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Abstract: - In this paper, a new conjugate gradient (CG) parameter is proposed through the convex combination 
of the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) CG update parameters such that the conjugacy 
condition of Dai-Liao is satisfied. The computational efficiency of the PRP method and the convergence profile 
of the FR method motivated the choice of these two CG methods. The corresponding CG algorithm satisfies the 
sufficient descent property and was shown to be globally convergent under the strong Wolfe line search 
procedure. Numerical tests on selected benchmark test functions show that the algorithm is efficient and very 
competitive in comparison with some existing classical methods. 
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1 Introduction 
This study considers the nonlinear conjugate 
gradient (CG) method that is widely used to solve 
nonlinear unconstrained optimization problems of 
the form 

min  [ ( ) : ]nf x x       (1) 

where : nf   is a continuous and 
differentiable function which is bounded from 
below. The method generates a sequence of points 

: 1kx k   starting with an initial guess, say 

0 ,nx   using the recurrence relation  

1k k k kx x d       (2) 

where k  is a positive step-size usually obtained by 
a line search, and kd  is the search direction 
generated by the following rules  

1 1 0 0,   ,   k k k kd g d d g       (3)  

where ( )k kg f x  is the gradient of f  at kx  so 

that 0g  is the gradient at 0x  and k  is the update 
parameter for the method. Many variants of the 
method exist, each of which corresponds to a 

distinct value of k . Few of the well-known 
variants are:  

Hestenes & Stiefel (HS): 1 ,
T

HS k k
k T

k k

g y

d y
    

Fletcher & Reeves (FR):
2

1
2 ,kFR

k

k

g

g
 

   

Daniel (D): 
 

 

2
1

2 ,
T

k k kD

k T

k k k

g f x d

d f x d
  




  

Polak, Ribiere & Polyak (PRP):
 

1
2 ,

T
PRP k k
k

k

g y

g
   

Liu &  Storey (LS): 1 ,
T

LS k k
k T

k k

g y

d g
 

  

Fletcher (CD): 
2

1 ,kCD

k T

k k

g

d g
 




  

Dai & Yuan (DY): 
2

1 ,kDY

k T

k k

g

d y
 

   

Hager & Zhang (N):

 

2
12 ,

T

kN k
k k k T T

k k k k

y g
y d

d y d y
 

 
   
 
 
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Bamigbola, Ali & Nwaeze (BAN): 1 ,
T

BAN k k
k T

k k

g y

g y
    

 
,where 1 ,k k ky g g    is the Euclidean norm of 

vectors and each parameter corresponding to the 
method in [20], [15], [13], [26 & 27], [16], [23], 
[11], [18] and [8], respectively.  

All the variants mentioned above are equivalent 
when f  is a strict convex quadratic function and 

k  is evaluated with an exact method. However, 
their behaviours vary for non-quadratic cost 
functions [22]. Experiences from the literature have 
also shown that these methods can be categorized 
into two classes: those with strong global 
convergence properties and those with good 
computational performances. For instance, in the 
first category are the FR and DY methods, while in 
the second category are the PRP, HS and LS 
methods. 

Zouténdijk [35] reported the first global 
convergence result for the FR method when the line 
search is exact. However, Powell in [28] claimed 
that the FR method was susceptible to jamming 
when exact line search is used. This constitutes a 
major drawback in the computational efficiency of 
the method. On the other hand, it was shown in [26] 
that the (CG) method with PRP

k  and exact line 
search is globally convergent when the objective 
function is convex. A counterexample to this was 
given in [29] to show that there exist convex 
functions for which the PRP method does not 
converge globally with exact line search. It was 
suggested in the same work that it is possible to 
obtain the global convergence result for the method 
by enforcing that the value of PRP

k  to be positive. 

The classical CG methods highlighted above 
possessed contrasting features based on 
convergence and computational performance, 
thereby giving rise to two classes of methods. In 
particular, those in the class possessing good 
convergence properties are usually prone to 
jamming, a situation whereby as the iteration 
continues, shorter steps without significant progress 
are taken toward the minimum point. This backdrop 
was, however, resolved in the class of 
computationally-performing methods due to their 
in-built restart feature [19]. To improve the 
efficiency of the CG method, studies on the 
hybridization of methods from these two classes 
have been carried out with a number of efficient 

methods being the outcomes. Although the first 
work on hybrid CG methods can be traced to 
Touati-Ahmed-Storey [30], a brief overview of only 
recent hybrid methods is given in this section. 

