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1 Introduction

In 1963, Levine [7] introduced and investigated the
concepts of semi-open sets and semi-continuity in
topological spaces. It is shown in [11] that semi-
continuity is equivalent to quasicontinuity due to Mar-
cus [8]. In 1997, Park et al. [13] introduced and
studied the concept of δ-semi-open sets in topolog-
ical spaces. In 2001, Lee et al. [6] investigated
the further properties of δ-semi-open sets and related
sets. On the other hand, Mashhour et al. [9] intro-
duced the concepts of preopen sets and precontinu-
ous functions. As generalizations of these concepts,
Raychaudhuri and Mukherjee [10] defined δ-preopen
sets and δ-almost continuous functions. Njåstad [12]
introduced a new class of near open sets in a topo-
logical space, so called α-open sets. The class of
α-open sets is contained in the class of semi-open
and preopen sets and contains open sets. In 2002,
Ganster et al. [4] introduced the concepts of pre-Λ-
sets and pre-Λ-sets in a given topological space and
investigated the topologies defined by these families
of sets. In 2004, Georgiou [5] introduced and stud-
ied the notion of (Λ, δ)-closed sets and showed that
(Λ, δ)-compactness and (Λ, δ)-connectedness are pre-
served by (Λ, δ)-continuous surjections. In 2007, Cal-
das et al. [3] introduced and investigated the concepts
of Λα-sets and (Λ, α)-closed sets which are defined

by utilizing the notions of α-open sets and α-closed
sets. In [2], the present authors introduced and inves-
tigated the concept of (Λ, θ)-open sets in topological
spaces. Quite recently, some properties of (Λ, sp)-
open sets are studied in [1]. In this paper, we introduce
new classes of sets called s(Λ, α)-open sets, p(Λ, α)-
open sets, α(Λ, α)-open sets, β(Λ, α)-open sets and
b(Λ, α)-open sets. The relationships between these
concepts are considered. Moreover, some properties
of s(Λ, α)-open sets, p(Λ, α)-open sets, α(Λ, α)-open
sets, β(Λ, α)-open sets and b(Λ, α)-open sets are dis-
cussed.

2 Preliminaries

Throughout the paper, space (X, τ) (or simply X) al-
ways mean a topological space on which no separa-
tion axioms are assumed unless explicitly stated. Let
A be a subset of a topological space (X, τ). The
closure of A and the interior of A are denoted by
Cl(A) and Int(A), respectively. A subset A of a
topological space (X, τ) is said to be α-open [12] if
A ⊆ Int(Cl(Int(A))). The complement of an α-open
set is called α-closed. The family of all α-open sets in
a topological space (X, τ) is denoted by α(X, τ). Let
A be a subset of a topological space (X, τ). A subset
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Λα(A) [3] is defined as follows:

Λα(A) = ∩{O ∈ α(X, τ)|A ⊆ O}.

Lemma 1. [3] For subsets A, B and Ai(i ∈ I) of
a topological space (X, τ), the following properties
hold:

(1) A ⊆ Λα(A).

(2) If A ⊆ B, then Λα(A) ⊆ Λα(B).

(3) Λα(Λα(A)) = Λα(A).

(4) Λα(∩{Ai|i ∈ I}) ⊆ ∩{Λα(Ai)|i ∈ I}.

(5) Λα(∪{Ai|i ∈ I}) = ∪{Λα(Ai)|i ∈ I}.

A subset A of a topological space (X, τ) is called
a Λα-set [3] if A = Λα(A).

Lemma 2. [3] For subsets A and Ai(i ∈ I) of a topo-
logical space (X, τ), the following properties hold:

(1) Λα(A) is a Λα-set.

(2) If A is α-open, then A is a Λα-set.

(3) If Ai is a Λα-set for each i ∈ I , then ∩i∈IAi is a
Λα-set.

(4) If Ai is a Λα-set for each i ∈ I , then ∪i∈IAi is a
Λα-set.

A subset A of a topological space (X, τ) is called
(Λ, α)-closed [3] if A = T ∩ C, where T is a Λα-
set and C is an α-closed set. The complement of a
(Λ, α)-closed set is called (Λ, α)-open. The collec-
tion of all (Λ, α)-open (resp. (Λ, α)-closed) sets in
a topological space (X, τ) is denoted by ΛαO(X, τ)
(resp. ΛαC(X, τ)). Let A be a subset of a topologi-
cal space (X, τ). A point x ∈ X is called a (Λ, α)-
cluster point of A [3] if for every (Λ, α)-open set U
of X containing x we have A ∩ U ̸= ∅. The set of all
(Λ, α)-cluster points of A is called the (Λ, α)-closure
of A and is denoted by A(Λ,α).

Lemma 3. [3] Let A and B be subsets of a topolog-
ical space (X, τ). For the (Λ, α)-closure, the follow-
ing properties hold:

(1) A ⊆ A(Λ,α) and [A(Λ,α)](Λ,α) = A(Λ,α).

