
Convergence Theorem for Multivalued Almost Type Contractions via
Generalized Simulation Functions

Abstract: -The purpose of this work is to introduce the concepts of generalized multivalued almost type Z-
contraction along with C-class functions and generalized Suzuki multivalued almost type Z-contraction along
with C-class functions for a pair of mappings, as well as to show that common fixed point theorems for such
mappings in complete metric spaces. The results of this study generalize and expand on some established fixed
point findings in the literature. We derive several corollaries from our core results and offer examples to support
our results.
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1 Introduction
The origins of fixed point theory can be traced back
to the last quarter of the nineteenth century, when
repeated approximations were used to establish the
existence and uniqueness of solutions to differential
equations. It is worth noting that the Banach contrac-
tion principle, which was developed by Banach [1].
This solution has been expanded for single and mul-
tivalued cases on a metric space in a variety of ways.
Nadler [2] developed the concept of multivalued con-
traction mapping in 1969 and established that it had
a fixed point in the entire metric space. Several fixed
point theorems were then established by various writ-
ers as a generalization of Nadler’s theory (see [3], [4],
[5], [6], [7], [8]).

Let (Υ, d) be a metric space and CB(Υ) denote the
collection of all nonempty closed and bounded subset
of Υ. For ω ∈ Υ and A,B ∈ CB(Υ), we have

d(A,B) = inf{d(a, b) : ρ ∈ A and ρ ∈ B},
D(ω,A) = inf {d(ω, ρ) : ρ ∈ A}

and

H(A,B) = max

{
sup
ω∈A

D(ω,B), sup
ρ∈B

D(ρ,A)

}
.

The function H is a Hausdorff metric induced by the
metric d. It is a metric on CB(Υ).

Let (Υ, d) be a complete metric space and Ω :
Υ → CB(Υ) be a contraction mapping such that

H(Ωω,Ωρ) ≤ δd(ω, ρ)

for all ω, ρ ∈ Υ and for some δ ∈ [0, 1)]. It’s a typical
Banach contraction, [1].

Berinde [9] extended the Zamfirescu fixed point
theorem [10] to almost contractions, a class of con-
tractive type mappings, for δ ∈ [0, 1) and L ≥ 0 such
that

d(Ωω,Ωρ) ≤ δd(ω, ρ)+Ld(ω,Ωρ) for all ω, ρ ∈ Υ.
(1)

Khojasteh et al. [11] defined Z-contraction with
respect to ζ, which generalizes the Banach contrac-
tion principle and integrates various kinds of contrac-
tion. Olgun et al. [12] achieved fixed point solutions
for generalized Z-contractions.

Later, Chandok et al. [13] expanded the conclu-
sions of [11], [12] by combining the concept of sim-
ulation functions with C-class functions and proving
the existence and uniqueness of point of coincidence.

Motivated and inspired by almost contractions
in (1), Definition 2.3, Definition 2.4 and work of
[13], we introduce the notion of extended multi-
valued almost type Z-contraction with C-class func-
tions and extended multivalued Suzuki almost type
Z-contraction with C-class functions for metric space
mapping pair.

2 Preliminaries
Definition 2.1. [11] Let ζ : [0,∞)× [0,∞) → R be
a mapping. Then ζ is called a simulation function if
it satisfies the following conditions:

(ζ1): ζ(0, 0) = 0;

(ζ2): ζ(v, u) < u− v for all u, v > 0;

(ζ2): if {vn} , {un} are sequence in (0,∞) such
that lim

n→∞
vn = lim

n→∞
un > 0, then

lim sup
n→∞

ζ(vn, un) < 0.
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Argoubi et al. [14] applying innovative the sim-
ulation function definition by omitting the condition
(ζ1).

Definition 2.2. [14] A simulation function is a map-
ping ζ : [0,∞)× [0,∞) → R satisfying the following
conditions:

(ζ2): ζ(v, u) < u− v, u, v > 0;

(ζ ′

3): if {vn} , {un} are sequence in (0,∞) such that
lim
n→∞

vn = lim
n→∞

un > 0, and vn < un then
lim supn→∞ ζ(vn, un) < 0.

Definition 2.3. [12] Let (Υ, d) be a metric space, Ω :
Υ → Υ a mapping and ζ ∈ Z. Then Ω is called a
generalized Z-contraction with respect to ζ if

ζ(d(Ωω,Ωρ),Θ(ω, ρ)) ≥ 0 for all ω, ρ ∈ Υ,

where

Θ(ω, ρ) = max
{
d(ω, ρ), d(ω,Ωω), d(ρ,Ωρ),

d(ω,Ωρ) + d(ρ,Ωω)

2

}
.