Mo et al. [25] propose two kinds of CG methods 
based on the modifications of the hybrid methods of 
Touati-Ahmed-Storey [30] and Dai-Yuan [12]. 
Under mild conditions, the methods were shown to 
be globally convergent. Babaie-Kafaki [4, 6] 
combined the features of HS and DY methods to 
suggest a hybrid method by performing a quadratic 
relaxation of the hybrid CG parameter proposed by 
Dai and Yuan [12]. The hybridization parameter, in 
this case, was obtained based on a conjugacy 
condition that is independent of the line search. The 
global convergence property of the method was 
established for uniformly convex functions. Yao and 
Qin [33] suggested the hybrid of DL (Dai and Liao 
[10]) and WYL (Wei el al. [31]) methods and 
showed that the method satisfied the sufficient 
descent condition under the Wolfe line search and 
globally convergent for general functions. 

A growing idea for constructing hybrid methods is 
the use of linear and convex combinations. Based on 
the former, Xu and Kong [32] proposed a 
hybridization of DY and HS methods with 
nonnegative combination parameters in which at 
least one of them is not equal to zero. The former 
approach was adopted by Andrei [2] the same set of 
methods with the combination parameter computed 
such that the search direction is the Newton 
direction and the secant equation also satisfied. 
Based on this approach, Babaie-Kafaki and 
Mahdavi-Amiri [5] constructed a hybrid method 
from same HS and DY methods which is globally 
convergent for uniformly convex functions. The 
method yielded global convergence result for 
general functions when Powell’s nonnegative 
restriction on the CG parameter was enforced. 
Further convex combination of these two classical 
methods led Babaie-Kafaki and Ghanbari [7] to 
propose a hybrid method whereby the hybridization 
parameter was computed from a modified secant 
equation obtained based on the search direction of 
the Hager–Zhang nonlinear CG method [18]. 

Recently, Alhawarat et al. [1] proposed a new 
hybrid CG method using the positive PRP and 
NPRP method proposed by Zhang [34] whose 
properties were studied under the strong Wolfe line 
search and mild assumptions. Li and Yang [21] also 
propose a nonmonotone hybrid conjugate gradient 
method which combines the nonmonotone line 
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search technique with the LY method (See Lu et al. 
[24]). The approach was based on the idea that 
nonmonotone algorithmic frameworks may accept a 
larger value of step-length in the quest to improve 
the behaviour of the LR method. Interested readers 
may also consult [36-38] for other recently proposed 
hybrid CG methods. 

In this present work, the computational efficiency 
and good convergence property of the PRP and FR 
methods, respectively, motivate the construction of 
a new hybrid CG parameter, based on the idea of 
convex combination of CG parameters introduced in 
Andrei [2] and further utilized in [22]. The proposed 

k  is computed as a convex combination of FR

k

and ,PRP

k  that is 

 1 PRP FR

k k k k k        (4) 

where PRP

k  and FR

k are as given above and 

 0,1k  . An interesting feature of this method is 
that the search direction satisfies the Dai-Liao 
conjugacy condition [10] 

1 1,   0,T T

k k k kd y ts g t     (5) 

where 1k k ks x x  . This condition, unlike the 

traditional conjugacy condition, 1 0T

k kd y  , 
depends on approximate (inexact) line search. In 
this work, we assume the step-size k  satisfies the 
strong Wolfe line search criterion. 

The remaining parts of this paper consist of the 
following sections. In Section 2, the new hybrid 
method is developed, and the corresponding 
conjugate gradient algorithm is outlined. The search 
direction, kd , is shown to be a descent direction in 
Section 3 while Section 4 details the global 
convergence result of our CG algorithm. Numerical 
results obtained through computational experiments 
are presented and discussed in Section 5. The 
concluding remarks are given Section 6. 
 

