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Abstract: - The bias of the sample standard deviation as an estimator of the population standard deviation, for 
a simple random sample of size N from a Normal population, is well documented. Exact and approximate bias 
corrections appear in the literature for this case. However, there has been less discussion of the downward bias 
of this estimator for non-Normal populations. The appropriate bias correction depends on the kurtosis of the 
population distribution. We derive and illustrate an approximation for this bias, to 𝑂(𝑁  −1), for several 
common distributions. 
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1 Introduction 

Let X follow a distribution, F, with integer moments 
that are finite, at least up to fourth order. Denote the 
population central moments by 𝜇𝑗 = 𝐸[(𝑋 − 𝜇1

′ )𝑗] , 
j = 1, 2, 3, …. ; where 𝜇1

′ = 𝐸(𝑋) and 𝑉𝑎𝑟. (𝑋) =

𝜇2 = 𝜎2, say; and the kurtosis coefficient is 𝜅 =
(𝜇4/𝜇2

2). 

Based on a simple random sample of size N, the 
sample variance is 𝑠2 =

1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1  , where 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑁
𝑖=1 . For any F with finite first and second 

moments, 𝐸(𝑠2) = 𝜎2 and 𝐸(𝑥̅) = 𝜇1
′ . In the 

special case where F is Normal, the sampling 
distributions of both 𝑠2 and s itself are well known. 
For example, for the latter see Holtzman (1950). In 
particular, the bias of s as an estimator of σ, and 
various approximations to this bias, have been 
examined in detail in the Normal case – e.g., see 
Bolch [1], Brugger [2], Cureton [3], D’Agostino [4], 
Gurland and Tripathi [5], Markowitz [6] and Stuart 
[7],   

However, if F is non-Normal, then although 𝑠2 
is still an unbiased estimator of 𝜎2, s is a 
downward-biased estimator of σ in finite samples, 
by Jensen’s inequality. The magnitude of this bias is 
not easily           

 

determined, in general, and we explore this problem 
here. 

 

2 Main Result 

Under standard regularity conditions, both (𝑥̅ − 𝜇1
′ ) 

and (𝑠2 − 𝜎2) are 𝑂𝑝(𝑁−1/2); and note that we can 
write 𝑠 = 𝜎[1 + (𝑠2 − 𝜎2)/𝜎2]1/2 . So, by the 
generalized binomial theorem (or using the 
Maclaurin expansion), we have: 

𝑠 = 𝜎 [1 +
1

2𝜎2
(𝑠2 − 𝜎2) −

1

8𝜎4
(𝑠2 − 𝜎2)2 +

1

16𝜎6
(𝑠2 − 𝜎2)3 −

5

128𝜎8
(𝑠2 − 𝜎2)4 + ⋯ ].            

(1)                           

Convergence of the infinite series in (1) requires 
that |(𝑠2 − 𝜎2)/𝜎2| < 1, and this condition will be 
satisfied for large N as 𝑠2 is a consistent estimator 
of 𝜎2. However, convergence is not required for the 
approximation that follows. 

       Retaining terms in the expected value of (1) up 
to 𝑂(𝑁  −1), we have 

𝐸(𝑠) = 𝜎 [1 +
1

2𝜎2 𝐸(𝑠2 − 𝜎2) −
1

8𝜎4 𝐸[(𝑠2 −

               𝜎2)]2] + 𝑂(𝑁 −3/2)  .                (2) 

Now, 𝐸(𝑠2 − 𝜎2) = 0, and from eq. (19) of 
Angelova [8], 
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𝐸[(𝑠2 − 𝜎2)]2 = [
(𝜇4−𝜇2

2)

𝑁
+

2𝜇2
2

𝑁(𝑁−1)
].               (3) 

This yields the approximation, 

𝐸(𝑠) ≃ 𝜎 [1 −
1

8
[

𝜅−1

𝑁
+

2

𝑁(𝑁−1)
]] = (𝜎/𝐶𝑁

∗ ),        (4) 

where                           

 𝐶𝑁
∗ = [8𝑁(𝑁 − 1)]/[8𝑁(𝑁 − 1) − (𝑁 − 1)(𝜅 −

            3) − 2𝑁] .                (5) 

