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1 Introduction

Let G be a group and H<G such that H acts on the set
X. Define the relation = on GxX as follows. If f,geG
and u,veX let (f,u) = (g,v) if there exists an element
heH such that f= gh, and u = h"'(v). It is clear that =
is an equivalent relation on on GxX. The equivalent
class containing the element (g,v) e GxH is denoted
by g®nv. Thus,

g®uv = {(gh, h''(v)lheH}c(gH)xH(v), where

gH = {ghlheH} is the left coset of g and H(v) is the
orbit of v under the action of H on X.
LetgeG,xeX,A S G,and Y € X. We have the
following notation.

g QuY={gQyalael},
2)g®uX={gQub|beX},

R AQRQyx{cQyx|ced},
BHDAQuY={a®nylyer},

(B)e®uY = {gBuylget,yer},

6)G RQuX={gQux|getG,xeX},

(7)G ®y (H/X) ={G @y 0|0 eH/X}, where
H/X = {H(x)|xeX}, the set of the orbits of the
action of H on X, and H(x) = {h(x)|h eH}, the orbit
that contains the element xeX. It is clear that if g €G,
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heH, and x X, then g @y h(x) = gh @yx and
9 ®ux=gh™" Qy h(x).

The aim of this paper is to use above notation to
show that groups acting on trees with inversions,
fixing no vertex of the tree and of given trees on
which the stabilizers of the vertices act and of finite
edges stabilizers induce a new tree called the fiber
tree of the group.

2 Concepts of Graphs

A graph X is the disjoint union of vertices V(X) and

edges E(X). An edge ¢ is called a loop if the initial

vertex o(e) equals its terminal vertex t(e). If all edges

in a graph are loop we call the graph a loop graph.

Moving on, if a graph has at least on loop then it is

called quasi-graph. A graph that all its initial vertices

and terminals and inverses in a graph X is called a

subgraph of X, say Y. Define Y to be the set
Y = {€|ecE(Y)} where € is the invers of e.

Leteq, e,,..., e, be edges in the graph X.

P =(e1, ey, ..., €n) is called a path in X if

t(ei) = o(eir1) fori=1,2, ..., n-1. If u = o(e;) and
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v =t(en) then P is called a path in X joining (or
liking) the vertices u and v, or a path in X from u to
v. If o(e1) = t(en) then P is called a closed path in X.
Ifeii=¢€ fori=1,2, ..., n, then P is called a reduced
path in X. o(P) = o(e)) is the initial of P,

t(P) = t(en) is the terminal of P,

P=(€,, €4_1, ..., €2, €;) is the inverse of P. It is clear
that P is a path in X joining the vertices t(P) and
o(P). The edges in the path P = (ey, e, ..., €a) are
called the edges of P. If Q is a path in X such that
t(P) = o(Q), then PQ is a path in X such that o(PQ) =
o(P) and t(PQ) = t(Q). |P| = n is called the length of
P. It is clear that if eeE(X) such that t(¢) = o(P), then
(e, P)=(e, €1, €2, ..., €n) is a path in X. A path P is
called a simple circuit if it is close and contains no
repeated edges. The set of all paths in the graph X is
denoted by Path(X). We recommend readers to [2, 9]
for the structures of groups acting on graphs without
inversions and [1, 4, 5, 6] for with inversions, when
an edge of the graph equals its inverse is allowed. For
further studies see [10, 11].

A group G acts on a graph X if there exists a unique
element denoted by g(x) X for every geG and every
xeX. G acts on X with inversions if there exist an
element geG and an edge e E(X) such that

gle) = €.

Remark. We write (G;X) to mean that G is a group
acting on the tree X.

Definition 2.1. A subtree T is called a tree of
representatives for the action of Gon X if T has a
unique vertex from each vertex orbit. A subtree Y is
called a transversal it has a unique edge y such that y
move in different orbit than y. The pair (T;Y) is
called a cover or (a fundamental domain). See [3].

The following are some properties of the tree of the
representatives T and the transversal Y.

(1) For any ve V(X), we have a unique vertex
denoted v* where v*eV(T) and G(v) = G(v*). That
is, v =g(v*), geG, where G(v) = {g(v): geG} is the
orbit containing v.

(2) For every ve V(X) we have geG where

gV =v.

(3) v¥ =v forall ve V(T).

(4) (v¥)* = v* for all ve V(X).

(5) (g(v))* = v* for all geG and all ve V(X).

(6) If geG where g(u)=vthen u=v.
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(7) If geG and u,ve V(X) where g(u) = v then
(g(u))* =u* = v*.

(8) If ecE(Y) where o(e)eV(T), then

(o(e))* = o(e), and if t(e) e V(T), then (t(e))* =t(e).
(9) If eeE(T), then (o(e))* = o(e), (t(e))* =t(e) and
o(e) = t(e).

(10) For every acE(X) we have geG and beE(Y)
where a = g(b).

(11) If geG and a,beE(Y) on which g(a) = b, then
a=bora=bh.

For the rest of this section G will be a group acting
on a tree X of cover (T;Y).

The proofs of the following propositions are straight
forward.

Proposition 2.2.

The edges E(Y) of Y can be split in to the following
sets of edges, called the sets of splitting edges of Y.
(1) Eo(Y) = {meE(Y): o(m), t(m)eE(T)} = E(T).
(2) E(Y) = {yeE(Y): o(y)eE(T), t(y)2E(T),

G(y) # G()}-

(3) Ex(Y) = {xeE(Y): o(x)eE(T), t(x)2E(T),

G(x) = G(x)}.