 

2 The New Hybrid Method 
To construct the value of k  for the proposed 

method and as stated above, the parameter k  in 
Eq. (4) is chosen so that Eq. (5) is satisfied for every 
member of the sequence kd . Thus, by taking the 

inner product of Eq. (3) with the vector ky , we 
obtain  

1 1
T T T

k k k k k k kd y g y d y     (6) 

Computing the value of k  in Eq. (6) according to 
Eq. (4) gives 

 1 1 1T T PRP T FR T

k k k k k k k k k k k kd y g y d y d y        

 (7) 

Inserting the values of PRP

k and FR

k in Eq. (7), 
imposing condition (5) and after some algebra, we 
have 

 
 

2 2
1 1

2
1 1

.
T T T

k k k k k k k k
HFP

k
T T

k k k k k

g y g d y ts g g

g g y d y


 

 

  



 (8) 

By substituting Eq. (8) into Eq. (4) and after some 
simplifications, we obtain the new k  as  

 

 

2
1 11

2 2
1 1

2
1 1

22
1 1

.                      (9)

T T TT
k k k k k k kHFP k k

k
T T

k k k k k k

T T
k k k k k

T T
kk k k k k

g y g g y d yg y

g g g y d y

ts g g g g

gg g y d y

  

 

 

 


   

 



   




 

It is easy to note from Eq. (4) that HFP PRP

k k   

whenever 0k   and HFP FR

k k  whenever 1k 

. In what follows, we give a corresponding 
algorithm for analysing and implementing the new 
hybrid method. Note that the strong Wolfe line 
search criteria for estimating k  are given by  

    T

k k k k k k kf x d f x g d     (10) 

and  

1
T T

k k k kg d g d                  (11) 
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Algorithm 1: Hybrid CG Procedure 

1: 0 0 0input ,  0,  set ,  0;nx d g k    
 

2: while  dokg   

3:     1 1 1 1,  ;k k k k k ky g g s x x        

4:      2
1 1if =0 thenT T

k k k k kg g y d y  0;k       

5:    else ;HFP

k k   

6:    if 0 1 thenk   1 ;HFP PRP FR

k k k k k        

7:    else if 1 thenk   ;HFP FR

k k    

8:   else if 0 thenk   ;HFP PRP

k k   

9:    1 1 ;PRP

k k k kd g d     

10:  obtain  using (10) and (11);k  

11:  1evaluate ;k k k kx x d    

12:  1;k k    

13: end  

 
 
3 The Descent Property of Algorithm 

1 
In this section, the search direction kd  generated by 
Algorithm 1 is shown to satisfy the sufficient 
descent property. 

Theorem 1: Suppose the sequences  kd  and  kg  
generated by Algorithm 1, then the search direction 

kd  satisfies the sufficient descent condition 
2    0, 1.T

k k kg d c g k c      (12) 

Proof: If we consider the restart criterion of Powell 
[18] given by  

2
1 1

1 ,
5

T

k k kg g g   (13) 

then, it is obvious from Algorithm 1 that (13) holds. 
However, if (13) does not hold, i.e.,

2
1 1

1 ,
5

T

k k kg g g   the following results are 

established by induction. 

Suppose 0k  , then from Line 1 of Algorithm 1 
together with the fact that 1,c   we obtain 

2
0 0 0
Tg d g  , which shows that (12) is satisfied. 

Now, we assume (12) hold for some 1k  . Using 
(11) in the expression 1

T T T

kk k k k kd d g d gy   , we 
obtain by virtue of the fact that 1   

 1 .T

k kk

T

kd d gy     (14) 

By taking the inner product of (3) with 1,kg 
 we 

obtain  
2

1 1 11 .T T

k k k k kkd g d gg       (15) 

According to Line 11-12 of Algorithm 1, if 1k  , 
then .HFP FR

k k   It follows that  
2

2 1
1 1 12

2
2 1

1 12

2
2 1

1 2

2 2
1 12

2
12

1

1

kT T

k k k k

k

k T

k k k

k

k T

k k k

k

T

k k
k k

k

T

k k
k

k

k

g
d g d g

g

g
g d g

g

g
g d g

g

g

d g
g g

g

d g
g

g









  



 





 



   

  

   

  

 
    











 

 
2 2

1 121 1   (16)
T

k k

k k

k

d g
g d g

g


 

 
       
 
 

by setting 
2T

k k kd g g  to ,d  where d  is a 

constant and satisfies the inequality 0 1.d 

 

When 0k  (Line 8 of Algorithm 1), then
HFP PRP

k k  and we obtain the following:

 
 

 

2
1 1 1

2 1
1 12

2 1 1
1 12

2
1

1

1

12
2

T T

k k k k k

T
Tk k

k k k

k

T

k k T

k k k

k

T

k k
T

k k k

R

k

k

P P

k

k

d g d g

g d g
g

g d

g

g y

g
g

g
g d g

g

g g g

g g





  


 

 

 

 



   

 






 



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 

   

2 2
1 12

1 2

2
2 1

1 2

2 2
1 12 2

2 2
1 1

0.2

1.2

1 1.2 1 1.2 .   

