Some classes of quasi *-algebras

S. TRIOLO Dipartimento di Ingegneria, Universit`a di Palermo, I-90123 Palermo, ITALY

Abstract: In this paper we will continue the analysis undertaken in [1] and in [2] [20] our investigation on the structure of Quasi-local quasi *-algebras possessing a sufficient family of bounded positive tracial sesquilinear forms. In this paper it is shown that any Quasi-local quasi *-algebras (A, A0), possessing a "sufficient state" can be represented as non-commutative L2-spaces.

Keywords: Quasi *-algebras, Non-commutative L²-spaces.

Received: October 19, 2021. Revised: June 13, 2022. Accepted: July 7, 2022. Published: August 1, 2022.

1. Introduction

For reader convenience we collect below some preliminary definitions and propositions that will be used in what follows. A quasi *algebra is a couple $(\mathcal{A}, \mathcal{A}_0)$, where \mathcal{A} is a vector space with involution *, \mathcal{A}_0 is a *-algebra and a vector subspace of \mathcal{A} and \mathcal{A} is an \mathcal{A}_{0} bimodule whose module operations and involution extend those of \mathcal{A}_0 . The *unit* of $(\mathcal{A}, \mathcal{A}_0)$ is an element $e \in \mathcal{A}_0$ such that xe = ex = x, for every $x \in \mathcal{A}$. A quasi *-algebra $(\mathcal{A}, \mathcal{A}_0)$ is said to be *locally convex* if \mathcal{A} is endowed with a topology τ which makes of \mathcal{A} a locally convex space and such that the involution $a \mapsto a^*$ and the multiplications $a \mapsto ab$, $a \mapsto ba, b \in \mathcal{A}_0$, are continuous. If τ is a norm topology and the involution is isometric with respect to the norm, we say that $(\mathcal{A}, \mathcal{A}_0)$ is a normed quasi *-algebra and, if it is complete, we say it is a Banach quasi*-algebra.

Let $\mathcal{A}_{\#}$ be a C*-algebra, with involution # and norm $\| \|_{\#}$, and $\mathcal{X}[\| \|]$ a left Banach $\mathcal{A}_{\#}$ -module. This means, in particular, that there is a bounded bilinear map

 $(a, x) \to ax$

from $\mathcal{A}_{\#} \times \mathcal{X}$ into \mathcal{X} such that

$$(a_1a_2)x = a_1(a_2x), \quad \forall a_1, a_2 \in \mathcal{A}_{\#}, x \in \mathcal{X}.$$

We will always assume that the following inequality holds:

$$||ax|| \le ||a||_{\#} ||x||, \quad \forall x \in \mathcal{X}, a \in \mathcal{A}_{\#}.$$

This implies, as shown in [7], that

$$||a||_{\#} = \sup_{x \in \mathcal{X}; ||x|| \le 1} ||ax||, \quad a \in \mathcal{A}_{\#}.$$

A left Banach $\mathcal{A}_{\#}$ -module \mathcal{X} is called a CQ*-algebra if

(i) in \mathcal{X} an involution * is defined and $||x^*|| = ||x||$ for every $x \in \mathcal{X}$;

- (ii) $\mathcal{A}_{\#}$ is a $\| \|$ -dense subspace of \mathcal{X} and the module left-multiplication extends the multiplication of $\mathcal{A}_{\#}$;
- (iii) $\mathcal{A}_{\#} \cap \mathcal{A}_{\#}^*$ is a *-algebra and it is dense in $\mathcal{A}_{\#}$ with respect to $\| \|_{\#}$;

A CQ*-algebra is denoted with $(\mathcal{X}, *, \mathcal{A}_{\#}, \#)$ to underline the different involutions.

If * = # on $\mathcal{A}_{\#}$, the CQ*-algebra is called proper.

The following basic definitions and results on non-commutative measure theory and integration are also needed in what follows.

Let \mathcal{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathcal{M}_+ .