Padcharoen et al. [15] on the other hand de-
fined generalized Suzuki type Z-contraction on met-
ric spaces as follows.

Definition 2.4. [15] Let (Υ, d) be a metric space, Ω :
Υ → Υ a mapping and ζ ∈ Z. Then Ω is called a
generalized Suzuki type Z-contraction with respect to
ζ if

1

2
(d(ω,Ωω) < d(ω, ρ) ⇒ ζ(d(Ωω,Ωρ),Θ(ω, ρ)) ≥ 0

for all distinct ω, ρ ∈ Υ, where

Θ(ω, ρ) = max
{
d(ω, ρ), d(ω,Ωω), d(ρ,Ωρ),

d(ω,Ωρ) + d(ρ,Ωω)

2

}
.

Definition 2.5. [16] A mapping G : [0,∞)2 → R has
the property CG , if there exists CG ≥ 0 such that

(G1): G(u, v) > CG implies u > v;

(G2): G(u, v) ≤ CG for all v ∈ [0,∞).

Definition 2.6. [17] A CG simulation function is a
mapping G : [0,∞)× [0,∞) → R satisfying the fol-
lowing conditions:

(i): ζ(v, u) < G(u, v) for all v, u > 0, where G :
[0,∞)[0,∞)×[0,∞) → R is a C-class function;

(ii): if {vn} , {un} are sequence in (0,∞) such that
lim
n→∞

vn = lim
n→∞

un > 0, and vn < un, then
lim sup
n→∞

ζ(vn, un) < CG .

Lemma 2.7. [18] Let (Υ, d) be a metric space and let
{ωn} be a sequence in Υ such that

lim
n→∞

d(ω2n, ω2n+1) = 0.

If {xn} is not a Cauchy sequence inΥ, then there ex-
ists ϵ > 0 and two sequence ωm(k) and ωn(k) of pos-
itive integers such that ωn(k) > ωm(k) > k and the
following sequence tend to ϵ when k → ∞:
d(ωm(k), ωn(k)), d(ωm(k), ωn(k)+1), d(ωm(k)−1, ωn(k)),

d(ωm(k)−1, ωn(k)+1), d(ωm(k)+1, ωn(k)+1).

For a non-empty setΥ, letP(Υ) denotes the power
set of Υ. If (Υ, d) is a metric space, then let
N(Υ) = P(Υ)− {∅},
CB(Υ) = {A ∈ N(Υ) : A is closed and bounded},
K(Υ) = {A ∈ N(Υ) : A is compact}.

Definition 2.8. [19] Let Υ be a non empty set, Ω :
Υ → N(Υ) and α : Υ × Υ → [0,∞) be two map-
pings. ThenΩ is said to be an α-admissible whenever
for each ω ∈ Υ and ρ ∈ Ωω,

α(ω, ρ) ≥ 1 ⇒ α(ρ, η) ≥ 1 for all η ∈ Ωρ.

Definition 2.9. [20] Let Υ be a nonempty set, Ω :
Υ → N(Υ) and α : Υ × Υ → [0,∞) be two map-
pings. Then Ω is said to be triangular α-admissible if
Ω is α-admissible and

α(ω, ρ) ≥ 1 and α(ρ, η) ≥ 1

⇒ α(ω, η) ≥ 1 for all η ∈ Ωρ.

Lemma 2.10. [20] Let Ω : Υ → N(Υ) be a triangu-
lar α-admissible mapping. Assume that there exists
ω0 ∈ Υ and ω1 ∈ Ωω0 such that α(ω0, ω1) ≥ 1.
Then for a sequence {ωn} such that ωn+1 ∈ Ωωn, we
have α(ωn, ωm) ≥ 1 for allm,n ∈ N with n < m.

Definition 2.11. [21] Let (Υ, d) be ametric space, α :
Υ×Υ → [0,∞) andΩ : Υ → K(Υ)mappings. Then
Ω is said to be an α-continuous multivalued mapping
on (K(Υ),H), if for all sequences {ωn} with ωn →
ω ∈ Υ as n → ∞, and α(ωn, ωn+1) ≥ 1 for all
n ∈ N, we have Ωωn → Ωω as n→ ∞, that is,

lim
n→∞

d(ωn, ω) = 0 and α(ωn, ωn+1) ≥ 1

for all n ∈ N ⇒ lim
n→∞

H(Ωωn,Ωω) = 0.