(2) A(Λ,α) = ∩{F |A ⊆ F and F is (Λ, α)-closed}.

(3) If A ⊆ B, then A(Λ,α) ⊆ B(Λ,α).

(4) A is (Λ, α)-closed if and only if A = A(Λ,α).

(5) A(Λ,α) is (Λ, α)-closed.

Definition 4. Let A be a subset of a topological space
(X, τ). The union of all (Λ, α)-open sets contained in
A is called the (Λ, α)-interior of A and is denoted by
A(Λ,α).

Lemma 5. Let A and B be subsets of a topological
space (X, τ). For the (Λ, α)-interior, the following
properties hold:

(1) A(Λ,α) ⊆ A and [A(Λ,α)](Λ,α) = A(Λ,α).

(2) If A ⊆ B, then A(Λ,α) ⊆ B(Λ,α).

(3) A is (Λ, α)-open if and only if A(Λ,α) = A.

(4) A(Λ,α) is (Λ, α)-open.

(5) (X −A)(Λ,α) = X −A(Λ,α).

3 Some properties of (Λ, α)-open sets

In this section, we introduce new classes of sets called
s(Λ, α)-open sets, p(Λ, α)-open sets, α(Λ, α)-open
sets, β(Λ, α)-open sets and b(Λ, α)-open sets. We
also investigate some of their fundamental properties.

Definition 6. A subset A of a topological space (X, τ)
is said to be:

(i) s(Λ, α)-open if A ⊆ [A(Λ,α)]
(Λ,α);

(ii) p(Λ, α)-open if A ⊆ [A(Λ,α)](Λ,α);

(iii) α(Λ, α)-open if A ⊆ [[A(Λ,α)]
(Λ,α)](Λ,α);

(iv) β(Λ, α)-open if A ⊆ [[A(Λ,α)](Λ,α)]
(Λ,α).

The family of all s(Λ, α)-open (resp. p(Λ, α)-
open, α(Λ, α)-open, β(Λ, α)-open) sets in a topolog-
ical space (X, τ) is denoted by sΛαO(X, τ) (resp.
pΛαO(X, τ), αΛαO(X, τ), βΛαO(X, τ)).

The complement of a s(Λ, α)-open (resp.
p(Λ, α)-open, α(Λ, α)-open, β(Λ, α)-open) set is
called s(Λ, α)-closed (resp. p(Λ, α)-closed, α(Λ, α)-
closed, β(Λ, α)-closed). The family of all s(Λ, α)-
closed (resp. p(Λ, α)-closed, α(Λ, α)-closed,
β(Λ, α)-closed) sets in a topological space (X, τ)
is denoted by sΛαC(X, τ) (resp. pΛαC(X, τ),
αΛαC(X, τ), βΛαO(X, τ)).

Proposition 7. For a topological space (X, τ), the
following properties hold:

(1) ΛαO(X, τ) ⊆ αΛαO(X, τ) ⊆ sΛαO(X, τ) ⊆
βΛαO(X, τ).

(2) αΛαO(X, τ) ⊆ pΛαO(X, τ) ⊆ βΛαO(X, τ).
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(3) αΛαO(X, τ) = sΛαO(X, τ) ∩ pΛαO(X, τ).

Proof. (1) Let V ∈ ΛαO(X, τ). Then, V =

V(Λ,α) ⊆ [[V(Λ,α)]
(Λ,α)](Λ,α) ⊆ [V (Λ,α)](Λ,α) ⊆

[[V (Λ,α)](Λ,α)]
(Λ,α). This shows that ΛαO(X, τ) ⊆

αΛαO(X, τ) ⊆ sΛαO(X, τ) ⊆ βΛαO(X, τ).
(2) Let V ∈ αΛαO(X, τ). Then, we have

V ⊆ [V (Λ,α)](Λ,α) ⊆ [[V (Λ,α)](Λ,α)]
(Λ,α). Thus,

αΛαO(X, τ) ⊆ pΛαO(X, τ) ⊆ βΛαO(X, τ).
(3) Let V ∈ sΛαO(X, τ) ∩ pΛαO(X, τ). Then,

V ∈ sΛαO(X, τ) and V ∈ pΛαO(X, τ). Therefore,
V ⊆ [V(Λ,α)]

(Λ,α) and V ⊆ [V (Λ,α)](Λ,α). Thus, V ⊆
[V (Λ,α)](Λ,α) ⊆ [[V(Λ,α)]

(Λ,α)](Λ,α). This shows that
V ∈ αΛαO(X, τ) and hence

sΛαO(X, τ) ∩ pΛαO(X, τ) ⊆ αΛαO(X, τ).

On the other hand, by (1) and (2), αΛαO(X, τ) ⊆
sΛαO(X, τ) ∩ pΛαO(X, τ). Thus, αΛαO(X, τ) =
sΛαO(X, τ) ∩ pΛαO(X, τ).