Put

$$\mathcal{J} = \{ X \in \mathcal{M} : \varphi(|X|) < \infty \}.$$

 \mathcal{J} is a *-ideal of \mathcal{M} .

Let $P \in \operatorname{Proj}(\mathcal{M})$, the lattice of projections of \mathcal{M} . We say that P is φ -finite if $P \in \mathcal{J}$. Any φ -finite projection is finite.

Definition 1 A vector subspace \mathcal{D} of \mathcal{H} is said to be strongly dense (resp., strongly φ -dense) if

- $U'\mathcal{D} \subset \mathcal{D}$ for any unitary U' in \mathcal{M}'
- there exists a sequence $P_n \in \operatorname{Proj}(\mathcal{M})$: $P_n \mathcal{H} \subset \mathcal{D}$, $P_n^{\perp} \downarrow 0$ and (P_n^{\perp}) is a finite projection (resp., $\varphi(P_n^{\perp}) < \infty$).

Clearly, every strongly φ -dense domain is strongly dense.

Throughout this paper, when we say that an operator T is affiliated with a von Neumann algebra, written $T \eta \mathcal{M}$, we always mean that T is closed, densely defined and $TU \supseteq UT$ for every unitary operator $U \in \mathcal{M}'$.

Definition 2 An operator $T \eta \mathcal{M}$ is called

 measurable (with respect to M) if its domain D(T) is strongly dense;

S. Triolo

• φ -measurable if its domain D(T) is strongly φ -dense.

From the definition itself it follows that, if T is φ -measurable, then there exists $P \in \operatorname{Proj}(\mathcal{M})$ such that TP is bounded and $\varphi(P^{\perp}) < \infty$.

We remind that any operator affiliated with a finite von Neumann algebra is measurable [12, Cor. 4.1] but it is not necessarily φ -measurable.

The following statements will be used later.

- (i) Let $T \eta \mathcal{M}$ and $Q \in \mathcal{M}$. If $D(TQ) = \{\xi \in \mathcal{H} : Q\xi \in D(T)\}$ is dense in \mathcal{H} , then $TQ \eta \mathcal{M}$.
- (ii) If $Q \in \operatorname{Proj}(\mathcal{M})$, then $Q\mathcal{M}Q = \{QXQ \mid_{Q\mathcal{H}}; X \in \mathcal{M}\}$ is a von Neumann algebra on the Hilbert space $Q\mathcal{H}$; moreover $(Q\mathcal{M}Q)' = Q\mathcal{M}'Q$. If $T \eta \mathcal{M}$ and $Q \in \mathcal{M}$ and $D(TQ) = \{\xi \in \mathcal{H} : Q\xi \in D(T)\}$ is dense in \mathcal{H} , then $QTQ \eta Q\mathcal{M}Q$.

Let \mathcal{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathcal{M}_+ . For each $p \geq 1$, let

$$\mathcal{J}_p = \{ X \in \mathcal{M} : \varphi(|X|^p) < \infty \}.$$

Then \mathcal{J}_p is a *-ideal of \mathcal{M} . Following [13], we denote with $L^p(\varphi)$ the Banach space completion of \mathcal{J}_p with respect to the norm

$$||X||_p := \varphi(|X|^p)^{1/p}, \quad X \in \mathcal{J}_p.$$

One usually defines $L^{\infty}(\varphi) = \mathcal{M}$. Thus, if φ is a finite trace, then $L^{\infty}(\varphi) \subset L^{p}(\varphi)$ for every $p \geq 1$. As shown in [13], if $X \in L^{p}(\varphi)$, then X is a measurable operator.

2. Quasi Local Structure

We consider now the case where \mathcal{A} has a *local structure*. Following [10] we construct the local net of C*-algebras as follows.