Definition 2.12. [22] Let (Υ, d) be a metric space,
α : Υ×Υ → [0,∞). The metric space (Υ, d) is said
to beα-complete if and only if every Cauchy sequence
{ωn} with α(ωn, ωn+1) ≥ 1 for all n ∈ N converges
in Υ.
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3 Main Result
Now we state our main results.

Definition 3.1. Let (Υ, d) be a metric space and
Ω,Λ : Υ → K(Υ) and α : Υ × Υ → [0, 1) be a
function. We say Ω is Z(α,G) multivalued almost type
contraction with respect to ζ such that

ζ(α(ω, ρ)H(Ωω,Λρ), β(₩)₩) ≥ CG (2)

for all ω, ρ ∈ Υ with ω ̸= ρ and L ≥ 0, where

₩ = Θ(ω, ρ) + LΨ(ω, ρ)

with

Θ(ω, ρ) = max
{
d(ω, ρ), D(ω,Ωω), D(ρ,Λρ),

D(ω,Λρ) +D(ρ,Ωω)

2

}
and

Ψ(ω, ρ) = min
{
D(ω,Ωω), D(ρ,Λρ),

D(ω,Λρ), D(ρ,Ωω)
}
.

Definition 3.2. Let (Υ, d) be a metric space and
Ω,Λ : Υ → K(Υ) and α : Υ × Υ → [0, 1) be a
function. We say Ω is Z(α,G) Suzuki multivalued al-
most type contraction with respect to ζ if

1

2
min{D(ω,Ωω), D(ρ,Λρ)} < d(ω, ρ)

⇒ ζ(₤, β(₩)₩) ≥ CG
(3)

for all ω, ρ ∈ Υ with Ωω ̸= Λρ and L ≥ 0, where

₤ = α(ω, ρ)H(Ωω,Λρ),

₩ = Θ(ω, ρ) + LΨ(ω, ρ)

with

Θ(ω, ρ) = max
{
d(ω, ρ), D(ω,Ωω), D(ρ,Λρ),

D(ω,Λρ) +D(ρ,Ωω)

2

}
and

Ψ(ω, ρ) = min
{
D(ω,Ωω), D(ρ,Λρ),

D(ω,Λρ), D(ρ,Ωω)
}
.

Theorem 3.3. Let (Υ, d) be a metric space andΩ,Λ :
Υ → K(Υ) be Z(α,G) Suzuki almost type multivalued
contraction satisfying:

(i) (Υ, d) is an α-complete metric space;

(ii) Ω,Λ are triangular α-admissible;

(iii) Ω,Λ are an α-continuous multivalued mapping.

Then Ω and Λ have a common fixed point.

Proof. Let ω0 ∈ Υ. Choose ω1 ∈ Ωω0. Then by the
definition of Hausdorff metric there exists ω2 ∈ Λω1

such that

0 < d(ω1, ω2)

= D(ω1,Λω1)

≤ α(ω0, ω1)H(Ωω0,Λω1).

(4)

Assume that D(ω0,Ωω0) > 0 and D(ω1,Λω1) > 0
then

1

2
min {D(ω0,Ωω0), D(ω1,Λω1)} < d(ω0, ω1).

Therefore from (3), we have

1

2
min{D(ω0,Ωω0), D(ω1,Λω1)} < d(ω0, ω1)

⇒ ζ(₤0, β(₩0)₩0) ≥ CG ,

where ₤0 = α(ω0, ω1)H(Ωω0,Λω1) and ₩0 =
Θ(ω0, ω1) + LΨ(ω0, ω1).
Consider

CG ≤ ζ(₤0, β(₩0)₩0)

< G(β(₩0)₩0, ₤0).
(5)

Consequently, we get

d(ω1, ω2) ≤ ₤0 < β(₩0)₩0, (6)

where

Θ(ω0, ω1)

= max
{
d(ω, ω1), D(ω0,Ωω0), D(ω1,Λω1),

D(ω0,Λω1) +D(ω1,Ωω0)

2

}
≤ max

{
d(ω0, ω1), d(ω0, ω1), d(ω1, ω2),

d(ω0, ω2) + d(ω1, ω1)

2

}
= max

{
d(ω0, ω1), d(ω1, ω2),

d(ω0, ω2)

2

}
.