Proposition 2.3. For e<E(Y), o(e)eV(T), there
exists an element denoted [e]€G where

[e]((t(e))*) =t(e). We choose [e] =1 in case ecE(T)
and [e](e) = e if G(€) = G(e).

Proposition 2.4. Let meEy(Y), yeEi(Y), and
x€Ex(Y). Then [m] = 1, [¥] = [y]", [X]=[x], and
[x]?€Gx.

Proposition 2.5. ([4]) The element geG, g # 1 can
be written as a product

g = gole1]gi[e2]ga ..., gn1[en]gn, Where ey, e, ..., e, are
edges of Y and go, g1, 22 ..., gn-1, En, are elements of
G such that (t(ei))* = (o(ei+1))* fori=1, 2, ..., n-1,
20€G(¢(ey)r and gi€Go(e;, ) fori=1,2, .., n.
Definition 2.6. For eeE(Y) define the sign +e of e
to be the edge +e = e if o(e)e V(T) and +e = [e](e) if
t(e) eV(T).

It is clear that if o(p)eV(T) and t(p) € V(T), then
peE(T), [p] =1 and +p = p.

Proposition 2.7. (1) For eeE(Y) we have the
following.

(i) o(+e) = (o(e))*, t(+e) = [e]((t(¢))*), and
Fe = [e](+e).
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(II) Gie £ Gogey* and [e]'lG[e] = G[e]_l(e): Gre.

(iii) If ee V(T) or G(e) = G(e) then G+.= Ge.

(2) If p,qeE(Y) on which +p = +q then p =q or
P=q.

(3) If geG and, p,qeE(Y) on which g(+p) = +q then
+p =+q.

(4) If meEo(Y), yeEi(Y), xeEx(Y) and geG, then
tm=m,+ty =y, +y=[y](}) = yI7' (), x=x,
and +X = Xx.

Definition 2.8. Let ge G and ecE(X). The sum of g
and e is denoted by gPe and is defined to be the pair
g®e = (gG+, te).

Let X* be the set X* = {g@e|geG, ecE(Y)}.

We have the following facts. The proofs are clear.
(1) g®m = (gGm,m), g[m]®Mm = (gGum,M) = gdM

(2) g®y = (gGy.y), 287 = (9Gpy1-1(y), VI D)),
glyl®y = (gy1Gpy -1y, Y172 O)).

(3) g®x = g[x]®x = (g[x]Gy, x) = g[x]®x.

(4) X* = {g®m, gBy, gy, g®x|meEy(Y), yeEi(Y),
xeEx(Y)}.

(5) If f,geG and p,qeE(Y) such that f®p = g®q,
then f= gh, where heG,, and +p = +q.

Proposition 2.9. X* ~ E(X).
Proof. It is clear that the mapping 6:X*—>E(X)
giving by 6(gde) = g(+e) is one-one and onto.

3 Inversion Elements

Definition 3.1. If G is a group acting on a graph X,
geG and eeE(X) where g(e) = &, we say that g is an
inversion element of G and e is called an inversion
edge of X under g. It is clear that if X is a quasi-
graph on which G acts then we have ecE(X) on
which é =e. Then 1g(e) ="e. In this case 1¢ is an
inversion element of G and ¢ is an inversion edge of
E(X) under 1g, the identity element of G
Proposition 3.2. Let X be a graph where the group
G acts. Then the following imply each other.

(1) The action of G on X is with inversions.

(2) E(X) has an inversion edge and G has an
inversion element.

(3) The orbit space G/X is a quasi-graph.
Proposition 3.3. Let X be a graph on which the
group G acts such that G has inversion element geG
and e E(X) be an inversion edge of X under g. Let
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ue {o(e), t(e)}. Then

(1) éis an inversion under g, g?eG. and g’€G,.

(2) ggGuif X is a tree.

Proof. Clear.

Lemma 3.4. Let (G;X) and H<G. Then

(i) If H has an element that is an inversion, then H is
not contained in the stabilizer of any vertex of X.

(ii) If H is finite and contains no inversion element
then H is contained in a stabilizer of a vertex of X, H
fixes a vertex of X, and has a trivial orbit for the
action of H on X . Moreover, if u,ve V(X) are two
vertices of X such that H<G, and H<G,, then
H<N.Ge, where e is an edge of the reducing path in X
joining u and v.

Proof. (i) Let geH be an inversion element. Then
there exists an inversion edge e E(X) of X under g.
So g(e) =é. Letue {o(e), t(e)}. Since X is a tree,
Proposition 3.3-(2) implies that g¢G.. If u=v we are
done. Now assume that u # v. We need to show that
g¢Gy. X being a tree implies that there exists a
unique reduced path P = (e, e, ..., ) ePath(X)
joining u and v. So the edges e, e, ..., e, are distinct
and n >1. The properties of groups acting trees imply
that Q: g(er), g(es,), ..., g(en) €Path(X) , where Q is
a unique reduced liking g(u) and g(v) of length n >1.
Assume that geG,. Then g(v) =v. Let u = o(e). We
consider the following cases.

Case 1. e=ei. So Pisthe path P = (e, e, ..., en). The
property g(e) = € implies that Q is the reduced path
Q=(e, g(e2,), ..., g(en)) ePath(X) linking g(u) and
g(v)=v. Since t(€)=o(e) =u=o(e>), then o(g(e>,))
=g(u) and R =(g(e»,), ..., g(en))ePath(X) such that
R is reduced and linking g(u) and g(v) =v and of
length n-1. Hence Q and R are two reduced paths in
Path(X) joining g(u) and g(v) = v of different lengths
n and n-1. This is impossible because X is a tree.
This implies that g¢G..