Definition 8. A subset A of a topological space (X, τ)

is called r(Λ, α)-open if A = [A(Λ,α)](Λ,α). The
complement of a r(Λ, α)-open set is called r(Λ, α)-
closed.

The family of all r(Λ, α)-open (resp. r(Λ, α)-
closed) sets in a topological space (X, τ) is denoted
by rΛαO(X, τ) (resp. rΛαC(X, τ)).

Proposition 9. For a subset A of a topological space
(X, τ), the following properties hold:

(1) A is r(Λ, α)-open if and only if A = F(Λ,α) for
some (Λ, α)-closed set F .

(2) A is r(Λ, α)-closed if and only if A = U (Λ,α) for
some (Λ, α)-open set U .

Proposition 10. For a subset A of a topological space
(X, τ), the following properties hold:

(1) A is s(Λ, α)-closed if and only if [A(Λ,α)](Λ,α) ⊆
A.

(2) A is p(Λ, α)-closed if and only if [A(Λ,α)]
(Λ,α) ⊆

A.

(3) A is α(Λ, α)-closed if and only if
[[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ A.

(4) A is β(Λ, α)-closed if and only if
[[A(Λ,α)]

(Λ,α)](Λ,α) ⊆ A.

Lemma 11. For a subset A of a topological space
(X, τ), the following properties hold:

(1) [[[A(Λ,α)]
(Λ,α)](Λ,α)]

(Λ,α) = [A(Λ,α)]
(Λ,α).

(2) [[[A(Λ,α)](Λ,α)]
(Λ,α)](Λ,α) = [A(Λ,α)](Λ,α).

Proposition 12. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is r(Λ, α)-open.

(2) A is (Λ, α)-open and s(Λ, α)-closed.

(3) A is α(Λ, α)-open and s(Λ, α)-closed.

(4) A is p(Λ, α)-open and s(Λ, α)-closed.

(5) A is (Λ, α)-open and β(Λ, α)-closed.

(6) A is α(Λ, α)-open and β(Λ, α)-closed.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4): Obvious.
(4) ⇒ (5): Let A be (Λ, α)-open and s(Λ, α)-

closed. Then, A ⊆ [A(Λ,α)](Λ,α) and [A(Λ,α)](Λ,α) ⊆
A. Therefore, A = [A(Λ,α)](Λ,α). Thus, A is r(Λ, α)-
open and hence A is (Λ, α)-open. Since A is s(Λ, α)-
closed, A is β(Λ, α)-closed. This shows that A is
(Λ, α)-open and β(Λ, α)-closed.

(5) ⇒ (6): The proof is obvious.
(6) ⇒ (1): Let A be α(Λ, α)-open and

β(Λ, α)-closed. Then, A ⊆ [[A(Λ,α)]
(Λ,α)](Λ,α)

and [[A(Λ,α)]
(Λ,α)](Λ,α) ⊆ A. Thus,

A = [[A(Λ,α)]
(Λ,α)](Λ,α) and hence A(Λ,α) =

[[[A(Λ,α)]
(Λ,α)](Λ,α)]

(Λ,α) = [A(Λ,α)]
(Λ,α). By

Lemma 11, [A(Λ,α)](Λ,α) = [[A(Λ,α)]
(Λ,α)](Λ,α) = A.

Therefore, A is r(Λ, α)-open.

Corollary 13. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is r(Λ, α)-closed.

(2) A is (Λ, α)-closed and s(Λ, α)-open.

(3) A is α(Λ, α)-closed and s(Λ, α)-open.

(4) A is p(Λ, α)-closed and s(Λ, α)-open.

(5) A is (Λ, α)-closed and β(Λ, α)-open.

(6) A is α(Λ, α)-closed and β(Λ, α)-open.

Definition 14. A subset A of a topological space
(X, τ) is called (Λ, α)-clopen if A is both (Λ, α)-open
and (Λ, α)-closed.

Proposition 15. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is (Λ, α)-clopen.

(2) A is r(Λ, α)-open and r(Λ, α)-closed.

(3) A is (Λ, α)-open and α(Λ, α)-closed.

3

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.2 Jeeranunt Khampakdee, Chawalit Boonpok

E-ISSN: 2224-2880 15 Volume 22, 2023



(4) A is (Λ, α)-open and p(Λ, α)-closed.

(5) A is α(Λ, α)-open and p(Λ, α)-closed.

(6) A is α(Λ, α)-open and (Λ, α)-closed.

(7) A is p(Λ, α)-open and (Λ, α)-closed.

(8) A is β(Λ, α)-open and α(Λ, α)-closed.

Proof. (1) ⇒ (2): Let A be a (Λ, α)-clopen set.
Then, we have A = A(Λ,α) = A(Λ,α) and hence
A = [A(Λ,α)]

(Λ,α) = [A(Λ,α)](Λ,α). This shows
that A is r(Λ, α)-open. Thus, A is r(Λ, α)-open and
r(Λ, α)-closed.