Let \mathcal{F} be a set of indexes directed upward and with an orthonormality relation \perp such that

- (i.) $\forall \alpha \in \mathcal{F}$ there exists $\beta \in \mathcal{F}$ such that $\alpha \perp \beta$;
- (ii.) if $\alpha \leq \beta$ and $\beta \perp \gamma$, $\alpha, \beta, \gamma \in \mathcal{F}$, then $\alpha \perp \gamma$;
- (iii.) if, for $\alpha, \beta, \gamma \in \mathcal{F}$, $\alpha \perp \beta$ and $\alpha \perp \gamma$, there exists $\delta \in \mathcal{F}$ such that $\alpha \perp \delta$ and $\delta \geq \beta, \gamma$.

Definition 3 Let $(\mathcal{A}, \mathcal{A}_0)$ be a quasi *algebra with unit e. We say that $(\mathcal{A}, \mathcal{A}_0)$ has a local structure if there exists a net $\{\mathcal{A}_{\alpha}(\|.\|_{\alpha}), \alpha \in \mathcal{F}\}$ of subspaces of \mathcal{A}_0 , indexed by \mathcal{F} , such that every \mathcal{A}_{α} is a C*algebra (with norm $\|.\|_{\alpha}$ and unit e) with the properties

- (a.) $\mathcal{A}_0 = \bigcup_{\alpha \in \mathcal{F}} \mathcal{A}_\alpha$
- (b.) if $\alpha \geq \beta$ then $\mathcal{A}_{\alpha} \supset \mathcal{A}_{\beta}$;
- (c.) if $\alpha \perp \beta$, then xy = yx for every $x \in \mathcal{A}_{\alpha}$, $y \in \mathcal{A}_{\beta}$.
- (d.) if $x \in \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta}$, then $||x||_{\alpha} = ||x||_{\beta}$.

A quasi *-algebra $(\mathcal{A}, \mathcal{A}_0)$ with a local structure will be shortly called a quasi-local quasi*algebra.

If $(\mathcal{A}, \mathcal{A}_0)$ is a quasi-local quasi-*algebra, and $x \in \mathcal{A}_0$, there will be some $\beta \in \mathcal{F}$ such that $x \in \mathcal{A}_{\beta}$. We put $J_x = \{\alpha \in \mathcal{F} : x \in \mathcal{A}_{\alpha}\}$ and define

$$\|x\| = \inf_{\alpha \in J_x} \|x\|_{\alpha}.$$

Then \mathcal{A}_0 is a C*-normed algebra with norm $\|\cdot\|$.

For instance if we consider the quasi *algebra $(L^p(I), L^{\infty}(I))$, where $L^p(I)$ $(p \ge 1)$ and $L^{\infty}(I)$ are the usual Lebesgue spaces on I := [0, 1]. Put $\omega(f) = \int_0^1 f(x) dx$, $f \in L^p(I)$. If $1 \leq p < 2$, ω is not representable. Indeed, if $f \in L^p(I) \setminus L^2(I)$, there cannot exist any $\gamma_f > 0$ such that

$$|\omega(f\varphi)| = \left| \int_0^1 f(x)\varphi(x)dx \right| \le \gamma_f \, \omega(\varphi^*\varphi)^{1/2} = \gamma_f \, \|\varphi\|_2, \quad \forall \varphi \in L^\infty(I),$$

since this would imply that $f \in L^2(I)$ (see [1]).

The following proposition extends the GNS construction to quasi *-algebras. The prof hers in [9].

Proposition 4 Let ω be a linear functional on $\mathcal{A} \tau$ - continuous satisfying the following requirements:

 $(L1) \ \omega(a^*a) = \omega(\underline{aa^*}) \ge 0 \ \text{for all } a \in \mathcal{A}_0;$ $(L2) \ \omega(b^*x^*a) = \overline{\omega(a^*xb)}, \ \forall a, b \in \mathcal{A}_0, \ x \in \mathcal{A};$

(L3) $\forall x \in \mathcal{A} \text{ there exists } \gamma_x > 0 \text{ such that}$ $|\omega(x^*a)| \leq \gamma_x \, \omega(a^*a)^{1/2}.$

Then there exists a triple $(\pi_{\omega}, \lambda_{\omega}, \mathcal{H}_{\omega})$ such that