Case 2. e = ¢1. Then (€, ey, €2, ..., en) ePath(X) such
that it is reduced and linking o(é€) = t(e) and v. Then
(g(e), e1, e, ..., en)ePath(X) is reduced and linking
t(e) and v. As Xis a tree, S = (g%(e), g(e1), g(e2,), ...,
g(en)) e Path(X) is a unique and reduced linking
g(t(e)) and g(v) = v. Since u = o(e) and g(&) = g*(e),
therefore by Proposition 3.3-(2), g€ G.. So g*(u) =
u. So S is a reduced path in X joining u and v. Thus,
R and S are two distinct reduced paths in X joining u
and v. Since X is a tree, this contradicts a property of
a tree that two distinct vertices of a tree are joined by
exactly one reduced path. This implies that g¢G..
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Let u=t(e). Then u= o(€) and by adjusting the cases
above yields that g¢G,. Hence H is not contained in
any stabilizer G,. for any vertex ve V(X) of X.

(i) Since H is finite and contains no inversion
element of G, by [2, Theorem 8.1, p. 27], there exists
a vertex ve V(X) such that H<G,. Then the stabilizer
H, of the vertex ve V(X) is HLG, The case HLG,
implies that H = H,. So H fixes the vertex v. Since H
is finite, the stabilizer H, and the orbit H(v) = {h(v):
heH}of v under the action of H on X are finite. By
the Orbit-Stabilizer Theorem [8, Lemma 4.11, p. 72],
the orders of [H|, [H.|, and |H(v)| satisfy the equation
[H| = |Hy|[H(v)|. The case H = H, implies that [H| =
[Hy|. So |[H(v)| = 1. So H has a trivial orbit for the
action of H on X. If u,veV(X) are two vertices of X
such that H<G, and H<G, then G, = G, or HLG,
NGy and by Theorem 4.3 of [7], H is contained in the
intersection of the stabilizers of the edges of the
reduce path in X joining u and v.

Corollary 3.5. Let (G;X), yeE(X), o(y) =v, X, bea
tree where (Gy.X,) and is finite and contains no
inversion element of Gy. Then we have w(y)eV(Xy)
of X, on which Gy<(Gy)w(y), (Gv)wy) 1s the stabilizer
of the vertex w(y) under the action of Gy, on X..
Proof. By Lemma 3.4-(ii).

4 Basics of the Fibers

For the rest of this section, we have (G;X) of a
cover (T;Y) of the following assumptions.

(a) For each ve V(T) let X, be a graph such that
XuXy = for all ue V(T), u # v, and the stabilizer
of v Gy acts on X,.

(b) For geG, veV(T) let g®¢ Xv = {gQg, x| xe Xy}
and G®g, Xy = Uyeq f ®, Xy = {2 Qg xlz<G,
xeXy}.

(©) Let X = Uyey(m)[G ®g, Xy], and X=X*UX,
where X* = {g®e|geG,ecE(Y)} and

gde = (Gue,+e) of Definition 2.8.

Definition 4.1. For eeE(Y), let w(e) e V(Xo(e)*) be
chosen so that G+e<(Goe)y*)wie), Where (Gioe)*)wee) 18
the stabilizer of w(e). So w(é)eV(Xe)*) and

Gre < (Geenywee)-

Proposition 4.2. Let u,ve V(T) and f,geG. Then
(1) If e V(X,) and vieV(Xy) where
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f®g,w=g&®¢, vithen u=v, Gy = Gy, and we have
heG, where f= gh and v, = h(u;)eX..

(2) If u # v then [f®¢ Xu]N[g® g, Xv] = & and
[CR ¢, XulN[CRg, Xv] = D.

Lemma 4.3. (1) X is a graph where

V) = Uyevn[G ®c, V(X,)] and

E(X) =X"U[Uyvevn) (G ®g, E(X,)], where the ends

of aeE(X) are

If aeX*, then a = gbe = (gG+., te), where geG, and

e€E(Y). Leto(a)=o(gde) = g®G( ( ))%W(e),

t(a) = t(gBe) = gle]®g
o (te)

a=g@de=gle]Pe If

a.€ (Uvev(n)[G g, E(Xy)], then the ends of a. are

defined as follows. o(a) = 0(g&® ¢, €) = gQ¢, 0(€),

(o) = (2®s,€) = 2®g, {(€), and,

a= gQg, e=g®g, € where ecE(Xy) and, o(e),

t(e), and € are the initial, the terminal and the inverse

of the edge ecE(X,).

(2) G®g, Xy, ve V(X), and X form subgraphs of X.

Proof. First we show that X forms a graph. Since X,

is a graph, this implies that V(X,)NE(Xy) = &. If

[GQ¢, VXV]N[GR ¢, E(XV)] # I, then there exists

an element ae[GR g, V(X\)]N[GR¢ E(XV)]. So

a=fQ¢ x=g®g, e, where f,geG, xeV(X,), and

eeE(Xy). From Q¢ we have he Gy where = gh and

e = h(x). The case h(x)eV(X,), because Gy acts on

Xy, implies that ee V(X,) which contradicts above

that V(X,)NE(Xy) = &. So

[G&®g, VXWINIG®G, E(Xy) =D

Since X*N(Uyev(m)[G ®g, V(X)) = I, we have

(Uvev(n)[G g, VX )DN[X*U

(Uvevn[G &g, EX)]] = <. By taking the set of

vertices V(X) to be V(X ) = Uvevn[G ®¢, V(X,)]

and the set of edges E(X) to be

E(X) = X*U(Uyev(n)[G ®g, E(Xy)]) we see that

VEX)NEX)=@.