1 1.2 1 1

    (17

2

)

.

k k
T

k k k

k

k T

k k k

k

TT
k kk k

k k

k k

k k

g g
g d g

g

g
g d g

g

d gd g
g g

g g

d g d g







 

 







 

 





  
      

   
 


  

  



   









 

When k is computed according to Eq. (4) (that is, 
Line 6 of Algorithm 1), the following result holds: 

 

   

2
1 1 1

2
1 1 1

2
1

2
2 11

1 2 2

2 2
1 12

2 2 2
1 1 1

1

1

2.2

2.2 1 2.2 .(18)

T T

k k k k k

FR T PRP T

k k k k k k k

FR T PRP T

k k k k k k k

T

kk T T

k k k k k

k k

T

k k

k k

k

k k k

k

k

d g d g

g d g d g

g d g d g

g
g d g d g

g g

d g
g g

g

g d g d g

g

g y



 

  

 



 



  

  







 

  





  

 

  

     

   





    





 
Inequalities (16), (17) and (18) show that (12) holds 
for 1k   and hence the proof is completed. 
 
 
4 The Global Convergence of 

Algorithm 1 
In order to establish the global convergence result 
for Algorithm 1, we first state the following 
necessary and general assumptions on the objective 
function  f x . 

Assumption 1: (Lipschitz Condition) In some 
neighbourhood N  of the level set 

    0| ,nS x f x f x    the gradient,  g x

, of  f x  is Lipschitz continuous, that is, there 

exists a constant L   such that 
( ) ( )    , .g x g y L x y x y N      (19) 

Assumption 2: (Boundedness) The level set S  is 
bounded. That is, there is a positive constant m  
such that    .x m x S    

Assumptions 1 and 2 together implies that for any 
such positive constant ,m  

     .g x m x N     (20) 

Assumption 3: (Zoutendijk Condition) Let an 
iterative scheme of the form (2) where kd  is a 
descent direction and k  satisfies the Wolfe line 
search conditions 

    1,   ,T T T

k k k k k k k k k k kf x d f x g d g d g d         (21) 

where 0 1.     If Assumptions 1 and 2 hold, 
then,  

 
2

2
0

.
T

k k

k k

g d

d





   (22) 

Obviously if k  satisfies the strong Wolfe 
conditions (10) and (11) as suggested in our 
algorithm above, then it must satisfy the weak 
Wolfe line search conditions. Hence, Assumption 3 
also holds under strong Wolfe conditions. 

From the definition of T

k kd y  and (2), it can be 

shown that
 

2

1
.

T

k k
k

k

d g

L d




 
  Thus, from 

Theorem 1 it becomes obvious, if we assume
0,kg   that k  is not zero. Hence, there must exist 

a constant 0   such that ,k   for all 0.k   
This leads to the following global convergence 
results for the proposed algorithm. 

Theorem 2: Suppose that Assumptions 1-3 hold. 
Consider a conjugate gradient method of the form 
(2)-(3), where k  is estimated by (4), and where 

k  satisfies (10) and (11), with 0 1.   

Then,  
liminf 0.k
k

g


  (23)  

Proof: If liminf 0,k
k

g


  then there exists a 

constant 0b  such that  
,kg b  (24) 

for sufficiently large .k  
Starting with (4) we have 
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2
1 1

2 2

2
1 1 1 1

2 2

2 2 2
1 11 1 1

2 2 2 2 2

2 2
1

2 2

2

22 .                                    (25)

T

k k kPRP FR

k k k
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The first inequality in (25) was established from the 
fact that  0,1 ,k   the first equality follows from 

the definitions of PRP

k  and ,FR

k  the first part of 
the second equality uses the definition of ,ky  the 
second equality applies the Cauchy Schwartz 
inequality, while the third inequality uses (20) and 
(24). 

In a similar version, the result in (25) may also be 
established for  0,1 ,k   i.e., if either 1k   or 

1k   for all 1,k   in accordance to Step 5 of the 
algorithm in section 2. 

Now from (3), we have  
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where  max ,M x y x y N    is the diameter 

of N . This result implies  

2
0

1 .
k kd

   (27) 

If we multiply the left-hand side of (27) by the 
constant 2 2 ,c b  we obtain 
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242
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From (24) From (12)
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Inequality (28) contradicts (27) which invariably 
means ,kg b  and thus (23) is established. 