- π_ω is a ultra-cyclic *-representation of A with ultra-cyclic vector ξ_ω;
- λ_{ω} is a linear map of \mathcal{A} into \mathcal{H}_{ω} with $\lambda_{\omega}(\mathcal{A}_0) = \mathcal{D}_{\pi_{\omega}}, \ \xi_{\omega} = \lambda_{\omega}(e)$ and $\pi_{\omega}(x)\lambda_{\omega}(a) = \lambda_{\omega}(xa), \ for \ every \ x \in \mathcal{A}, \ a \in \mathcal{A}_0.$
- $\omega(x) = \langle \pi_{\omega}(x)\xi_{\omega}|\xi_{\omega}\rangle$, for every $x \in \mathcal{A}$.
- $\pi_{\omega}^*(a)\lambda_{\omega}(x) = \lambda_{\omega}(ax)$, for every $x \in \mathcal{A}$, $a \in \mathcal{A}_o$.

Definition 5 A linear functional $\omega \tau$ – continuous satisfying (L1),(L2),(L3) is called representable. We denote by $\mathcal{T}(\mathcal{A})$ the set of representable linear functionals on \mathcal{A} .

3. A Representation Theorem

Once we have constructed in the previous section some Quasi-local quasi *-algebras of operators affiliated to a given von Neumann algebra, it is natural to pose the question under which conditions can an abstract Quasi-local quasi *-algebras be realized as a Quasi-local quasi *-algebras of this type.

We denotes by $[\mathcal{M}]$ the closed subspace of \mathcal{H} spanned by $[\mathcal{M}]$ for any subset \mathcal{M} of \mathcal{H} .

Thus for every $\omega \in \mathcal{T}(\mathcal{A})$ we put $\mathcal{H}_{\alpha} := [\pi_{\omega}(\mathcal{A}_{\alpha})\xi_{\omega}]$ then $\{\pi_{\omega} \upharpoonright_{\mathcal{A}_{\alpha}}, \mathcal{H}_{\alpha}, \xi_{\omega}\}\}$ it is a representation of \mathcal{A}_{α} .

Thus, let π_{ω} be the ultra-cyclic *representation of \mathcal{A} with ultra-cyclic vector ξ_{ω} and $\pi_{\omega}(\mathcal{A}_{\alpha})''$ the von Neumann algebra generated by $\pi_{\omega}(\mathcal{A}_{\alpha})$.

For every $\omega \in \mathcal{T}(\mathcal{A})$ and $a \in \mathcal{A}_{\alpha}$, we put

$$\varphi_{\omega,\alpha}(\pi_{\omega}(a)) = \omega(a) = \langle \pi_{\omega}(a)\xi_{\omega}|\xi_{\omega}\rangle.$$

Then, for each $\omega \in \mathcal{T}(\mathcal{A})$, $\varphi_{\omega,\alpha}$ is a positive bounded linear functional on the operator algebra $\pi_{\omega}(\mathcal{A}_{\alpha})$. Clearly, for every $a \in \mathcal{A}_{\alpha}$

$$|\varphi_{\omega}(\pi_{\omega}(a))| = |\langle \pi_{\omega}(a)\xi_{\omega}|\xi_{\omega}\rangle| \leq ||\pi_{\omega}(a)|| ||\xi_{\omega}||^{2}$$

Thus $\varphi_{\omega,\alpha}$ is continuous on $\pi_{\omega}(\mathcal{A}_{\alpha})$.

By [17, Theorem 10.1.2], $\varphi_{\omega,\alpha}$ is weakly continuous and so it extends uniquely to $\pi_{\omega}(\mathcal{A}_{\alpha})''$. Moreover, since $\varphi_{\omega,\alpha}$ is a trace on $\pi_{\omega}(\mathcal{A}_{\alpha})$:

$$\varphi_{\omega,\alpha}(a^*a) = \omega(a^*a) = \omega(aa^*) = \varphi_{\omega,\alpha}(aa^*)$$

the extension $\widetilde{\varphi_{\omega,\alpha}}$ is a trace on $\mathfrak{M}^{\omega} := \pi_{\omega}(\mathcal{A}_{\alpha})^{''}$ too.