Now we show that for a.e X we have o(@) = t(o),

t(@) = o(a), and A= o

Let acEX).

Case 1. aeX*. Then a = g®e = (gG-., +e), where

ge@, and ecE(Y).

Then o(@) = o(g D e) = o(gle] B &) =

flel®c W@ = glel®, w(E) = (@),

L Ww(€), and
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@) =t(gDe)=t(gle] De)=
gle][e] ®G(t@)* w(e) = g®c(o (e))*W(e) =o(a),

because [e][€]€G<Goe)- and =, T=g P e =
gle] © e = gle][e]® e = g®e = a.

Case 2. ae (Uvev(n)[G Qg, E(Xy)], then
a=gQ®gq, e, where geG and ecE(Xy) and,

o(@) = 0(g ®g, ) =0(8 Qg, &) =g Vg, 0(€) =
g®g, te) = t(g®g, e) = t(a). Similarly, (@) =

t(g ®g, e)=tg g, &) =g Qg, t(€) = gQg,0(c)
= 0(g®¢, e) = o(ar). Furthermore, a = gTGve =
8Q®q,€)=8®g, €=g®g,e= a. ThenX forms a
graph.

(2) From above we have V(G®¢ X )NE(GR¢ Xv)
= . If acE(GR g, Xy) is an edge of GQ) ¢ X, then
a=gQ®gq,¢e, where geG, eeE(Xy). It is clear that
0(a) = g®3,0(¢). t(a) = 2®g, t(¢), and

a= gTGVe =g ®g, € are the ends of a, where
o(e), t(e), and € are the ends of ecE(X,). So
G®, Xy forms a subgraph of X. Since GR¢ XS X,
therefore GQ ¢, Xv forms a subgraph of X. Since
V(X) = V(X) and X = X, this shows that X is a
subgraph of X.

Lemma 4.4. (G; X) where if f,geG, ve V(T),
xeV(Xy), peE(Xy), and ecE(Y) then

f(e®q, ¥) = fg g, % f(g®q, p) = fg Qg, p, and
f(g®e) = fg®e. (G; X) is with inversions if the action
of (G;X) is with inversions.

Corollary 4.5. For each geG, xeV(Xy), peE(Xy),
and e€E(Y), the stabilizers of the elements

g®q, xeV(X), g®q, peE(X), and gPecE(X) are
the followings. Ggg x = g(Gxg', Ggg Gp =

g(Gv)yrg, Ggge = gG+eg".

Proposition 4.6. If the stabilizer of every element of
X is finite and the stabilizer of every element of X,
under the action of Gy on X, is finite, then the
stabilizer of every element of X is finite.

Definition 4.7. For ve V(T) and e€E(Y), let
L, = (G/Gy)x{v} and L. = (G/G+c)x {+e}.

Lemma 4.8. If geG, ve V(T), xe V(Xy), peE(X,),
and e€E(Y) then the orbits of g®g¢, xeV(X),
g®q, peE(X), and gPecE(X) are the following.
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G(g®g, ¥) = GQg,Gv(x), and G(g®g, p) =
G®¢,Gu(p), G(gQg, P) = GQ¢,Gu(p), and,
G(gPe) = L.

Corollary 4.9. G/X =

UveV(T)[G®GV (GV/XV)]U[UeeE(Y)Le], where
Gv/X, = {Gua)laeX,}, the orbit space
GQ®g, (GV/X) = {GQ¢,Gu(a)laeXy}.

Corollary 4.10. If G/X, G/Xy, veV(T), [G, G,] are
finite aeX, then G/X is finite.

Proof. It is clear that L, and L. are finite, ve V(T) ,
ecE(Y). So G/Xis finite.

Lemma 4.11. For ve V(T) and X, = {v} be the
trivial graph of one vertex v and no edges. Let X and
X be the graphs defined above. Then

(1) VX) = {L,Jve V(T) and EX) = @.

(2) For ecE(Y), w(e) = (o(e))*, w(&) = (t(e))*.

(3) For geG, ecE(Y), and g®e , o(gde) =
£®,+(0()* and (200 = gle]®c, . (t(e))"

(4) V(X) =V(X) = {G/G,|ve V(T)}and

E(X) = X* = {g®e|geG,ecE(Y)}, where

gde = (Gye,e).

(5) For geG, ve V(T) and e€E(Y), the stabilizers, the
orbits of the vertex gQ®g, veV(X) and the edge
g®ecE(X) are Gg®cvv = gGyg!, a conjugate of Gy in
G, Ggge = 2Gg.

(6) The orbit space G/X is the set

G/X = {L,, LjveV(T), ecE(Y)}.

(7) (G; X) is with inversions if (G;X) is with
inversions.

Proof. X, = {v}is a trivial graph of one vertex v and
no edge for each vertex ve V(T). That is, V(X,) =
{v} and E(X,) = . Gy acts on X, trivially.

(1) V(X) = Uyev(n[G B¢, V(Xy)] =

Uvev(nlG ®q, {vi]1 = {9 Q¢, vgeG, ve V(T)}.
The case g Q¢, v = {(gh,h'(v))| heG,} = {(gh,v)|
heG,} =[G/Gy]x{v} =L, implies that

V(X) = {LJve V(T)}. Since E(X,) = E({v}) =&,
therefore E()/(j = Uvev(n) [G ®Gv E(Xy)]= =
{9 ®q, elgeG, ecE(X)}= {g &g, BlgeG}= . So
X is a null graph.