(2) ⇒ (3): Let A be r(Λ, α)-open and
r(Λ, α)-closed. Then, A = [A(Λ,α)]

(Λ,α) =

[A(Λ,α)](Λ,α). Thus, A(Λ,α) = [[A(Λ,α)](Λ,α)](Λ,α) =

[A(Λ,α)](Λ,α) = A and hence

[[A(Λ,α)](Λ,α)]
(Λ,α) = [[A(Λ,α)]

(Λ,α)](Λ,α)

= [A(Λ,α)]
(Λ,α) = A.

Consequently, we obtain A is (Λ, α)-open and
α(Λ, α)-closed.

(3) ⇒ (4): Suppose that A is (Λ, α)-
open and α(Λ, α)-closed. Then, we have A =

A(Λ,α) and [[A(Λ,α)](Λ,α)]
(Λ,α) ⊆ A, by Lemma

11, [A(Λ,α)]
(Λ,α) = [[[A(Λ,α)]

(Λ,α)](Λ,α)]
(Λ,α) =

[[A(Λ,α)](Λ,α)]
(Λ,α) ⊆ A. Thus, A is p(Λ, α)-closed.

This shows that A is (Λ, α)-open and p(Λ, α)-closed.
(4) ⇒ (5): Let A be (Λ, α)-open and p(Λ, α)-

closed. Then, A = A(Λ,α) and [A(Λ,α)]
(Λ,α) ⊆ A.

Thus, A = A(Λ,α) ⊆ [[A(Λ,α)]
(Λ,α)](Λ,α) ⊆ A(Λ,α)

and hence [[A(Λ,α)]
(Λ,α)](Λ,α) = A(Λ,α) = A. There-

fore, A is α(Λ, α)-open. Thus, A is α(Λ, α)-open and
p(Λ, α)-closed.

(5) ⇒ (6): Let A be α(Λ, α)-open
and p(Λ, α)-closed. Then, we have A ⊆
[[A(Λ,α)]

(Λ,α)](Λ,α) and [[A(Λ,α)]
(Λ,α)](Λ,α) ⊆ A.

Thus, A = [[A(Λ,α)]
(Λ,α)](Λ,α) and hence

A(Λ,α) = [[[A(Λ,α)]
(Λ,α)](Λ,α)]

(Λ,α). By Lemma
11, we have A(Λ,α) = [A(Λ,α)]

(Λ,α). Since
[A(Λ,α)]

(Λ,α) ⊆ A, we have A(Λ,α) ⊆ A and
hence A(Λ,α) = A. Therefore, A is (Λ, α)-closed and
α(Λ, α)-open.

(6) ⇒ (7): Let A be α(Λ, α)-open and (Λ, α)-
closed. Then, A ⊆ [[A(Λ,α)]

(Λ,α)](Λ,α) and A =

A(Λ,α), by Lemma 11, A ⊆ [[A(Λ,α)]
(Λ,α)](Λ,α) ⊆

[[[A(Λ,α)](Λ,α)]
(Λ,α)](Λ,α) = [A(Λ,α)](Λ,α). This

shows that A is p(Λ, α)-open. Thus, A is p(Λ, α)-
open and (Λ, α)-closed.

(7) ⇒ (8): Let A be p(Λ, α)-open and (Λ, α)-
closed. Then, we have A ⊆ [A(Λ,α)](Λ,α) and A =

A(Λ,α). Thus, [[A(Λ,α)](Λ,α)]
(Λ,α) ⊆ A(Λ,α) = A.

Therefore, A is p(Λ, α)-open and α(Λ, α)-closed.
(8) ⇒ (1): Let A be p(Λ, α)-open and

α(Λ, α)-closed. Then, A ⊆ [A(Λ,α)](Λ,α) and
[[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ A. Therefore, A(Λ,α) ⊆
[[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ A and hence A(Λ,α) ⊆
A. This shows that A = A(Λ,α). Thus, A
is (Λ, α)-closed. Since [[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ A,
[[[A(Λ,α)](Λ,α)]

(Λ,α)](Λ,α) ⊆ A(Λ,α), by Lemma 11,
we have A ⊆ [A(Λ,α)](Λ,α) ⊆ A(Λ,α) and hence
A ⊆ A(Λ,α). This implies that A = A(Λ,α). There-
fore, A is (Λ, α)-open. Consequently, we obtain A is
(Λ, α)-clopen.

Definition 16. A subset A of a topological space
(X, τ) is called α(Λ, α)-⋆-open (resp. β(Λ, α)-⋆-
open) if A = [[A(Λ,α)]

(Λ,α)](Λ,α) (resp. A =

[[A(Λ,α)](Λ,α)]
(Λ,α)).

Proposition 17. A subset A of a topological space
(X, τ) is r(Λ, α)-open if and only if A is α(Λ, α)-⋆-
open.

Proof. Suppose that A is a r(Λ, α)-open set. Then,
A = [A(Λ,α)](Λ,α). Thus, A is (Λ, α)-open and hence
A = [[A(Λ,α)]

(Λ,α)](Λ,α). Therefore, A is α(Λ, α)-⋆-
open.