Theorem 6 If $(\mathcal{A}, \mathcal{A}_0)$ has a local structure, ω a state over \mathcal{A} satisfying (L1, L2, L3) such that π_{ω} , the canonical cyclic representation of \mathcal{A} associated with ω ([9]), is continuous, therefore $(\pi_{\omega}(\mathcal{A}), \pi_{\omega}(\mathcal{A}_0))$ has a local structure

Proof: It is easy to verify the following property

 $\pi_{\omega}(A_0) = \bigcup_{\alpha} \{ \pi_{\omega} \upharpoonright_{\mathcal{A}_{\alpha}} (\mathcal{A}_{\alpha}) \} = \bigcup_{\alpha} \{ \pi_{\omega}(\mathcal{A}_{\alpha}) \} \subseteq B(\mathcal{H}_{\omega})$ with $\pi_{\omega}(\mathcal{A}_{\alpha}) \subseteq B(\mathcal{H}_{\alpha})$ is a C* algebra which norm $\| \cdot \|_{B(\mathcal{H}_{\alpha})} \leq \| \cdot \|.$ S. Triolo

The family of C*-algebras { $\pi_{\omega}(\mathcal{A}_{\alpha}), \alpha \in \mathcal{F}$ } with C*-norm $\|.\|_{B(\mathcal{H}_{\alpha})}$, indexed by \mathcal{F} , satisfies the following property (a.) if $\alpha \geq \beta$ then $\pi_{\omega}(\mathcal{A}_{\alpha}) \supset \pi_{\omega}(\mathcal{A}_{\beta})$; (b.) there exists a unique identity $\pi_{\omega}(e)$ for all $\pi_{\omega}(\mathcal{A}_{\alpha})$ and the C*-norm $\|.\|_{B(\mathcal{H}_{\alpha})}$ are equals a $\|.\|_{B(\mathcal{H})}$; (c.) if $\alpha \perp \beta$ then for all $X \in \pi_{\omega}(\mathcal{A}_{\alpha}), Y \in \pi_{\omega}(\mathcal{A}_{\beta})$ there exist $x \in \mathcal{A}_{\alpha}, y \in \mathcal{A}_{\beta}$ such that $\pi_{\omega}(x) = X$ and $\pi_{\omega}(y) = Y$ but xy = yx for all $x \in \mathcal{A}_{\alpha}, y \in \mathcal{A}_{\beta}$ therefore $XY = \pi_{\omega}(x)\pi_{\omega}(y) = \pi_{\omega}(xy) = \pi_{\omega}(yx) = \pi_{\omega}(y)\pi_{\omega}(x) = YX$.

Thus $\pi_{\omega}(\mathcal{A}_0)$ is, a quasi-local C*-algebra of operator.

Let P_{α} the operator of projection of \mathcal{H} in \mathcal{H}_{α} Put $\mathcal{M}_{\alpha}^{\omega} := \mathfrak{M}^{\omega} P_{\alpha}$, where, as before, P_{α} denotes the support of $\widetilde{\varphi_{\omega,\alpha}}$.

Each $\mathcal{M}^{\omega}_{\alpha}$ is a von Neumann algebra and $\widetilde{\varphi_{\omega,\alpha}}$ is faithful in $\mathcal{M}P_{\alpha}$ [6, Proposition V. 2.10].