(2) w(e)eX () = {(0(e))"}and W(€) e X (¢(e))* =
{(t(e))*}. Therefore w(e) = (o(e))* and w(é) =
(t(e))*.
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(3) For geG, eE(Y), the initial and the terminal of
gdeare o(gde) = g®G( ( ))*W(e) =
g®c(0 (e))*(O(e))*, t(g®e) = g[e]Qq (e
glel®, - ()"

(4) From (1), V(X) = V(X) = {G/GvlveV(T)} and,
EX)=EX)U X" = QUX* =X* =
{gPe|geG,ecE(Y)}, where g®e = (G, te).

(5) By Corollary 4.5, Ggg v = g(Gy)vg!=gGg!
because (Gv)v = Gy and Gggye = gGg'', a conjugate
of G+e. By Lemma 4.8, G(g® ¢, v) = G®g Gu(v) =
GQ®g, {v}= {g®g,VIgeGi= =(G/Gyx{v} =Ly,
and G(g®@e) = {f(gPe)|feG}= {fg@e|feG}=

= {(fgGe ,Te)|feG}= (G/G:e)x {+e} = L.

(6) From above G/X = {G(g®g, v), G(g®e)
[veV(T), leeE(Y)} = {L,, L/ve V(T), ecE(Y)}.
(7) By Lemma 4.4.

))*W(e_) =

Corollary 4.12. For ve V(T) let X, = {v} such that
the index of the stabilizer Gy in G is of finite. Then

X~ X.

5 Paths in the fiber graph X

Again, in this section, G will be a group acting on a
connected graph X of fundamental domain (T;Y)
such that for each ve V(T), X, is a graph such that
XunXy =, ueV(T), u=v, and the stabilizer G,
acts on X,. Furthermore, for ecE(Y), w(e) is a vertex
w(e)e V(Xe)*) such that G+e<(Go(e))*)w(e) and
w(€)eV(Xaey*) where G4 s<(Gey*)w(€). Now we
state and prove relations in the graphs X and X.

Definition 5.1. Assume that geG and ve V(T),
a,beV(Xy), e, e, ..., encE(X,). Let

P = (e, €2, ..., €n). Define g Q¢ P = (gQg €1,
g®g, €2, - QG En)-

Lemma 5.2. (1) PePath(X,) if and only if

g ®¢, PePath(g Q¢, Xy). If o(P) =aand t(P) = b,
then o(g ®¢ P) =g Q¢ aand (g &g P) = g Qg,b.
(2) P is closed if and only if g ®¢_P is closed.

(3) P is reduced if and only if g ®¢_ P reduced.

(4) P is a simple circuit if and only if g Q¢ Pisa
simple circuit.

E-ISSN: 2224-2880 655

Abdullah Al-Husban, Doaa Al-Sharoa,
Mohammad Al-Kaseasbeh, R. M. S. Mahmood

Proof. (1) By the definition of g ®¢ Xy, g &, a,
g ®¢ beV(g Q¢ Xv), and, gQg €1, g®g, 2, ...,
g®GveneE(g ®G,,Xv) =g ®G,,E(Xv)- Let
PePath(Xy). Then for each i we have o(ei+1) = t(ei).
This implies that t(g& ¢ ei) = g&gq, t(e) =
g®g, o(eir) = 0(g®g, €ir1). So
g ®¢, PePath(g Qg, Xy). Conversely, if
g ®¢ PePath(g Qg, Xy), then gQg¢, t(e) =
g®g, o(ein1). By the definition of &g we have
feGy on which g= gfand f'(t(e)) = o(ei+1). So
g =1 and t(e;) = o(ei+1). This implies that
PePath(X,). If o(P) = a then o(e)).

(2), (3), and (4) are clear.

Proposition 5.3. Let f, geG, ve V(T), ecE(Y),

PePath(f ®¢, X.), and the edge a = gde of X*.

Then

(1) There exist two vertices denoted op and Bp of

V(X.) such that the initial of P is  o(P) = f Q¢ ow

and the terminal of P is t(P) = f ¢, e

(2) If o(a) = t(P), then v = (o(e))* and we have

heeG(y(e)- on which g = fhe , he(w(e)) = Br.

(3) If t(a) = o(P), then v = (t(e))* and there exists an

element ke€ G (¢(¢))+ such that g[e] = fke and

ke(w(€)) = ow.

Proof. (1) Since f @, Xy is a graph and PePath(

f ®¢,Xv), therefore o(P) and ¢(P) are in V(f Qg, Xv)

= f ®¢,V(Xy). Then o(P) = f Q¢ orand t(P) =

f ®g¢,Br, where op,BreV(Xy). (2) If o(a) = t(P)

then o(a) = g®G(o(e))* w(e) = t(P) = f®¢, Br. Then

v=(0(e))* and Go(e)- = Gy and g®6(0(e)* w(e) =

f®G(0(e)* Br. This implies we have hee G4 (ey+, g = the

and he(w(e)) = Br.

(3) Similar to (2), v = (t(e))*, t(a) =

gle]®q, w(é)=0oP)=fQq¢; . ,apand we
(t(e)* e

have ke€G ¢(e))- on which gle] = fk. and
ke(W(e_)) = Olp.

Lemma 5.4. Let PePath( X). Then

(i) If ve V(T) and geG such that PePath(g Q¢, Xy),
then we have the edges e, e, ..., en€E(X,) such that
p= (g®GVela g®GV62, e g®GVeﬂ)9

o(P)=g ®q, 0(e1) and t(P) =g Qg, t(en).

(i) If P¢Path(g ®¢, X,) for all ve V(T), geG, then
there exist elements fi, 2, ..., fi, fur1, g1, &, ..., g of
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G, vertices vi, V2, ..., Vi, Var1 of V(T), edges e, e, ...,

en of E(Y), and paths Py, Py, ..., Py of f; ®Gv1 Xy,

f, ®sz ) R ®Gvn Xy, such that

P= (Pl, g1€|-)el, Pz, gz@ez, ceny Pn, gn®en, Pn).