So, our main result is that 𝜎̂ = 𝐶𝑁
∗ 𝑠 is an unbiased 

estimator of σ, to 𝑂(𝑁  −1). For a Normal 
population, the corresponding scale factor for 𝜎̂ to 
be exactly unbiased for s is known to be 

 𝐶𝑁 = 𝛤[(𝑁 − 1)/2]√(𝑁 − 1)/2 /𝛤[𝑁/2].          (6) 

Using (4), and the fact that 𝐸(𝑠2) = 𝜎2, we also 
see immediately that 𝑣𝑎𝑟(𝑠) ≃ 𝜎2 (𝐶𝑁

∗2 − 1) /

𝐶𝑁
∗2  and 𝑣𝑎𝑟(𝜎̂) ≃ 𝜎2(𝐶𝑁

∗2 − 1), each to 𝑂(𝑁  −1). 

 

3 Discussion 

Some early tabulations for 𝐶𝑁 by various authors 
are discussed by Jarrett [9]. Also, see Holtzman 
[10],  

Bolch [1], and Gurland and Tripathi [5]. Table 1 
compares the exact value of 𝐶𝑁 with two 
approximations to 𝐶𝑁 suggested by Gurland and 
Tripathi, for the Normal case. Values of 𝐶𝑁

∗ , for the 
Normal and three other common population 
distributions, and various values of N, appear in 
Table 2. An extended table that provides values of 
𝐶𝑁

∗ , for several other well-known distributions can 
be downloaded as an Excel spreadsheet from 
https://github.com/DaveGiles1949/My-Documents. 

For a Normal population, the accuracy of 𝐶𝑁
∗  

relative to the exact 𝐶𝑁 is apparent in Tables 1 and 
2 – even for sample sizes as small as N = 15. This 
lends credence to the accuracy of the 𝐶𝑁

∗  values for 
the other distributions, which show that this bias 
adjustment factor increases with the degree of 
kurtosis, but decreases (to 1) rapidly as N increases. 

In practice, the form of the population 
distribution, and hence the value of κ, may be 
unknown. In this case an estimate of κ – such as the 

fourth standardized central sample moment, b2 – can 
be used. Johnson and Lowe [11] show that 𝑏2 ≤ 𝑁, 
so the corresponding estimate of 𝐶𝑁

∗  satisfies (16

13
) ≤

𝐶𝑁
∗̂ < (

8

7
) for 𝑁 ≥ 2. In particular, 𝐶𝑁

∗̂ > 1, as 
required, but the order of magnitude of our main 
unbiasedness result is then only approximate. 

 

Table 1. CN Values for Normal Population  

N                  CN     

Exact      GT(5)(6)          GT(7)  

2 1.2533  1.2649  1.2500     
3 1.1284  1.1314  1.1250       
4 1.0854  1.0864  1.0833        
5 1.0638  1.0643  1.0625       
6 1.0509  1.0512  1.0500       
7 1.0424  1.0425  1.0417       
8 1.0362  1.0363  1.0357       
9     1.0317  1.0317  1.0313     
10     1.0281  1.0282  1.0278     
11  1.0253  1.0253  1.0250     
12 1.0230  1.0230  1.0227     
13 1.0210  1.0210  1.0208     
14 1.0194  1.0194  1.0192     
15 1.0180  1.0180  1.0179     
16 1.0168  1.0168  1.0167     
17 1.0157  1.1057  1.0156      
18  1.0148  1.0148  1.0147     
19 1.0140  1.0140  1.0139     
20 1.0132  1.0132  1.0132     
21 1.0126  1.0126  1.0125      
22 1.0120  1.0120  1.0119     
23 1.0114  1.0114  1.0114     
24 1.0109  1.0109  1.0109     
25 1.0105  1.0105  1.0104     
26 1.0100  1.0100  1.0100     
27 1.0097  1.0097  1.0096     
28 1.0093  1.0093  1.0093     
29 1.0090  1.0090  1.0093     
30 1.0087  1.0087  1.0086 

 

Note: 𝐶𝑁 = 𝛤[(𝑁 − 1)/2]√(𝑁 − 1)/2 /𝛤[𝑁/2] . 
GT(5)(6) and GT(7) refer to values imputed from 
equations (5) and (6), and equation (7), respectively in 
Gurland and Tripathi [5]. 
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Table 2.  𝐶𝑁
∗  Values for Various Populations. 