Because

d(ω0, ω2)

2
≤ d(ω0, ω1) + d(ω2, ω1)

2
≤ max {d(ω0, ω1), d(ω1, ω2)} .

Thus,

Θ(ω0, ω1) ≤ max {d(ω0, ω1), d(ω1, ω2)}
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and
Ψ(ω0, ω1)

= min{D(ω0,Ωω0), D(ω1,Λω1),

D(ω0,Λω1), D(ω1,Ωω0)}
= min{d(ω0, ω1), d(ω1, ω2), d(ω0, ω2),

d(ω1, ω1)}
= 0.

If max {d(ω0, ω1), d(ω1, ω2)} = d(ω1, ω2) and
Ψ(ω0, ω1) = 0, then (6) becomes

d(ω1, ω2) ≤ α(ω0, ω1)H(Ωω0,Λω1)

< β(d(ω1, ω2))d(ω1, ω2),
(7)

obtain that

d(ω1, ω2) ≤ α(ω0, ω1)H(Ωω0,Λω1) < d(ω1, ω2),

which is a contradiction. Thus we conclude that

max {d(ω0, ω1), d(ω1, ω2)} = d(ω0, ω1).

By (6) we get

d(ω1, ω2) < d(ω0, ω1).

Similarly, for ω2 ∈ Λω1 and ω3 ∈ Ωω2 we have

d(ω2, ω3) ≤ α(ω1, ω2)H(Λω1,Ωω2) < d(ω1, ω2).

This implies

d(ω2, ω3) < d(ω1, ω2).

By continuing in thismanner, we construct a sequence
{ωn} in Υ such that ω2n+1 ∈ Ωω2n and ω2n+2 ∈
Λω2n+1, n = 0, 1, 2, ... such that

0 < d(ω2+1, ω2n+2)

= D(ω2n+1,Λω2n+1)

≤ α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)

and
1

2
min {D(ω2n,Ωω2n), D(ω2n+1,Λω2n+1)}

< d(ω2n, ω2n+1).

Hence from (3), we have

1

2
min {D(ω2n,Ωω2n), D(ω2n+1,Λω2n+1)}

< d(ω2n, ω2n+1) ⇒ ζ(₤2n, β(₩2n)₩2n) ≥ CG ,

where ₤2n = α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1) and
₩2n = Θ(ω2n, ω2n+1) + LΨ(ω2n, ω2n+1).
Consider

CG ≤ ζ(₤2n, β(₩2n)₩2n)

< G(β(₩2n)₩2n, ₤2n).
(8)

Consequently, we get

d(ω2n+1, ω2n+2) ≤ ₤2n < β(₩2n)₩2n, (9)

where

Θ(ω2n, ω2n+1)

= max
{
d(ω2n, ω2n+1), D(ω2n,Ωω2n),

D(ω2n+1,Λω2n+1),

D(ω2n,Λω2n+1) +D(ω2n+1,Ωω2n)

2

}
≤ max

{
d(ω2n, ω2n+1), d(ω2n, ω2n+1),

d(ω2n+1, ω2n+2),

d(ω2n, ω2n+2) + d(ω2n+1, ω2n+1)

2

}
= max

{
d(ω2n, ω2n+1), d(ω2n+1, ω2n+2),

d(ω2n, ω2n+2)

2

}
.

Because

d(ω2n, ω2n+2)

2

≤ d(ω2n, ω2n+1) + d(ω2n+2, ω2n+1)

2
≤ max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)} .

Thus,

Θ(ω2n, ω2n+1)

≤ max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}

and

Ψ(ω2n, ω2n+1)

= min
{
D(ω2n,Ωω2n), D(ω2n+1,Λω2n+1),

D(ω2n,Λω2n+1), D(ω2n+1,Ωω2n)
}

= min
{
d(ω2n, ω2n+1), d(ω2n+1, ω2n+2),

d(ω2n, ω2n+2), d(ω2n+1, ω2n+1)
}

= 0.

If max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)} =
d(ω2n+1, ω2n+2) and Ψ(ω2n, ω2n+1) = 0, then
(9) becomes

d(ω2n+1, ω2n+2)

≤ α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)

< β(d(ω2n+1, ω2n+2))d(ω2n+1, ω2n+2),

(10)
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obtain that
d(ω2n+1, ω2n+2) ≤ α(ω2n, ω2n+1)H(Ωω2n,Λω2n+1)

< d(ω2n+1, ω2n+2),

which is a contradiction. Thus we conclude that
max {d(ω2n, ω2n+1), d(ω2n+1, ω2n+2)}
= d(ω2n, ω2n+1).