Furthermore, the following properties of P hold.

(1) vi= (o(ei))*, vir1 = (t(ei))* and (t(ei)* = (o(eir1))*.

(2) PiePath(f; ®G( )*V(X (o(ep))) and there exist
)

vertices ap,, Bp, €V (X(o(e;))) such that

O(Pi) = fi ®G % aPi and t(Pl) = fi ®G % ﬁpi'
(o) (o)

(3) o(P) =o(P)) = f; ®G(0 ey P and t(P) = t(Px)

n

G . Bp.. So P joins the graphs
(tCen)) n

fy ®G(0(el))*v(x(o(e1))*) and

fn ®G( , ))*V(X(O(en))*). That is, PePath(X) linking
t(en

the vertices f; Qg Bp, of

(o(e1)
V(X).
(4) o(gi®ei) = t(P) = f; ¢ (

o(Pi1) =fi11 Q¢

(0 €i+1
(5) We have h;, k‘EG(o(ei))* and
gi = fih;, gilei] = fki = gj41hi,
w(e) = hi(ap,), and w(&) = ki(Bp,)-
(6) If P is closed, then (o(e1))* = (t(en))*, f; = f41h,
and g1 = gn[en]l'lhkwhere h,k,le G(t(en))* .
(7) If P is reduced, then P; is reduced and +ej:; = +e;
Proof. (i) From Proposition 5.3-(1) and Lemma 5.2
where o(e1) = ap and t(e,) = Bp the result follows.
(ii) Since E(X) = E([Uyev(t)(G Qg, Xy)UX* =
[Uvevim)(G ®¢, E(Xy)]UX*, the edges of P consist
of edges of the forms g ®¢ pe(G Q¢, E(Xy) and
edges of the form g®eeX*. By (i) above, P consists
of edges from both of Uyey(r)(G ®¢, E(X,)] and
X*. So the edges of P consist of the edges of paths in
g ®¢, Xv, veV(T), geG and edges of X*. This gives
the required structure of P introduced above. Now the
proofs of (1)-(7) of the lemma as follows.
(1) Follows from Proposition 5.3 -(2).
(2) Follows from Proposition 5.3-2.
(3) From (2) above.
(4) From (3) above.
(5) From Proposition 5.3-(3).
(6) Since P is closed, therefore o(P) = t(P). So
o(Py) = t(Py). Since o(P)) = f; ®Gv1 ap,,

(Po) = fas1 @, Bryv1 = (0(en)* and

. a df )
» Qp, AN D®G(t(en))*

)xe ﬁPia and t(gi®ei) =

i

)* aPl'+1 '
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Vi1 = (t(en))*, therefore f; ®Gv1 ap, =

fre1 ®Gvn+1 Bp,, and vi = vii1. Then

(o(e))* = (t(en))*, f1 = fnysh and h(Bp,) = ap,,

where he G(g(ery)« - Since P is a path of X, therefore

t(P1) = o(g1®e1) and t(gnPen) = o(Pn), therefore

Then f; Qg % ﬁPl =81 Qg ,w(ep) and
(o(en)) (o(e1)

gi[en] @ " (en))*W(Q) = fnt1 ®6peny). Xp,- SO

g1 = fik and ga[en] = f,,411, where k1€ Ggee,))s -

From above, g = ga[en]l'hk.

(7) Since P is a reduced path, no edge of P is the

inverse of its previous edge. So, if a,b are adjacent

edges of a path P;, then b # a. So the path P; is

reduced. If for some i, i=1, 2, ..., n-1, we have +ej:;

= +e,, then (t(e;))* = (o(ei+1))* and have g+ = gi[ei]h,

heG ¢ (ep)- This implies thatg;:1@eir1 =

(8i+1G ey, Teir1) = (gleilhGyg ) =

(gilei]Gyg.1e,), because he Gy (e,)y+ and

G1+&=<G(t(e;)) This implies that g Deir1 = gi[ei]De,

= g, @ e,. Then P contains the edge gi®e; and its

inverse g, & e, = gi[ei]Pe,. Contradiction, because P
is reduced path.

Corollary 55. LetP = (P1, g1@61, P, g2®e2,
g2:®Pen, Py) be the path in Lemma 5.4. Then
(g1Pe1, g2®e, ..., ga®ey) is a path in the trivial fiber
graph X; where X, = {v} for all ve V(T).

s Pna

Proposition 5.6. Let P = (P, gi®e1, P2, 22Pe, ...
g.Pen, Py) be the path of Lemma 5.4. Let

P* = (gi(+e1), g2(+e€2), ..., ga(+en)). Then

(1) P*ePath( X).

(2) If P is closed so P* is closed.

(3) If P is reduced so P* is reduced.

(4) If P is a simple circuit, so P* is a simple circuit.
Proof. Clear.

H P“:

Lemma5.7. Let g = go[ei]gi[e2]g ..., gn-1[€n]gn be a

product of the element g. Fori=1, 2, ..., n, let

fi = golei]gi[e2]g2 ..., giz[€i-1]gi-1 With convention that

f1 = go, let qi = fi(+ei), and p;i = fi®ei. Then

(1) 9= (q1, 92, ..., qn)€Path(X ) linking (o(e1))* to

g((t(en))™).

(2) o(p)efi @
)

t(p) e fiv1 ®G(o(ei+1))* X(o(em))*.