 
 
5 The Numerical Implementation of 

Algorithm 1 
By the above analysis, the main questions we want 
to investigate is whether the proposed method 
outperforms some classical non-hybrid methods 
especially those of FR and PRP since the proposed 
method in this paper can be reduced to any of these 
methods. 

The codes were written and run on Matlab R2016a. 
All the tests were performed on a PC with an 
installed memory of 2GB and 64-bits operating 
system. The experiments were performed on a set of 
56 nonlinear unconstrained problems retrieved from 
the collections of Andrei [3], some of which may 
also be found in the CUTE library [9]. The 
dimension of the problem is taken as 500, 1000, 
5000 and 10000. However, due to the peculiarity of 
some problems, we used much-reduced dimensions 
so as to ensure the problems were solvable by all the 
methods.  

The new hybrid method was compared with other 
existing methods based on four attributes: number 
of iterations, CPU time, function and gradient 
evaluations. The Dolan and Moré [14] performance 
profiling technique was used to assess the 
approximate performance of the different methods. 
They introduced the notion of performance profile 
as a means to evaluate and compare the performance 
of the set of solvers S  on a set of problem .P  

Suppose there exist sn  solvers and pn  problems, 
for each problem p  and solver s , they defined: 

,p sr   computing cost (number of iterations, CPU 
time, function or gradient evaluations) required to 

solve problem p  by solver s . If p,sI is an attribute 
(say, number of iterations or function evaluation, 
etc) for problem p P  by method s S , then the 
comparison between the different methods is based 
on the performance ratio given by  

 
p,s

,
p,s

I
.

min I :p sr
s S




                          (29) 

Equation (29) gives the required number of 
iterations for solving problem p P with method 
s S . Readers may refer to Dolan and Moré [14] 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.78 Olawale J. Adeleke, Idowu A. Osinuga, Raufu A. Raj

E-ISSN: 2224-2880 741 Volume 20, 2021



for further guides on the application of the 
technique. 

All algorithms terminate when 610 .kg   No 
restriction was placed on the number of iterations. 
The strong Wolfe line searches (10) and (11) were 
imposed, with parameters δ = 0.0001, σ = 0.9, 

1.t   

The following Figures 1-4 were generated in 
accordance with the performance profile theory of 
[14]. As earlier mentioned, the performance of the 
proposed hybrid method was checked against five 
other traditional methods based on four attributes. 
Particularly, the proposed HFP method found 
solutions to all the selected test functions. 

Observe from Figure 1 that HFP competes very well 
with the five traditional methods. At 1,  HFP is 
only behind DY and FR. This shows that the rate of 
convergence of the proposed method is good. 

 
Fig.1: The performance profile of HFP method 
against FR, PRP, LS, DY and CG_DESCENT 
methods according to the CPU times. 

 
Fig.2: The performance profile of HFP method 
against FR, PRP, LS, DY and CG_DESCENT 
methods according to the number of iterations. 

 
Fig.3: The performance profile of HFP method 
against FR, PRP, LS, DY and CG_DESCENT 
methods according to the values of the objective 
functions. 

 
Fig.4: The performance profile of HFP method 
against FR, PRP, LS, DY and CG_DESCENT 
methods according to the values of the norm of the 
gradient of the objective functions.  
 
With respect to the numbers of iterations reported 
for the test functions (Figure 2), HFP produces a 
better performance than the other methods except 
DY at 1.   In order to get a clearer information 
on the performance of the methods with respect to 
the numerical values of the objective functions and 
their norms, the authors decided to adjust the scales 
of the performance profile graphs (see Figures 3 and 
4). The figures reveal that the values generated for 
HFP are in consonance with those of the compared 
traditional methods.   
 
 
6 Conclusion 

This paper introduces a new and efficient hybrid 
conjugate gradient parameter through the convex 
combination of the conjugate gradient parameters of 
the traditional FR and PRP methods. The proposed 
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method guarantees descent direction and is globally 
convergent under the strong Wolfe line search 
technique. Numerical results for mixed large and 
small-scale problems show that the method is very 
efficient in terms of convergence and the number of 
problems it solved when compared to some classical 
methods. For other attributes such as the function 
and gradient values, the method is competitive and 
promising. As part of future work, this method 
would be tested on more problems and compared 
with other known efficient hybrid methods. It is also 
possible to test the method for different specific 
values of the parameter .k  
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