More precisely,

$$\mathcal{M}^{\omega}_{\alpha} := \mathcal{M}^{\omega} P_{\alpha} = \{ Z = X P_{\alpha}, \text{ for some } X \in \mathcal{M}^{\omega} \}.$$

In this case, putting $\mathcal{H}_{\alpha} = P_{\alpha}\mathcal{H}$, we have

$$\mathcal{H} = \bigoplus_{\alpha \in \mathcal{I}} \mathcal{H}_{\alpha} = \{ (f_{\alpha}) : f_{\alpha} \in \mathcal{H}_{\alpha}, \sum_{\alpha \in I} \|f_{\alpha}\|^2 < \infty \}$$

Each vector $X = \{f_{\alpha}\}_{\alpha \in \mathcal{I}} \in \mathcal{H}$ is denoted by $X = \sum_{\alpha \in I}^{\bigoplus} f_{\alpha}$ (Definition 3.4, [6]). For each bounded sequences $\{A_{\alpha}\}_{\alpha \in \mathcal{I}} \in \prod_{\alpha \in \mathcal{I}} \mathcal{M}_{\alpha}^{\omega}$, we define an operator A (following [6]) on \mathcal{H} by

$$AX := A \sum_{\alpha \in I}^{\bigoplus} f_{\alpha} = \sum_{\alpha \in I}^{\bigoplus} A_{\alpha} f_{\alpha}.$$

Clearly A is a bounded operator on \mathcal{H} we denote it by $A = \sum_{\alpha \in I}^{\bigoplus} A_{\alpha}$.

Let $\sum_{\alpha \in I}^{\bigoplus} \mathcal{M}_{\alpha}^{\omega}$ the set of all such A, by Proposition 3.3 [6], $\sum_{\alpha \in I}^{\bigoplus} \mathcal{M}_{\alpha}^{\omega}$ is a von Neumann algebra on \mathcal{H} . The algebra $\sum_{\alpha \in I}^{\bigoplus} \mathcal{M}_{\alpha}^{\omega}$ is called the diret sum of $\{\mathcal{M}_{\alpha}\}$. Of course for every ω we have $\pi_{\omega}(\mathcal{A}_0) = \sum_{\alpha \in I}^{\bigoplus} \mathcal{M}_{\alpha}^{\omega}$ and

 $\widetilde{\varphi_{\omega}} := \sum_{\alpha \in I} \widetilde{\varphi_{\omega,\alpha}}$ is a faithful semifinite normal trace on \mathcal{M}^{ω} .

The previous discussion can be summerized in the following

Theorem 7 If $(\mathcal{A}, \mathcal{A}_0)$ has a local structure, ω a state over \mathcal{A} satisfying (L1, L2, L3) such that π_{ω} , the canonical cyclic representation of \mathcal{A} associated with ω ([9]), is continuous, therefore $(L^2(\widetilde{\varphi_{\omega}}), \pi_{\omega}(\mathcal{A}_0)'')$ has a local structure.

Theorem 8 If $(\mathcal{A}, \mathcal{A}_0)$ has a local structure the CQ^* -Algebra $(L^2(\widetilde{\varphi_{\omega}}), \pi_{\omega}(A_o)''))$ consists of operators affiliated with $\pi_{\omega}(A_o)''$.

Proposition 9 If $(\mathcal{A}, \mathcal{A}_0)$ is a quasi-local quasi-*algebra, $\omega \in \mathcal{T}(\mathcal{A})$ and $(\mathcal{H}_{\omega}, \pi_{\omega}, \xi_{\omega})$ is a the canonical cyclic representation of \mathcal{A} associated with ω , let τ the weakest locally topology on \mathcal{A} such that π_{ω} is continuous from $\mathcal{A}_o(\tau)$ into $\pi_{\omega}(\mathcal{A}_o)$.

then there exist a quasi-local quasi *algebra $(L^2(\widetilde{\varphi_{\omega}}), \pi_{\omega}(\mathcal{A}_0))$ and a onomorphism

$$\Phi: x \in \mathcal{A} \to \Phi(x) := \widetilde{X} \in L^2(\widetilde{\varphi_{\omega}})$$

with the following properties:

(i) Φ extends the representation π_{ω} of \mathcal{A}_0 ;

(*ii*) $\Phi(x^*) = \Phi(x)^*, \quad \forall x \in \mathcal{A};$

(iii) $\Phi(xy) = \Phi(x)\Phi(y)$ for every $x, y \in \mathcal{A}$ such that $x \in \mathcal{A}_0$ or $y \in \mathcal{A}_0$.