(3) For i=1, 2, ..., n, assume that

% X(o(ei))* and
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P;ePath(f; ®G(o(ei))* X(O(ei))* such that t(P;) = o(p1),

o(Pi) = t(pi), t(P;) = o(pi+1) fori=2, ..., n-1. Then
P = (Pi, p1, ..., -1, Pn) is a path in X joining the
vertices o(P) and t(Py).

(4) P*=q.

Proof. (1) We need to show that o(q) = (o(e1))*,
t(q) = g((t(en))*), q) =o(qi+1), 1=1,2,...,n-1.
Now o(q) = o(q1) = o(fi(+e1)) = fi(o(+ei) =
fi((o(e1))*) = (o(e1))* because f; = goeG(o(el))*,

t(q) = t(qn) = t(fu(+en)) = t(go[er]gi[e2]g2 .., gn-1[en]
t(+en) = golerlgi[e2]g ..., gn1[en]gn((t(en))*) =
g((t(en))*), and t(q;) = t(fi(tei) = fi(t(+ei)) =
fileil((t(ei)*) = fi[ei]((o(ei+1))*) = o(qi+1)-

(2) o(pi) = o(fi@ei) =

fi ®G(O(ei))*w(ei) €fi ®G(o(ei))* X(o(ei))* and,

t(pi) = t(f@ei) = file;] ®G(t (ei))*W(e_l) =

fileilgiv1 ®G(t(6i))*w(ej) =

fir1 Q¢ oern) @ because (t(e5))* = (o(ei+1))* and
gi+1 € G(O(em))*. This shows that

)€ fir1 Qg

(ofersr) (et
(3) By Lemma 5.4-(ii), the cases

oISt By Kloteny 1
t(p)€ fir1 &

i G(O(ei+1)) T
implies that P is a path in X linking o(P:) and t(Py).
(4) This follows from Proposition 5.4.

R X(O(em))* of (2) above

Definition 5. 8. The path P of Lemma 5.7 is called
the path in X obtained from the product of the
element g = go[ei]gi[e2]g ..., gn-1[€n]gn and q is the
path obtained by collapsing the vertices of P.

Lemma 5.9. (I) If X and X, are connected, ve V(T),
so X is connected.

(1) If X and X, are trees, ve V(T), so X is a tree.
Proof. (1) The following steps imply that X is
connected.

(D) f Qg Xv = {f Q¢ x[xeX\} is connected , feG
veV(T).

(2) 1 ®g, Xuand 1 Q¢ Xy are linked by a path in X,
u,veV(T).

(3) 1 ®¢,Xvand g ®¢ Xy are linked by a path in X,
geG,veV(T).
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(4) f ®¢,Xuand g Qg, X are linked by a path in X,
f,geG, u,veV(T).

(1) Let p.aeV(f ®g, Xy) = ®g, V(Xy),q #qbe
two distinct vertices of f @ Xy. By the definition of
f &g, Xv, we have vertices a,be V(Xy) where
p=1®g, aand q=1Q®g, b. If a equals b, then p = q.
This contradicts the assumption that q # gq. Since X
is a connected graph, we have P ePath(X,) on which
o(P)=aand t(P) =b. By Lemma 5.2,

f®¢, PePath(f Qg, Xy), o(f &g P)=f &g a=p
and, t(f Q¢ P) = f®g,b=q.So f &g, Xvis
connected.

(2) For u,veV(T), there exist edges e, e, ...,
encE(T) such that p=(ei, €2, ..., en)ePath(T),

o(p) = u, t(p) = v, t(e) = o(ei-1), and W(&;) = w(ein),
i=1,2, .., n-1. Then for each ec {ei, €2, ..., €n},
[e]=1,+te=¢,+& = ¢, (o(e))* =o(e), and

(t(e))* = t(e), W(e)€ V(Xoe), W(€)€ V(Xye), Gre = G,
G,z = Gz = Ge. Consider the edges

1®@e;, 1Dey, ..., 1®De, of X*. Then

o(1®e;) = 1®Go(el)w(e) =1Qg,W(e) el g, X,
t(1®0en) = [en]® g, , W(En) =1&®,W(En) €l Qg X,
and, t(1®ej) = [ei]®Gt(ei)w(e_L) = 1®Go(8i+1)w(ei+1).
So Q= (1®e,, 1®ey, ..., I®e,)ePath( X ) and liking
the subgraphs 1 ®;, Xuand 1 ®g X, of X.

(3) If g=1, we have case (1). Assume that g # 1. By
Proposition 2.5, the element g has the product

g =golei]gi[e2]g -, gn-1[€n]gn Where

(o(e1))* = (t(en))* = v. Then Py = (P1, p1, ..., Pn-1, Pn)
of Lemma 5.8, ePth( X) and liking the subgraphs

1 ®¢,Xvand g Qg X. Similarly, for feG, ue V(T)
we have PrePath( X) liking the subgraphs 1 R, Xv
and f ®¢, Xu.

(4) Let Pf_1 be the converse of the path Prof (3)
above. Then the composition Pf_lQPg of the paths
Pf_l, Q and Py, ePath( X) liking the subgraphs

f ®¢, Xuand g Q¢ Xy of X. Consequently, Xisa
connected graph.

