistic can be written as: 

 (11) 
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Where  is a diagonal element of the CCT matrix, 

with . 

 

The other step is testing parameter of GWR 

model simultanously, the hypothesis is[9]: 

H0 : ( , )j i i ju v  , where  j=1, 2, .. k   

H1 : at least one ( , )j i iu v has a relation with 

location ( , )i iu v  

The statistic test is: 

          (12) 

where: 

 

 

 

 

 

 
I   = identity matrix ordo n 

 

The initial stage in this study is to use Moran's I 

[17] to do a spatial autocorrelation test. The next 

step is to determine the Euclidean distance between 

two points of observation using longitude and 

latitude as the coordinates (1). Then Using Cross 

Validation (CV) [18], determine the best bandwidth 

(h) for all observation locations. With the Adaptive 

Gaussian Kernel and Adaptive Bisquare Kernel 

weighting functions [18], it calculates a weighted 

matrix by entering the Euclidean distance and the 

optimum bandwidth of each technique. 

The coefficient of determination (R2) was used 

to assess the model's performance. The next step is 

to compare the two models based on the coefficient 

of determination (R2) and Root Mean Square Error 

to determine which is the best (RMSE). 

The size of the difference between the actual value 

and the expected result value can be determined 

using the RMSE function. The following formula 

calculates the RMSE value: 

                            (13) 

 

The coefficient of determination (R2) stating how 

much diversity of dependent variables can be 

explained by independent variables. The value R2 is 

derived from the following formula:                            

2
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




         (14)                                       

The next stage is to estimate the GWR model's 

parameters, then test them simultaneously with the 

F test (12) and partially with the t test (11). We 

created a map based on the data after gathering 

predictor factors with a substantial influence. 

 

2.3.2 Random Forest 

Random forest [19] is a classification that consists 

of many decision trees constructed from random 

vectors. In the classification process, the individual 

is based on the vote of the most votes in the group 

population tree [20]. Random forest is the 

development of a decision tree by using several 

decision trees where each decision tree has been 

trained using individual samples and each attribute 

is divided into a tree that is selected between a 

subset of random attributes and each attribute is 

divided into a tree that is selected between a subset 

of random attributes and each attribute is divided 

into a tree that is selected between a subset of 

random attributes and each attribute Random forest 

is a randomization technique that gathers 

independent variables as well as sample data, 

resulting in a classification tree of varied sizes and 

shapes [21]. 

The random forest operator produces a 

collection of random trees, with the class created by 

the classification process being chosen from the 

most classes (mode) generated by the current 

random tree [10]. In the random forest approach, 

many trees are produced, resulting in a forest that 

will be examined. Random forest is applied to a 

data cluster with n observations and n explanatory 

factors by [11]: 

1. Perform n-fold random sampling with 

recovery on data clusters, with this step serving as 

the bootstrap stage. 

2. The tree is built until it reaches its maximum 

size using the bootstrap example (without pruning). 
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The best sorter is determined based on these m 

explanatory variables at each node, where m << p. 

This stage is known as the random feature selection 

stage. 

3. To make a forest with k trees, repeat steps 1 

and 2 k times. 

 

The random forest method must determine m 

number of predictor variables taken at random and 

k trees to be formed in order to obtain optimal 

results. According to Breiman (1996), the 

recommended value of k to be used in the bagging 

method that is tried is k = 50, it has given 

satisfactory results for the classification problem. 

According to Breiman and Cutler (2003), there are 

three ways formula to get the value of m to observe 

OOB errors: 

 

 

 

Where p is total variabel. 

 

OOB data is used not to construct the tree, but 

to validate data on the corresponding tree. The 

random forest's misclassification value is suspected 

based on the OOB error generated by [23], which 

makes predictions on each OOB data in the relevant 

tree. Then, on average, around 36 percent of the 

original data cluster's observations, or one-third of 

the many trees created, will be OOB data. As a 

result, each of the initial data cluster observations is 

expected to account for around a third of the total 

number of trees in step 1. If is an observation from 

the original data cluster, then the random forest 

prediction result for each time becomes OOB data. 

In a random forest, the OOB error is 

determined by the correlation between trees and the 

strength of each tree, with increasing the correlation 

increasing the OOB error and increasing the tree 

strength decreasing the OOB error [23]. The 

amount of misclassification of random forest 

prediction outcomes from all observations of the 

original data cluster is used to determine OOB 

error. Using a large number of trees, such as 1000 

or more, according to Breiman and Cutler (2003), 

produces a more stable variable importance. 