Conversely, suppose that A is a α(Λ, α)-⋆-open
set. Then, A = [[A(Λ,α)]

(Λ,α)](Λ,α). By Lemma 11,

[A(Λ,α)](Λ,α) = [[[[A(Λ,α)]
(Λ,α)](Λ,α)]

(Λ,α)](Λ,α)

= [[A(Λ,α)]
(Λ,α)](Λ,α) = A.

This shows that A is r(Λ, α)-open.

Proposition 18. A subset A of a topological space
(X, τ) is r(Λ, α)-closed if and only if A is β(Λ, α)-⋆-
open.

Proof. Suppose that A is a r(Λ, α)-closed set.
Then, we have A = [A(Λ,α)]

(Λ,α) and hence A

is (Λ, α)-closed. Thus, A = [A(Λ,α)]
(Λ,α) =

[[A(Λ,α)](Λ,α)]
(Λ,α). Therefore, A is β(Λ, α)-⋆-open.

Conversely, suppose that A is a β(Λ, α)-⋆-open
set. Then, A = [[A(Λ,α)](Λ,α)]

(Λ,α) and by Lemma
11, [A(Λ,α)]

(Λ,α) = [[[[A(Λ,α)](Λ,α)]
(Λ,α)](Λ,α)]

(Λ,α) =

[[A(Λ,α)](Λ,α)]
(Λ,α) = A. Thus, A is r(Λ, α)-closed.

Proposition 19. For a subset A of a topological space
(X, τ), the following properties are equivalent:
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(1) A is β(Λ, α)-⋆-open.

(2) A is β(Λ, α)-open and (Λ, α)-closed.

(3) A is β(Λ, α)-open and α(Λ, α)-closed.

Proposition 20. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is α(Λ, α)-⋆-open.

(2) A is (Λ, α)-open and β(Λ, α)-closed.

(3) A is α(Λ, α)-open and β(Λ, α)-closed.

Definition 21. A subset A of a topological space
(X, τ) is said to be b(Λ, α)-open if A ⊆
[A(Λ,α)]

(Λ,α) ∪ [A(Λ,α)](Λ,α). The complement of a
b(Λ, α)-open set is said to be b(Λ, α)-closed.

The family of all b(Λ, α)-open (resp. b(Λ, α)-
closed) sets in a topological space (X, τ) is denoted
by bΛαO(X, τ) (resp. bΛαC(X, τ)).

Remark 22. It is easy to see that for a topological
space (X, τ),

sΛαO(X, τ) ∪ pΛαO(X, τ) ⊆ bΛαO(X, τ)

⊆ βΛαO(X, τ).

Proposition 23. Let A be a subset of a topologi-
cal space (X, τ). If A = B ∪ C, where B is a
s(Λ, α)-open set and C is a p(Λ, α)-open set, then
A is b(Λ, α)-open.

Corollary 24. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is r(Λ, α)-open.

(2) A is (Λ, α)-open and b(Λ, α)-closed.

(3) A is α(Λ, α)-open and b(Λ, α)-closed.

Lemma 25. Let A be a subset of a topological space
(X, τ). If A is both s(Λ, α)-closed and β(Λ, α)-open,
then A is s(Λ, α)-open.

Proof. Suppose that A is both s(Λ, α)-closed
and β(Λ, α)-open. Since A is s(Λ, α)-closed,
[A(Λ,α)](Λ,α) ⊆ A. Since A is β(Λ, α)-open,

[A(Λ,α)](Λ,α) ⊆ A ⊆ [[A(Λ,α)](Λ,α)]
(Λ,α).

Thus, [A(Λ,α)](Λ,α) ⊆ A(Λ,α) and hence
[[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ [A(Λ,α)]
(Λ,α). Therefore,

A is s(Λ, α)-open.

Proposition 26. Let A be a subset of a topological
space (X, τ). If A is b(Λ, α)-open, then A(Λ,α) is
r(Λ, α)-closed.

Proof. Let A be b(Λ, α)-open. Then, we have A ⊆
[A(Λ,α)]

(Λ,α) ∪ [A(Λ,α)](Λ,α). Thus,

A(Λ,α) ⊆ [[A(Λ,α)]
(Λ,α) ∪ [A(Λ,α)](Λ,α)]

(Λ,α)

⊆ [[A(Λ,α)]
(Λ,α)](Λ,α) ∪ [[A(Λ,α)](Λ,α)]

(Λ,α)

= [[A(Λ,α)](Λ,α)]
(Λ,α) ⊆ A(Λ,α)

and hence A(Λ,α) = [[A(Λ,α)](Λ,α)]
(Λ,α). This shows

that A(Λ,α) is r(Λ, α)-closed.

Corollary 27. For a subset A of a topological space
(X, τ), the following hold:

(1) If A is s(Λ, α)-open, then A(Λ,α) is r(Λ, α)-
closed.