By (10) we get

d(ω2n+1, ω2n+2) < d(ω2n, ω2n+1).

Then from (10) we have

d(ω2n+2, ω2n+3)

≤ α(ω2n+1, ω2n+2)H(Ωω2n+1,Λω2n+2)

< d(ω2n+1, ω2n+2).

This implies

d(ω2n+2, ω2n+3) < d(ω2n+1, ω2n+2). (11)

Thus d(ωn+1, ωn+2) < d(ωn, ωn+1) for all n. Hence
{d(ωn, ωn+1)} is a strictly decreasing sequence of
non-negative real numbers. Thus there exists Z ≥ 0
such that

lim
n→∞

d(ωn, ωn+1) = Z.

Assume that Z > 0. So by inequality (8) we obtain,

lim
n→∞

₤2n = Z (12)

and
lim
n→∞

β(₩2n)₩2n = Z. (13)

Using (2) and (G2) of Definition 2.5, get

CG ≤ lim sup
n→∞

ζ(₤2n, β(₩2n)₩2n)

= lim sup
n→∞

ζ(₤2n, β(d(ω2n, ω2n+1))d(ω2n, ω2n+1))

< CG ,

which is a contradiction and nence z = 0, i.e.,

lim
n→∞

d(ωn, ωn+1) = 0. (14)

We now show that {ωn} is a Cauchy sequence. As-
sume, however, that it is not a Cauchy sequence. We
suppose that ϵ > 0 exists, as well as two sequences of
positive integers, {n(k)} and {m(k)} such that

n(k) > m(k) > k, d(ωn(k), ωm(k)) ≥ ϵ,

d(ωn(k)−1, ωm(k)) < ϵ.
(15)

We obtain using the triangular inequality

ϵ ≤ d(ωn(k), ωm(k))

≤ d(ωn(k), ωm(k)−1) + d(ωn(k)−1, ωm(k))

< d(ωn(k), ωn(k)−1) + ϵ.

Taking the limit as k → ∞ and applying (14), we get
that

lim
k→∞

d(ωn(k), ωm(k)) = ϵ. (16)

Using the triangle inequlity, we have

ϵ ≤ d(ωn(k), ωm(k))

≤ d(ωn(k), ωm(k)+1) + d(ωn(k)+1, ωm(k))

and

d(ωn(k), ωm(k)+1)

≤ d(ωn(k), ωm(k)) + d(ωm(k), ωm(k)+1).

Again, by taking the limit as k → ∞ and using (11),
(12) and (13), we get

lim
k→∞

d(ωn(k), ωm(k)+1) = ϵ. (17)

Similarly, we obtain

lim
k→∞

d(ωn(k)+1, ωm(k)) = ϵ. (18)

Also, we observe that

d(ωn(k)+1, ωm(k)+1)

≤ d(ωn(k)+1, ωm(k)) + d(ωm(k), ωm(k)+1)

and

d(ωn(k)+1, ωm(k)+1)

≤ d(ωn(k)+1, ωm(k)+1) + d(ωm(k), ωm(k)).

By taking the limit k → ∞ and using (12), (13), (14)
and (16), we get

lim
n→∞

d(ωn(k)+1, ωm(k)+1) = ϵ. (19)

From (14) and (15) we can choose a positive integer
n0 ≥ 1 such that

1

2

{
D(ωn(k),Ωωn(k)), D(ωm(k),Λωm(k))

}
<
ϵ

2
< d(ωn(k), ωm(k))

and consequently,

lim
k→∞

Θ(ωm(k), ωn(k)) = ϵ. (20)

Since α(ω0,Ωω0) ≥ 1 and Ω,Λ are α-admissile, we
get

α(ω0, ω1) = α(ω0,Ωω0) ≥ 1.

By triangular α-admissile, we get

α(Ωω0,Λω1) = α(ω1, ω2) ≥ 1

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.86 Chuanpit Mungkala, Pheerachate Bunpatcharacharoen

E-ISSN: 2224-2880 760 Volume 21, 2022



and

α(ΛΩω0,ΩΛω1) = α(ω2, ω3) ≥ 1.