 
3 Problem Solution 

3.1. GWR MODEL 
Spatial effect testing was conducted to find out if 

there was a location effect on the research data. The 

hypothesis to be tested is   (no spatial 

correlation) vs  (there is a spatial 

correlation). Based on the results of Moran's I test 

shown in Table1, it was obtained that among all of 

the variables, Horizon Curvature (Kh) to Elevation 

(Elev) have spatial autocorrelation with a 

confidence interval of 95%. Because the variables 

in the study contain spatial autocorrelation, the 

model would be better off using geographically 

weighted regression model rather than using  global 

regression model. The GWR model can contain 

spatial relationships because it contains spatial 

weights in it, so this model is more appropriate to 

use on data that has spatial autocorrelation. 

 

Table 1. Spatial Autocorrelation Testing 

Variable P-value Statistik  

Moran I 

Result  

Kh 1.43 x 10-10 0.4929 Reject H0 

Kv 3.23 x 10-8 0.4947 Reject H0 

H 4.35 x 10-9 0.4952 Reject H0 

K 4.39 x 10-8 0.4830 Reject H0 

M 1.04 x 10-9 0.4885 Reject H0 

E 1.925 x 10-9 0.4916 Reject H0 

Kmin 3.27 x 10-14 0.4902 Reject H0 

Kmax 1.98 x 10-8 0.4963 Reject H0 

Ka 1.41 x 10-15 0.4942 Reject H0 

Kr 2.20 x 10-16 0.4908 Reject H0 

Khe 2.63 x 10-8 0.4938 Reject H0 

Kve 9.35 x 10-12 0.4881 Reject H0 

S 1.52 x 10-8 0.4907 Reject H0 

An 1.28 x 10-7 0.4876 Reject H0 

Ae 7.08 x 10-8 0.4968 Reject H0 

Elev 5.82 x 10-8 0.4818 Reject H0 

 

Testing of GWR model parameters is 

simultaneously carried out to determine the effect 

of weighting in the process ofugaing soil texture 

parameters. The results of the parameter estimation 

test are simultaneously presented in Table 2.  This 

test uses F test statistics based on the hypothesis H0 

: ( , )j i i ju v  , where  j =1, 2, .. k , vs H1 : There 

is at least one ( , )j i iu v related to the location 

( , )i iu v .  
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Based on Table 2, the statistical value of the F test 

on each model of soil particles proved to have a 

significant effect with a confidence level of 95%, 

thus it can be said that the weighting of the GWR 

model has a real effect on the resulting model and 

simultaneously all existing variables have a 

significant effect on the determination of soil 

texture. The next step is to perform a partial 

parameter estimation test, this is used to determine 

the effect of each variable on the variable of soil 

texture. Partial parameter presumption testing is 

based on hypotheses: H0 :   vs H1 : 

      ; . Reject H0 if  |t 

test| > t(0.025,34) = 2,03451. Table 2 is a parameter 

test for area 1. By comparing the t test statistics 

with the critical point  t(0.025,34), it was concluded 

that in the GWR model significantly affects the 

levels of sand texture, namely variable Ae.  

 

In the silt, variables that have significant effect 

are variable H. Interpretation of the model at other 

area can be done in the same way. The GWR model 

at the level of sand texture based on Table 2 can be 

written as follows:  

 1818944,822 - 2456849,895Kh + 

6741920,337Kv - 9263712,927H - 342116,183K -

2656445,349M - 643,7964979E + 

5106615,722Kmin - 126711,6561Kmax - 

89558,63665Ka - 72,66770906Kr + 

8544072,105Khe - 653577,4227Kve + 

0,146746323S + 0,146746323An -6,055004494Ae 

- 0,008169045elv 

The coefficient of determination (R2) in the 

GWR model, texture of sand shows a value of 

0.357. This means that the effect of predictor 

change (Kh to Elev) on the percentage of diversity 

of sand particle levels in area 1 by 35.7% and the 

other 64.3% is a large effect of other factors not 

described in the model. 