(2) If A is p(Λ, α)-open, then A(Λ,α) is r(Λ, α)-
closed.

(3) If A is α(Λ, α)-open, then A(Λ,α) is r(Λ, α)-
closed.

Proposition 28. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A ∈ βΛαO(X, τ).

(2) A(Λ,α) ∈ rΛαC(X, τ).

(3) A(Λ,α) ∈ βΛαO(X, τ).

(4) A(Λ,α) ∈ sΛαO(X, τ).

(5) A(Λ,α) ∈ bΛαO(X, τ).

Proof. (1) ⇒ (2): Let A ∈ βΛαO(X, τ).
Then, we have A ⊆ [[A(Λ,α)](Λ,α)]

(Λ,α) and hence
A(Λ,α) ⊆ [[A(Λ,α)](Λ,α)]

(Λ,α) ⊆ A(Λ,α). Thus,
A(Λ,α) = [[A(Λ,α)](Λ,α)]

(Λ,α). Consequently, we ob-
tain A(Λ,α) ∈ rΛαC(X, τ).

(2) ⇒ (3): Let A(Λ,α) ∈ rΛαC(X, τ). Then,
A(Λ,α) = [[A(Λ,α)](Λ,α)]

(Λ,α) and so A(Λ,α) =

[[A(Λ,α)](Λ,α)]
(Λ,α) = [[[A(Λ,α)](Λ,α)](Λ,α)]

(Λ,α).
Therefore, A(Λ,α) ∈ βΛαO(X, τ).

(3) ⇒ (4): Let A(Λ,α) ∈ βΛαO(X, τ).
Then, we have A(Λ,α) ⊆ [[[A(Λ,α)](Λ,α)](Λ,α)]

(Λ,α).
Therefore, A(Λ,α) ⊆ [[[A(Λ,α)](Λ,α)](Λ,α)]

(Λ,α) =

[[A(Λ,α)](Λ,α)]
(Λ,α). Thus, A(Λ,α) ∈ sΛαO(X, τ).

(4) ⇒ (5): The proof is obvious.
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(5) ⇒ (1): Let A(Λ,α) ∈ bΛαO(X, τ). Then, we
have

A ⊆ A(Λ,α)

⊆ [[A(Λ,α)](Λ,α)](Λ,α) ∪ [[A(Λ,α)](Λ,α)]
(Λ,α)

= [A(Λ,α)](Λ,α) ∪ [[A(Λ,α)](Λ,α)]
(Λ,α)

= [[A(Λ,α)](Λ,α)]
(Λ,α).

This shows that A ∈ βΛαO(X, τ).

Corollary 29. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A ∈ βΛαC(X, τ).

(2) A(Λ,α) ∈ rΛαO(X, τ).

(3) A(Λ,α) ∈ βΛαC(X, τ).

(4) A(Λ,α) ∈ sΛαC(X, τ).

(5) A(Λ,α) ∈ bΛαC(X, τ).

Definition 30. A subset A of a topological space
(X, τ) is called rs(Λ, α)-open if there exists a
r(Λ, α)-open set U such that U ⊆ A ⊆ U (Λ,α).
The complement of a rs(Λ, α)-open set is said to be
rs(Λ, α)-closed.

The family of all rs(Λ, α)-open (resp. rs(Λ, α)-
closed) sets in a topological space (X, τ) is denoted
by rsΛαO(X, τ) (resp. rsΛαC(X, τ)).

Proposition 31. For a subset A of a topological space
(X, τ), the following properties are equivalent:

(1) A is rs(Λ, α)-open.

(2) A is s(Λ, α)-open and s(Λ, α)-closed.

(3) A is b(Λ, α)-open and s(Λ, α)-closed.

(4) A is β(Λ, α)-open and s(Λ, α)-closed.

(5) A is s(Λ, α)-open and b(Λ, α)-closed.

(6) A is s(Λ, α)-open and β(Λ, α)-closed.

Proof. (1) ⇒ (2): Let U be a r(Λ, α)-open set such
that U ⊆ A ⊆ U (Λ,α). Then, U ⊆ A(Λ,α) and hence
A ⊆ U (Λ,α) ⊆ [A(Λ,α)](Λ,α). Therefore, A is s(Λ, α)-
open. On the other hand, since U (Λ,α) = A(Λ,α) and
U is r(Λ, α)-open, [A(Λ,α)](Λ,α) = [U (Λ,α)](Λ,α) =
U ⊆ A. Thus, A is s(Λ, α)-closed.

(2) ⇒ (3) and (3) ⇒ (4): The proofs are obvi-
ous.

(4) ⇒ (5): The proof is obvious.

(5) ⇒ (6): This is obvious since bΛαO(X, τ) ⊆
βΛαO(X, τ).