By proceeding the above process, we conclude that
α(ωn, ωn+1) ≥ 1 for all n Now, we prove that
α(ωn, ωn+1) ≥ 1, for all m,n ∈ N with n < m.
Since {

α(ωn, ωn+1) ≥ 1,
α(ωn+1, ωn+2) ≥ 1,

then, we have

α(ωn, ωn+2) ≥ 1.

Again, since {
α(ωn, ωn+2) ≥ 1,
α(ωn+2, ωn+3) ≥ 1,

we deduce that

α(ωn, ωn+3) ≥ 1.

By proceeding this process, we have

α(ωn, ωm) ≥ 1

for all m,n ∈ N with m > n. Let ω = ωm(k), ρ =
ωn(k). from above we obtain α(ωn, ωm) ≥ 1. Then
by 2.1,

CG ≤ ζ(₤m(k), β(₩m(k))₩m(k))

< G(β(₩m(k))₩m(k), ₤m(k)),

where ₤m(k) = α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k))
and ₩m(k) = Θ(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)).
Here Θ(ωm(k), ωn(k)) = d(ωm(k), ωn(k)), by (G1),
we get

d(ωm(k), ωn(k))

≤ ₤m(k)

< β(₩m(k))₩m(k)

<₩m(k)

= d(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)).

(21)

Using (16), (15) and limn→∞Ψ(ωm(k), ωn(k)) = 0 in
(21), we get

lim
k→∞

α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k)) = ϵ,

and
lim
k→∞

β(₩m(k))₩m(k) = ϵ,

where ₩m(k) = Θ(ωm(k), ωn(k)) +
LΨ(ωm(k), ωn(k)). Therefore using (3.1)
and (ζ2) of Definition 2.2, putting ₤m(k) =

α(ωm(k), ωn(k))H(Ωωm(k),Λωn(k)) and ₩m(k) =
Θ(ωm(k), ωn(k)) + LΨ(ωm(k), ωn(k)), we get

CG ≤ ζ(₤m(k), β(₩m(k))₩m(k)) < CG ,

which is a contradiction. As a result, {ωn} is a
Cauchy sequence. Because Υ is complete, we can
guarantee that {ωn} convergence to some ω∗ ∈ Υ,
i.e.,

lim
n→∞

d(ωn, ω
∗) = 0

and so

lim
n→∞

d(ωn, ω
∗) = lim

n→∞
d(ω2n, ω

∗)

= lim
n→∞

d(ω2n+1, ω
∗) = 0.

(22)

We now assert that

1

2
min {D(ωn,Ωωn), D(ω∗,Λω∗)} < d(ωn, ω

∗)

or

1

2
min {D(ω∗,Ωω∗), D(ωn+1,Λωn+1)}

< d(ω∗, ωn+1)
(23)

for all n ∈ N. Suppose that it is not the case. Then
there existm ∈ N such that

1

2
min {D(ωm,Ωωm), D(ω∗,Λω∗)} ≥ d(ωm, ω

∗)

(24)
and

1

2
min {D(ω∗,Ωω∗), D(ωm+1,Λωm+1)}

≥ d(ω∗, ωm+1).
(25)

Therefore

2d(ωm, ω
∗)

≤ min {D(ωm,Ωωm), D(ω∗,Λω∗)}
≤ min {d(ωm, ω

∗) +D(ω∗,Ωωm), D(ω∗,Λω∗)}
≤ d(ωm, ω

∗) +D(ω∗,Ωωm)

≤ d(ωm, ω
∗) + d(ω∗, ωm+1),

which implies that

d(ωm, ω
∗) ≤ d(ω∗, dωm+1). (26)

From (23) and (24)

d(ωm, ω
∗)

≤ d(ωm+1, ω
∗)

≤ 1

2
min {D(ω∗,Ωω∗), D(ωm+1,Λωm+1)} .