(1) First we show that for ge G, ve V(T), the
subgraph g ® X, forms a subtree. If g @ Xy
contains a loop, then there exists an edge

veE(g ®¢,Xv) = g ®¢, E(Xy) such that o(y) = t(y).
Then y = g ®¢, e where eeE(X,). For the case

o(y) = t(y) we have

o(y) =0(g ®g,e) =g Qg,0(e) = t(y) =t(g Vg,e) =
g Qg, t(e). The definition of & implies that
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o(e) =t(e). So ¢ is a loop in the tree X,. This
contradicts the assumption that X, is a tree. If

g Q¢, Xy contains a simple circuit

P = (Py, Py, ..., Pn)ePath(g ®¢ Xy), then

o(P1) = t(Pn), t(Pi) = o(Pi+1) and Pi+1 # }_)l for
i=1,2,..,n-1. g ®¢, Xy being a subgraph of X
implies that there exist edges e, e, ..., en€ E(Xy) such
that Pi= g Qg e, 1= 1,2, ..., n. Then o(e1) = t(en),
t(e;) = o(ei+1), and ei+1 = €, 1 =1, 2, ..., n. This implies
that (e1, e, ..., en)€Path(X,) is a simple circuit. This
is a contradiction because X, is a tree. S0 g Q¢ Xy
is a subtree of X. If PePath(X) is a simple circuit,
then from above, P¢Path(g ®, Xv). Then P is the
path of the form of Lemma 5.4-(ii). Then Lemma 5.7
shows that the path P* obtained by collapsing the
vertices of P is a simple circuit in X. Since X is a
tree, we get contradiction because a tree contains no
simple circuits. Hence X is a tree.

6 The Main Result

Theorem 6.1. Assume (G;X) of a given cover (T;Y) where
Xy is a tree, Xy Xy = for all ue V(T), u # v.
Furthermore, for de E(Y), assume that G4 of d is finite and
containing no inversions of the tree X o)+ Then

(1) There exists v(d) e V(X(o@))*) Where G+a<(Go(dy*)v(d),
and v (d) = w(d), w(d) is the vertex of Definition 4.1.
(2) The fiber Xis a tree.

(3) If (G;X) is with inversions or for ve V(T), if

X,) is with inversions, then (G; X) is with inversions.
(4) The structures of the stabilizers of the elements of X
are Gf®GvX = f(GV)Xf_l, Gf®va = f(GV)pf_l, and GfG)d =
fG.4f! for all feG, ze V(X,), peE(Xy), and deE(Y).

(5) structures for the orbits of the elements of X are
G(f®g, 2) = G, G\(2),

G(f®g¢, p) = G®¢,Gu(p), and, G(f®d) = (G/G+a)x{+d},
feG, ze V(X,), peE(Xy), and deE(Y).

(6) The orbit space G/X has the form G/X =
uvev(T)[G®Gv (G XV)VlUdeew) (G/Ga)x {+d}].

The edges of X have the properties that

o(f®¢,p) = f®¢,0(p), t(f®¢,p) = Q¢ t(p), and,

f®gc, p=fQ®g, P, and o(fed) = f®G(o(d))*V(d)’ t(fdd) =

f[d]®(;( (d))a:ev(a) and f@d=f[d] ®d forall feG
t

peE(Xy), and deE(Y). Proof.
(1) Since the stabilizer of each edge e E(Y) is finite,
therefore G is finite. Since Gy < Go(ey)*» and Gee
contains no inverter edges of the tree X, (¢yy+, therefore by
Corollary 2.5, there exists a vertex denoted v(e) where
G+e<((Go(ey Iw(ey- Since w(e) is arbitrary, we take w(e) =

(Gy;
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v(e). (2) Th assumptions that X and X,
veV(Y) are trees, Lemma 5.9-(IT) implies that the fiber X
is a tree. (3) Lemma 4.4. (4) Corollary 4.5.

(5) Lemma 4.8. (6) Corollary 4.9.

Corollary 6.2. If (G;X) is without inversions and
Ga, deE(Y) is finite, then X forms a tree.

References:

[1] K. M. Aljamal; T. A. Ghani; and R. M. S.
Mahmood,"On preimages of the quasi-treed HNN
groups",2021  International =~ Conference  on
Information Technology (ICIT), 2021.

[2] W. Dicks and M. J. Dunwoody, Groups Acting on
Graphs, Cambridge University Press, 1989.

[3] M. L. Khanfar and R. M. S. Mahmud, A note on

groups acting on connected graphs, J. Univ.
Kuwait Sci. 16(2) (1989), 205-208.
[4] R. M. S. Mahmud, The normal form theorem of
groups acting on trees with inversions.
J. Univ. Kuwait Sci. 18 (1991), 7-16.

[5] R. M. S. Mahmood, On the converse of the
theory of groups acting on trees with inversions.
Mediterr. J. of Math., No. 1, Vol. 6(2009), pp. 89-
106.

[6] R. M. S. Mahmud, Presentation of groups acting on
trees with inversions, Proc. R. Soc. Edinb. Sect. A
113(3-4) (1989), 235-241.

[7] R. M. S. Mahmud, A remark on the intersection

of the conjugates of the base of quasi-HNN groups.
Int. J. Math. Math. Sci. No. 25-28, (2004), 1293-
1297.

[8] J. S. Rose, A course on group theory. Cambridge
University Press, Cambridge. London. New
York. Melbourne (1978).

[9] J.-P. Serre, Trees, Translated by John Stillwell,
Springer-Verlag, 1980.

[10] J. Swia kowski, "The dense amalgam of metric
compacta and topological characterization of
boundaries of free products of groups", Groups,
Geometry, and Dynamics, 2016.

[11] B. Ward. "Intertwining for semidirect product
operads", Algebraic & Geometric Topology, 2019.

CREATIVE COMMONS ATTRIBUTION
LICENSE 4.0 (ATTRIBUTION 4.0
INTERNATIONAL, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_
usS

Volume 21, 2022


https://www.zbmath.org/serials/?q=se%3A00000456
https://www.zbmath.org/?q=in%3A00109894
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