(6) ⇒ (1): Since A is s(Λ, α)-open and β(Λ, α)-
closed, A is s(Λ, α)-closed. Thus, [A(Λ,α)](Λ,α) ⊆
A ⊆ [A(Λ,α)]

(Λ,α) ⊆ [[A(Λ,α)](Λ,α)]
(Λ,α). Let U =

[A(Λ,α)](Λ,α). Then, U is r(Λ, α)-open and U ⊆ A ⊆
U (Λ,α). Therefore, A is rs(Λ, α)-open.

Proposition 32. Let (X, τ) be a topological space
and x ∈ X . Then, {x} is (Λ, α)-open if and only
if {x} is s(Λ, α)-open.

Proof. The necessity is clear. Suppose that {x} is
s(Λ, α)-open. Then, {x} ⊆ [{x}(Λ,α)](Λ,α). Now,
{x}(Λ,α) is either {x} or ∅. Since ∅(Λ,α) = ∅ and
{x} ⊆ [{x}(Λ,α)](Λ,α), we have {x}(Λ,α) ̸= ∅. Thus,
{x}(Λ,α) = {x} and hence {x} is (Λ, α)-open.

Lemma 33. Let A be a subset of a topological space
(X, τ). If U ∈ ΛαO(X, τ) and U ∩ A = ∅, then
U ∩A(Λ,α) = ∅.

Proposition 34. Let (X, τ) be a topological space
and x ∈ X . Then, the following properties are equiv-
alent:

(1) {x} is p(Λ, α)-open.

(2) {x} is b(Λ, α)-open.

(3) {x} is β(Λ, α)-open.

Proof. (1) ⇒ (2) and (2) ⇒ (3): The proofs are
obvious.

(3) ⇒ (1): Let {x} be β(Λ, α)-open. As-
sume that {x} is not p(Λ, α)-open. Then, {x} *
[{x}(Λ,α)](Λ,α) and so {x} ∩ [{x}(Λ,α)](Λ,α) = ∅.
Since [{x}(Λ,α)](Λ,α) is (Λ, α)-open, by Lemma
33, {x}(Λ,α) ∩ [{x}(Λ,α)](Λ,α) = ∅ and hence
[{x}(Λ,α)](Λ,α) = ∅. Thus, [[{x}(Λ,α)](Λ,α)](Λ,α) =

∅(Λ,α) = ∅. This is a contradiction.

Proposition 35. Let (X, τ) be a topological space
and x ∈ X . Then, {x} is p(Λ, α)-open or {x} is
α(Λ, α)-closed.

Proof. Assume that {x} is not p(Λ, α)-open. Then,
{x} * [{x}(Λ,α)](Λ,α) and so {x}∩ [{x}(Λ,α)](Λ,α) =
∅. Since [{x}(Λ,α)](Λ,α) is (Λ, α)-open, by Lemma
33, {x}(Λ,α) ∩ [{x}(Λ,α)](Λ,α) = ∅ and hence
[{x}(Λ,α)](Λ,α) = ∅. Thus, [[{x}(Λ,α)](Λ,α)](Λ,α) =

∅(Λ,α) = ∅. This shows that {x} is α(Λ, α)-
closed.
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Proposition 36. Let A be a subset of a topological
space (X, τ). Then, A is s(Λ, α)-open if and only if
there exists a (Λ, α)-open set U such that U ⊆ A ⊆
U (Λ,α).

Proof. Suppose that A is s(Λ, α)-open. Then, A ⊆
[A(Λ,α)]

(Λ,α). Let U = A(Λ,α). Then, U is a (Λ, α)-
open set such that U ⊆ A ⊆ U (Λ,α).

Conversely, assume that there exists a (Λ, α)-
open set U such that U ⊆ A ⊆ U (Λ,α). Then,
U ⊆ A(Λ,α) and hence U (Λ,α) ⊆ [A(Λ,α)]

(Λ,α). Since
A ⊆ U (Λ,α), we have A ⊆ [A(Λ,α)]

(Λ,α). Thus, A is
s(Λ, α)-open.

Proposition 37. Let A be a subset of a topological
space (X, τ). If there exists a p(Λ, α)-open set U such
that U ⊆ A ⊆ U (Λ,α) then A is β(Λ, α)-open.

Proof. Since U ⊆ A ⊆ U (Λ,α), we have A(Λ,α) =
U (Λ,α) and hence [A(Λ,α)](Λ,α) = [U (Λ,α)](Λ,α). Since
U is p(Λ, α)-open, U ⊆ [A(Λ,α)](Λ,α). Thus, A ⊆
[[A(Λ,α)](Λ,α)]

(Λ,α) and hence A is β(Λ, α)-open.

Theorem 38. For a topological space (X, τ), the fol-
lowing properties are equivalent:

(1) Every s(Λ, α)-open set of X is α(Λ, α)-open.

(2) Every s(Λ, α)-open set of X is p(Λ, α)-open.

(3) Every β(Λ, α)-open set of X is p(Λ, α)-open.

(4) Every b(Λ, α)-open set of X is p(Λ, α)-open.

(5) Every rs(Λ, α)-open set of X is p(Λ, α)-open.

(6) Every rs(Λ, α)-open set of X is r(Λ, α)-open.