Table 3 presents the GWR model based on the 

cut off of Random Forest. From the model, it can 

be seen that the value of the coefficient of 

determination (R2) decreases in the sand and clay 

model, while in the silt model it increases. The 

RMSE value for all models on sand, clay and silt 

has increased. This indicates that the cut off model 

is not better than the GWR model with no cut off. 

This is supported by a partial test on each variable 

that is not significant. However, simultaneous 

testing is still significant in all the resulting models. 

 

3.2. RF Model 
Random Forest allows us to assess predictors' 

global, local, and partial effects on the spatial 

distribution of soil attributes. As a result, several 

interpretations of soil formation and the influence 

of certain features on the model can be deduced 

[26]. The outcome of this method is indicated in 

Table 3 below. 

Table 2. Results for the prediction of sand, silt and 

clay using random forest models 
 R2 MSE RMSE bias 

Sand  0.7897 23.51028 4.8487 -0.054147 

Silt 0.7844 20.12793 4.48642 -0.086769 

Clay 0.7870 12.32285 3.51039 -0.073716 

 

In this Random Forest analysis process, the 

number of variables were randomized 5 times and 

the number of trees was 1000. The variation in the 

coefficients of determination was used to compare 

the variability of the prediction models for each 

PSF. This RF appears to be preferable to the GWR 

models. The superior performance of the RF model 

was shown in all PSF variable. As reported by 

Saraiva Koenow Pinheiro et al., (2018), tree models 

were thought to be an effective method for 

classifying a dataset into homogenous groups since 

they provided discrete output values in the terminal 

nodes (leaves).  

 

 

 

 

 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.72

Henny Pramoedyo, Novi Nur Aini, 
Sativandi Riza, Danang Ariyanto

E-ISSN: 2224-2880 689 Volume 20, 2021



 

 

 

Table 3. Estimated Parameters of GWR Model 

Sand Clay Silt 

Variable Coefficient t test Coefficient t test Coefficient t test 

Intercep 1818944,822 0.693818 -670709.4394 -0.31078 -3246049.259 -1.89342 

Kh -2456849.895 -0.44914 -1031820.866 -0.24903 1112238.329 0.309523 

Kv 6741920.337 1.295018 -3771791.837 -0.94961 -4209196.957 -1.22979 

H -9263712.927 -1.5107 4577866.329 0.953241 8672597.208 2.159678 * 

K 342116.183 0.816757 -169317.0203 -0.51809 -171351.3689 -0.62329 

M -2656445.349 -0.37332 1298938.026 0.219133 -3420514.496 -0.73547 

E -643.7964979 -0.03256 7095.189643 0.46724 -5137.90597 -0.39587 

Kmin 5106615.722 0.87436 -2007192.878 -0.41647 -7028305.887 -1.84081 

Kmax -126711.6561 -0.02124 2231535.613 0.481903 1453012.828 0.37107 

Ka -89558.63665 -0.43937 3597.878183 0.023235 79733.69435 0.59524 

Kr -72.66770906 -2.02281 44.20308822 1.660283 17.76190969 0.751561 

Khe 8544072.105 1.550063 -4135171.855 -0.9618 -5194031.247 -1.43523 

Kve -653577.4227 -0.13698 -1403374.448 -0.38007 133242.2666 0.042535 

S 0.146746323 1.22532 -0.03557148 -0.40062 -0.092935764 -1.17963 

An 2.375778831 0.908506 -2.499221633 -1.27335 0.115596589 0.06725 

Ae -6.055004494 -2.12203 * 3.795642158 1.634822 0.749384797 0.400564 

Elev -0.008169045 -0.87356 0.013180686 1.846901 -0.006137487 -0.99835 

 R2= 0.357 R2= 0.552 R2= 0.376 

 RMSE = 8.4318 RMSE = 5.4022 RMSE = 5.5614 

 F test = 135.380* F test = 92.358* F test = 43.337* 

Significant if t test > t(0,025;33)= 2.03451 

*) significant at level 5% 
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BASED ON CUT OF RANDOM FOREST (upper 0%IncMSE) 