(27)
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Since 1
2 min {D(ωm,Ωωm), D(ω∗,Λω∗)} <

d(ωm, ωm+1), from (2) we have

CG ≤ ζ(₤m, β(₩m)₩m)

< G(β(₩m)₩m, ₤m),

where ₤m = α(ωm, ωm+1)H(Ωωm,Λωm+1) and
₩m = Θ(ωm, ωm+1) + LΨ(ωm, ωm+1).
Consequently, we get

d(ωm+1, ωm+2) ≤ ₤m < β(₩m)₩m <₩m, (28)

where

Θ(ωm, ωm+1)

= max
{
d(ωm, ωm+1)D(ωm,Ωωm),

D(ωm+1,Λωm+1),

D(ωm,Λωm+1) +D(ωm+1,Ωωm)

2

}
≤ max

{
d(ωm, ωm+1), d(ωm, ωm+1),

d(ωm+1, ωm+2),

d(ωm, ωm+2) + d(ωm+1, ωm+1)

2

}
= max

{
d(ωm, ωm+1), d(ωm+1, ωm+2),

d(ωm, ωm+2)

2

}
.

Since

d(ωm, ωm+2)

2
≤ d(ωm, ωm+1) + d(ωm+1, ωm+2)

2
≤ max {d(ωm, ωm+1), d(ωm+1, ωm+2)} .

Thus,

Θ(ωm, ωm+1) ≤ max {d(ωm, ωm+1), d(ωm+1, ωm+2)} .

Also,
Ψ(ωm, ωm+1) = 0.

Suppose thatmax {d(ωm, ωm+1), d(ωm+1, ωm+2)} =
d(ωm+1, ωm+2), then from (28) we have

d(ωm+1, ωm+2) < d(ωm+1, ωm+2),

which is a contradiction. Thus we conclude that

max {d(ωm, ωm+1), d(ωm+1, ωm+2)} = d(ωm, ωm+1).

From (26) we get that

d(ωm+1, ωm+2) < d(ωm, ωm+1). (29)

From (27), (28) and (29), we get

d(ωm+1, ωm+2)

< d(ωm, ωm+1)

≤ d(ωm, ω
∗) + d(ω∗, ωm+1)

≤ 1

2
min {D(ω∗,Ωω∗), D(ωm+1,Λωm+1)}

+
1

2
min {D(ω∗,Ωω∗), D(ωm+1,Λωm+1)}

= min {D(ω∗,Ωω∗), D(ωm+1,Λωm+1)}
≤ d(ωm+1, ωm+2),

which is a contradiction. Hence (25) holds, i.e., for
every n ≥ 2

1

2
min {D(ωn,Ωωn), D(ω∗,Λω∗) < d(ωn, ω

∗)}

holds. Hence from (3)

CG ≤ ζ(₤n, β(₩n)₩n)

< G(β(₩n)₩n, ₤n),
(30)

where ₤n = α(ωn, ω
∗)H(Ωωn,Λω

∗) and ₩n =
Θ(ωn, ω

∗) + LΨ(ωn, ω
∗).

Consequently, we get

D(ωn+1,Λω
∗) ≤ ₤n <₩n, (31)

where

Θ(ωn, ω
∗)

= max
{
d(ωm, ω

∗)D(ωn,Ωωn), D(ω∗,Λω∗),

D(ωn,Λω
∗) +D(ω∗,Ωωn)

2

}
≤ max

{
d(ωn, ω

∗), d(ωn, ωn+1), D(ω∗,Λω∗),

D(ωn,Λω
∗) + d(ω∗, ωn+1)

2

}
and

Ψ(ωn, ω
∗)

= min{D(ωn,Ωωn), D(ω∗,Λω∗),

D(ωn,Λω
∗), D(ω∗,Ωωn)}

= min{d(ωn, ωn+1), D(ω∗,Λω∗),

D(ωn,Λω
∗), D(ω∗,Ωωn)}.

Letting n→ ∞ and by using (14) and (22), we obtain

lim
n→∞

Θ(ωn, ω
∗) = D(ω∗,Λω∗),

lim
n→∞

Ψ(ωn, ω
∗) = 0.

(32)

Now we show that ω∗ ∈ Λω∗. Suppose, on the other
hand, that D(ω∗,Λω∗) > 0. By allowing n → ∞ in
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(31), we obtain

D(ω∗,Λω∗)

= lim
n→∞

D(ωn+1,Λω
∗)

≤ lim
n→∞

α(ωn, ω
∗)H(Ωωn,Λω

∗)

< lim
n→∞

Θ(ωn, ω
∗) + L lim

n→∞
Ψ(ωn, ω

∗)

= D(ω∗,Λω∗),

which is a contradiction. Therefore ω∗ ∈ Λω∗.
Similarly, we can show that ω∗ ∈ Ωω∗. Thus Ω and
Λ have a common fixed point.