Proof:

For every element $x \in \mathcal{A}$, there exists a sequence $\{a_n\}$ of elements of \mathcal{A}_0 converging to x with respect τ . Put $X_n = \pi_{\omega}(a_n)$. Then, $\varphi_{\omega}(|X_n - X_m|^2) \to 0$. Let \widetilde{X} be the $\|\cdot\|_2$ -limit of the sequence (X_n) . We define $\Phi(x) := \widetilde{X}$.

Concluding remark – We have discussed the possibility of constructing an rapppresentation of Quasi-local quasi *-algebras $(\mathcal{A}, \mathcal{A}_0)$, possessing a "sufficient state" on a non-commutative L^2 -spaces. A more restricted choice could only be obtained by requiring that the Radon-Nikodym theorem in quasi * -algebras is satisfied [11]. We hope to discuss this aspect in a further paper.

Acknowledgment The author thank the referees for they useful comments and suggestions.

References:

- F. Bagarello, C.Trapani and S.Triolo, *Representable states on quasilocal quasi* *-algebras Journal of Mathematical Physics Volume 52, Issue 15 January 2011 Article number 013510
- F. Bagarello, A. Inoue and C. Trapani, Representations and derivations of quasi *-algebras induced by local modifications of states, J.Math.Anal.Appl. 356 (2009), 615-623
- [3] F. Bagarello, C. Trapani and S. Triolo Quasi *-algebras of measurable operators, Studia Mathematica. 172 (3) (2006).
- [4] G. L. Sewell, Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton and Oxford, 2002.
- [5] J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their operator realizations, Kluwer, Dordrecht, 2002.
- [6] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York, 1979.
- [7] C.Trapani and S.Triolo, Representations of certain Banach C*-modules Mediterr.
 J. Math. 1 (2004), no. 4, 441-461
- [8] C. Trapani, Quasi *-algebras of operators and their applications, Reviews Math. Phys. 7, (1995), 1303-1332.

- [9] C. Trapani, *-Representations, seminorms and structure properties of normed quasi *-algebras, Studia Mathematica, Vol. 186, 47-75 (2008).
- [10] O. Bratteli and D.W. Robinson, Operator algebras and Quantum statistical mechanics 1, Springer-Verlag, New York, 1987.
- [11] C. La Russa, S. Triolo; Radon-Nikodym theorem in quasi *-algebras, Journal of Operator Theory, 2013, 69(2), pp. 423–433
- [12] I. E. Segal, A noncommutative extension of abstract integration, Ann. Math. 57 (1953), 401–457.
- [13] E. Nelson, Note on non-commutative integration, J. Funct. Anal., 15 (1974) 103-116
- Burderi, F., Trapani, C., Triolo, S, *Extensions of hermitian linear functionals*, Banach Journal of Mathematical Analysis, 16(3), 45, (2022).

- [15] F. Bagarello, M. Fragoulopoulou,
 A. Inoue and C. Trapani, *Locally convex quasi C*-normed algebras*, preprint 2009
- [16] S.Triolo, WQ*-algebras of measurable operators Indian Journal of Pure and Applied Mathematics, 2012, 43(6), pp. 601-617.
- [17] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol.II, Academic Press, New York, 1986.
- [18] S. Triolo Extensions of the Noncommutative Integration Complex Analysis and Operator Theory, 2016, 10(7), pp. 1551–1564
- [19] S. Triolo; Possible extensions of the noncommutative integral, Rend. Circ. Mat. Palermo, (2) 60 (2011), no 3, 409–416. DOI 10.1007/s12215-011-0063-1
- [20] S. Triolo CQ *-algebras of measurable operators Moroccan Journal of Pure and Applied Analysis vol.8, no.2, 2022, pp.279-285.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 https://creativecommons.org/licenses/by/4.0/deed.en_US