N                 𝐶𝑁
∗      

Normal       Logistic       Uniform      Expon.            
(κ = 3.0) (κ = 4.2)      (κ = 1.8)      (κ = 9.0) 

2     1.3333 1.4815        1.2121 2.6667    
3     1.1429 1.2121        1.0811 1.6000     
4     1.0909 1.1474         1.0480 1.3714     
5     1.0667 1.1019         1.0336 1.2698     
6     1.0526 1.0811         1.0256 1.2121     
7     1.0435 1.0673         1.0207 1.1748     
8     1.0370 1.0576        1.0173 1.1487     
9     1.0323 1.0503        1.0148 1.1129   
10   1.0286 1.0447         1.0129 1.1146   
11   1.0256 1.0402        1.0115 1.1028   
12   1.0233   1.0365        1.0103 1.0932    
13   1.0213         1.0335        1.0094 1.0842   
14   1.0196 1.0309        1.0086 1.0785   
15   1.0182 1.0287         1.0079 1.0728   
16   1.0169         1.0267         1.0073 1.0679   
17   1.0159         1.0251         1.0068 1.0635   
18   1.0149  1.0236         1.0064 1.0597   
19   1.0141 1.0223         1.0060 1.0564   
20   1.0133 1.0211         1.0057 1.0534    
21   1.0127 1.0200         1.0054 1.0507   
22   1.0120 1.0191         1.0051 1.0482   
23   1.0115 1.0182         1.0049 1.0460   
24   1.0110 1.0174         1.0046 1.0440   
25   1.0105 1.0167         1.0044 1.0421   
26   1.0101 1.0160         1.0042 1.0404   
27   1.0097 1.0154         1.0041 1.0388   
28   1.0093 1.0148         1.0039 1.0374   
29   1.0090 1.0143         1.0038 1.0360    
30   1.0087 1.0138         1.0036 1.0348 

 

Note: 𝐶𝑁
∗ =

[8𝑁(𝑁−1)]

[8𝑁(𝑁−1)−(𝑁−1)(𝜅−3)−2𝑁]
  .  

“Expon.” denotes “Exponential”. GT(5)(6) and GT(7) 
refer to values imputed from equations (5) and (6), and 
equation (7), respectively in Gurland and Tripathi [5]. 

 

 

 

 

 

 

 

 

References: 

[1]  Bolch, B.W., More on Unbiased Estimation 
 of the Standard Deviation, The American 

 Statistician, 22 (3), 1968, 27. 

[2]  Brugger, R.M., A Note on Unbiased 
 Estimation     of the Standard Deviation, 
The  American Statistician, 23 (4), 1969, 32.  

[3]  Cureton, E.E., Unbiased Estimation of the 
 Standard Deviation, The American 

 Statistician, 22 (1), 1968, 22.  

[4]  D’Agostino, R.B., Linear Estimation of the 
 Normal Distribution Standard Deviation,
  The American Statistician, 24 (3), 1970, 
 14–15. 

[5]  Gurland, J. and Tripathi, R.C., A Simple 
 Approximation for Unbiased Estimation of 
 the Standard Deviation, The American 

 Statistician, 25 (4), 1971, 30-32. 

[6]  Markowitz, E., Minimum Mean-Square-
 Error Estimation of the Standard Deviation 
 of the Normal Distribution, The American 

 Statistician, 22 (3), 1968, 26.  

[7] Stuart, A., Reduced Mean-Square-Error 
 Estimation of 𝜎𝑝 in Normal Samples, The 

 American Statistician, 23 (4), 1969, 27. 

[8]  Angelova, J.A., On Moments of Sample 
 Mean  and Variance, International 

Journal  of Pure  and Applied Mathematics, 
79 (1),  2012, 67-85. 

[9]  Jarrett, R.F., A Minor Exercise in History,” 
 The American Statistician, 22 (3), 1968, 
25.  

[10]  Holtzman, W.H., The Unbiased Estimate of 
 the Population Variance and Standard 
 Deviation,” American Journal of 

 Psychology, 63 (4), 1950, 615-617. 

[11]  Johnson, M.E. and Lowe Jr., V.W., 
“Bounds  on the Sample Skewness and 
Kurtosis,”  Technometrics, 21 (3), 1979, 377-
378.  

 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International , CC BY 4.0) 

 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.e
n_US 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.18 David E. Giles

E-ISSN: 2224-2880 121 Volume 21, 2022