Table 3. Estimated Parameters of GWR Model 

CLAY  SAND  SILT 

VAR Coefficient T-test Var Coefficient T-test Var Coefficient T-test 

INTERCEPT 23.226 21.167 Intercept 49.585 32.704 Intercept 27.590 19.916 

KH 14731.853 1.043 Kh -10454.300 -0.446 Kh -16350.929 -0.797 

H -541.636 -0.075 H -18923.510 -1.096 K -1.140 -0.466 

K -1.983 -1.078 K 0.562 0.260 E 19.095 0.411 

M -393.281 -0.074 E 21.473 0.541 Kmin -6831.935 -0.472 

E 5.932 0.175 Kmin 31257.804 1.426 Kmax 17822.041 1.307 

KMAX -10074.849 -0.834 Kmax 2220.130 0.138 Ka 0.232 0.091 

KA 1.807 0.902 Khe 11403.659 1.177 Khe -4148.004 -0.471 

KVE 12293.446 1.042 Kve 9996.396 0.572 Kve -20515.687 -1.308 

   Elev -2.529 -1.504 Elev 0.543 0.339 

 R2= 0.194  R2= 0.216  R2= 0.414 

 RMSE = 29.21184  RMSE = 25.112  RMSE = 9.796 

 F test = 46.623*  F test = 121.47*  F test = 109.969* 

SIGNIFICANT IF T TEST > T (0,025;41)= 2.0195 ; T (0,025;40)= 2.02107 

*)SIGNIFICANT AT LEVEL 5% 
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Fig. 3: Importance of the environmental covariates derived from the RF models for sand, silt and clay. 

The importance of the environmental covariates in 

each tested RF model is shown in Fig. 3. Based on 

the investigated attributes, the results revealed 

various covariate combinations. Slope is the most 

importance factor to estimate sand, elevation is for 

silt and unsphericity curvature is for clay. This 

variable explained was considered moderately 

satisfactory for sand (19.08%), clay (26.11%) and 

silt (19.78%). The considered characteristic, as 

well as other factors, influence the importance of 

the variables predicted by the RFs [14]. 

The results obtained are not superior to those 

achieved in previous studies [15], [16] but still 

comparable. The number of samples used and the 

selected independent variables can cause 

differences in the results of this study with 

previous studies. Nonetheless, a different predictor 

variable was utilized in the previous report than in 

this study. However, the low performance of the 

result in this study was due to the source material's 

small-scale variation and relative 

erosion/deposition along the slope, which could 

not be captured by the covariates' 30 m spatial 

resolution. That’s problems also found in former 

study [17].  

This PSF soil looks more suitable to be 

modelled using RF compared to GWR. This is 

because GWR which has the basic principle that 

"everything is related to everything else, but near 

things are more related than distant things"  [18] 

does not match the nature of PSF. PSF is strongly 

influenced by topography not by the proximity of 

each soil particle. Parent material has a 

considerable impact on the PSF, encouraging an 

early pedogenic process and structural 

development [1]. As a result, RF should be 

considered a feasible alternative for modelling 

PSFs. This is compounded by the fact that RF 

models provide an estimate of the relative 

importance of the variables in the model [19]. This 

backed up the statement that using random forest 

models to predict PSF content in soils provided 

good performance [15]. 

 

 

4. Conclusion 
GWR and RF were used to create prediction 

models for sand, silt, and clay, and all variables 

passed the statistical assumption test. In terms of 

prediction, the RF model outperforms the GWR 

model, and it should still be considered a viable 

alternative for modelling PSFs. This research 

suggests a link between topsoil qualities and 

terrain attributes, which may be determined using 

field observations and model predictions. More 

study is needed to develop more efficient input 

factors that will aid in the precision of soil 

variability and the accuracy of soil map products. 

 

 

References: 

[1] H. Saraiva Koenow Pinheiro, W. de Carvalho 

Junior, C. da Silva Chagas, L. Helena Cunha 

dos Anjos, and P. Ray Owens, “Prediction of 

Topsoil Texture Through Regression Trees 

and Multiple Linear Regressions,” Artic. Rev 

Bras Cienc Solo, vol. 42, p. 170167, 2018. 

[2] C. Radim and N. Zdenka, “Study of input 

parameters of layered half-space used for soil 

modelling,” WSEAS Trans. Appl. Theor. 

Mech., vol. 15, pp. 194–205, 2020. 

[3] A. B. Mcbratney, Pedometrics. Cham: 

Springer International Publishing, 2018. 