Corollary 3.4. Let (Υ, d) be a complete metric space
and Ω : Υ → CB(Υ) be a generalized multivalued
Suzuki type Z-contraction with respect to ζ, i.e.,

1

2
min{D(ω,Ωω), D(ρ,Λρ)} < d(ω, ρ)

⇒ ζ(H(Ωω,Λρ),Θ(ω, ρ)) ≥ 0 for all ω, ρ ∈ Υ,

where

Θ(ω, ρ) = max
{
d(ω, ρ), D(ω,Ωω), D(ρ,Λρ),

D(ω,Λρ) +D(ρ,Ωω)

2

}
.

Then Ω and Λ have a common fixed point.

Proof. The proof follows fromTheorem 3.3 by taking
α(ω, ρ) = 1, β(v) = v and Ψ(ω, ρ) = 0.

Example 3.5. LetΥ = {0, 3, 5} be endowed with the
usual metric. Let Ω,Λ : Υ → CB(Υ) be defined by

Ωω =

{ {
ω
7

}
if ω ∈ {0, 5}{

0, 17
}

if ω = 3,

and Λω =
{
ω
5

}
for all ω ∈ Υ.

We now define ζ : [0,∞)× [0,∞) → R by ζ(v, u) =
6
7u−v for all u, v ∈ [0,∞)]. We can now confirm the
inequality (2) for all ω, ρ ∈ Υ with Ωω ̸= Λρ. Note
that for all ω, ρ ∈ Υ with Ωω ̸= Λρ the inequality
1
2 min {D(ω,Ωω), D(ω,Λω)} < d(ω, ρ) gives

(ω, ρ) ∈ {(0, 3), (3, 0), (0, 5), (5, 0), (3, 5), (5, 3)} .

Then from (2), we have

ζ(H(Ωω,Λρ),Θ(ω, ρ)) =
6

7
Θ(ω, ρ)−H(Ωω,Λρ) ≥ 0.

That implies that

H(Ωω,Λρ) ≤ 6

7
Θ(ω, ρ).

Case (i) for ω = 0, ρ = 3;

H(Ω0,Λ3) = H({0} ,
{
3

5

}
) =

3

5
≤ 6

7
Θ(0, 3).

Case (ii) for ω = 3, ρ = 0;

H(Ω3,Λ0) = H(

{
0,

1

7

}
, {0}) = 1

7
≤ 6

7
Θ(3, 0).

Case (iii) for ω = 0, ρ = 5;

H(Ω0,Λ5) = H({0} , {1}) = 1 ≤ 6

7
Θ(0, 5).

Case (iv) for ω = 5, ρ = 0;

H(Ω5,Λ0) = H(

{
5

7

}
, {0}) = 5

7
≤ 6

7
Θ(5, 0).

Case (v) for ω = 3, ρ = 5;

H(Ω3,Λ5) = H(

{
0,

1

7

}
, {1}) = 1 ≤ 6

7
Θ(3, 5).

Case (v) for ω = 5, ρ = 3;

H(Ω5,Λ3) = H(

{
5

7

}
,

{
3

5

}
) =

5

7
≤ 6

7
Θ(5, 3).

That all of the hypotheses in Corollary 3.4 are met. As
a result, 0 is a common fixed point owned by Ω and
Λ.
Corollary 3.6. Let (Υ, d) be a complete metric space
and Ω : Υ → CB(Υ) be a generalized multivalued
Suzuki type Z-contraction with respect to ζ, i.e.,

1

2
D(ω,Ωω) < d(ω, ρ)

⇒ ζ(H(Ωω,Ωρ),Θ(ω, ρ)) ≥ 0,
(33)

for all ω, ρ ∈ Υ with ω ̸= ρ, where

Θ(ω, ρ) = max
{
d(ω, ρ), D(ω,Ωω), D(ρ,Ωρ),

D(ω,Ωρ) +D(ρ,Ωω)

2

}
.

Then Ω has a fixed point ω∗ ∈ Υ and for ω ∈ Υ the
sequence {Ωnω} convergences to ω∗.
Proof. The proof follows fromTheorem 3.3 by taking
Ω = Λ.

4 Conclusion
Despite its novel applications, the search for fixed
point theorems involving contraction type conditions
has received much interest in recent decades. In this
context, we analyzed convergence point results for
such mappings and illustrative for support theorem
based on the new idea of Suzuki type Z-contraction
mappings obeying an admissibility type condition
in generalized metric spaces via the concept of C-
functions.
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