[4] A. Moufakkir, A. Samaouali, A. Elbouzidi, 

E. A. Salah, and A. Dinane, “The Influence 

of the Percentage of Porosity on the Thermal 

Sand Silt Clay 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.72

Henny Pramoedyo, Novi Nur Aini, 
Sativandi Riza, Danang Ariyanto

E-ISSN: 2224-2880 692 Volume 20, 2021



Conductivity of a Composite Material, for 

Example Clay,” WSEAS Trans. Environ. 

Dev., vol. 16, pp. 566–572, Jun. 2020. 

[5] A. Gobin, P. Campling, and J. Feyen, “Soil-

landscape modelling to quantify spatial 

variability of soil texture,” Phys. Chem. 

Earth, Part B Hydrol. Ocean. Atmos., 2001. 

[6] K. Liao, S. Xu, J. Wu, and Q. Zhu, “Spatial 

estimation of surface soil texture using 

remote sensing data Spatial estimation of 

surface soil texture using remote sensing 

data,” 2013. 

[7] C. Brunsdon, S. Fotheringham, and M. 

Charlton, “Geographically Weighted 

Regression,” J. R. Stat. Soc. Ser. D (The 

Stat., vol. 47, no. 3, pp. 431–443, 1998. 

[8] D. C. Wheeler, “Geographically weighted 

regression,” in Handbook of Regional 

Science, 2014. 

[9] M. Fischer and A. Getis, Handbook of 

Applied Spatial Analysis. New York: 

Springer, 2010. 

[10] G. Biau, “Analysis of a random forests 

model,” J. Mach. Learn. Res., vol. 13, no. 1, 

pp. 1063–1095, 2012. 

[11] L. Breiman, “Random forests,” Mach. 

Learn., vol. 45, no. 1, pp. 5–32, 2001. 

[12] L. Breiman, “Bagging predictors,” Mach. 

Learn., vol. 24, no. 2, pp. 123–140, 1996. 

[13] L. Breiman and A. Cutler, “Manual for 

Setting Up,” Using, Underst. Random For., 

vol. 4, 2003. 

[14] S. I. C. Akpa, I. O. A. Odeh, T. F. A. Bishop, 

and A. E. Hartemink, “Digital Mapping of 

Soil Particle-Size Fractions for Nigeria,” Soil 

Sci. Soc. Am. J., vol. 78, no. 6, pp. 1953–

1966, 2014. 

[15] C. da S. Chagas, W. de Carvalho Junior, S. 

B. Bhering, and B. Calderano Filho, “Spatial 

prediction of soil surface texture in a 

semiarid region using random forest and 

multiple linear regressions,” CATENA, vol. 

139, pp. 232–240, Apr. 2016. 

[16] M. Ließ, B. Glaser, and B. Huwe, 

“Uncertainty in the spatial prediction of soil 

texture,” Geoderma, vol. 170, pp. 70–79, Jan. 

2012. 

[17] K. Vaysse and P. Lagacherie, “Evaluating 

Digital Soil Mapping approaches for 

mapping GlobalSoilMap soil properties from 

legacy data in Languedoc-Roussillon 

(France),” Geoderma Reg., vol. 4, pp. 20–30, 

2015. 

[18] T. M. Oshan, Z. Li, W. Kang, L. J. Wolf, and 

A. Stewart Fotheringham, “MGWR: A 

python implementation of multiscale 

geographically weighted regression for 

investigating process spatial heterogeneity 

and scale,” ISPRS Int. J. Geo-Information, 

vol. 8, no. 6, 2019. 

[19] D. R. Cutler et al., “Random forests for 

classification in ecology,” Ecology, vol. 88, 

no. 11, pp. 2783–2792, 2007. 

 

 
Contribution of Individual Authors to the Creation 

of a Scientific Article (Ghostwriting Policy) 

Henny Pramoedyo has Conceived and designed 

the analysis 

Sativandi Riza has implemented the Random 

Forest Algorithm in Rstudio 

Novi Nur Aini has implemented the GWR 

algorithm in Rstudio 

Danang Ariyanto has responsible for Statistics 

 

 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

The authors are grateful to the Department of 

Mathematics and Natural Science, University of 

Brawijaya which is supported to this study by 

providing the support and funding.   

 

 

Creative Commons Attribution License 
4.0 (Attribution 4.0 International, CC 
BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.

en_US 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.72

Henny Pramoedyo, Novi Nur Aini, 
Sativandi Riza, Danang Ariyanto

E-ISSN: 2224-2880 693 Volume 20, 2021

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