(7) Every r(Λ, α)-closed set of X is p(Λ, α)-open.

(8) Every r(Λ, α)-closed set of X is (Λ, α)-open.

Proof. (1) ⇒ (2): The proof is obvious.
(2) ⇒ (3): Let A be a β(Λ, α)-open set.

Then, A ⊆ [[A(Λ,α)](Λ,α)]
(Λ,α). Let B =

[[A(Λ,α)](Λ,α)]
(Λ,α). Then, B is r(Λ, α)-closed and so

B is s(Λ, α)-open. By (2), B is p(Λ, α)-open and
hence A ⊆ B ⊆ [B(Λ,α)](Λ,α) = B(Λ,α). Thus,
B ⊆ A(Λ,α). Therefore, B(Λ,α) ⊆ [A(Λ,α)](Λ,α). This
shows that A ⊆ [A(Λ,α)](Λ,α). Consequently, we ob-
tain A is p(Λ, α)-open.

(3) ⇒ (4): The proof is obvious.
(4) ⇒ (5): Since rsΛαO(X, τ) ⊆ sΛαO(X, τ)

and sΛαO(X, τ) ⊆ bΛαO(X, τ), we have
rsΛαO(X, τ) ⊆ bΛαO(X, τ) and by (4),
rsΛαO(X, τ) ⊆ pΛαO(X, τ).

(5) ⇒ (6): Since every rs(Λ, α)-open set
is s(Λ, α)-closed, by (5), rs(Λ, α)-open is both
s(Λ, α)-closed and p(Λ, α)-open. Thus, every
rs(Λ, α)-open set is r(Λ, α)-open by Proposition 12.

(6) ⇒ (7) and (7) ⇒ (8): The proofs are obvi-
ous.

(8) ⇒ (1): Let A be a s(Λ, α)-open set. Thus, by
Corollary 27, A(Λ,α) is r(Λ, α)-closed, by (8), A(Λ,α)

is (Λ, α)-open and hence A(Λ,α) ⊆ [A(Λ,α)](Λ,α).
Therefore, A is p(Λ, α)-open, by Proposition 7, A is
α(Λ, α)-open.

Corollary 39. For a topological space (X, τ), the fol-
lowing properties are equivalent:

(1) αΛαO(X, τ) = sΛαO(X, τ).

(2) Every rs(Λ, α)-open set of X is p(Λ, α)-closed.

(3) Every rs(Λ, α)-open set of X is r(Λ, α)-closed.

Definition 40. A subset A of a topological space
(X, τ) is said to be p(Λ, α)-clopen if A is both
p(Λ, α)-open and p(Λ, α)-closed.

Corollary 41. For a topological space (X, τ), the fol-
lowing properties are equivalent:

(1) αΛαO(X, τ) = sΛαO(X, τ).

(2) Every rs(Λ, α)-open set of X is p(Λ, α)-clopen.

(3) Every rs(Λ, α)-open set of X is (Λ, α)-clopen.

Proposition 42. For a topological space (X, τ), the
following properties are equivalent:

(1) Every p(Λ, α)-open set of X is α(Λ, α)-open.

(2) Every p(Λ, α)-open set of X is s(Λ, α)-open.

Definition 43. Let A be a subset of a topological
space (X, τ). A subset Λ(Λ,α)(A) is defined as fol-
lows: Λ(Λ,α)(A) = ∩{U ∈ ΛαO(X, τ) | A ⊆ U}.

Lemma 44. For subsets A,B of a topological space
(X, τ), the following properties hold:

(1) A ⊆ Λ(Λ,α)(A).

(2) If A ⊆ B, then Λ(Λ,α)(A) ⊆ Λ(Λ,α)(B).

(3) Λ(Λ,α)[Λ(Λ,α)(A)] = Λ(Λ,α)(A).

(4) If A is (Λ, α)-open, Λ(Λ,α)(A) = A.

Lemma 45. Let (X, τ) be a topological space and
let x, y ∈ X . Then, y ∈ Λ(Λ,α)({x}) if and only if
x ∈ {y}(Λ,α).

7

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.2 Jeeranunt Khampakdee, Chawalit Boonpok

E-ISSN: 2224-2880 19 Volume 22, 2023



Proof. Let y ̸∈ Λ(Λ,α)({x}). Then, there exists a
(Λ, α)-open set V containing x such that y ̸∈ V .
Hence, x ̸∈ {y}(Λ,α). The converse is similarly
shown.

A subset Nx of a topological space (X, τ) is said
to be (Λ, α)-neighbourhood of a point x ∈ X if there
exists a (Λ, α)-open set U such that x ∈ U ⊆ Nx.

Lemma 46. A subset of a topological space (X, τ)
is (Λ, α)-open in (X, τ) if and only if it is a (Λ, α)-
neighbourhood of each of its points.

Definition 47. Let (X, τ) be a topological space and
x ∈ X . A subset ⟨x⟩α is defined as follows:

⟨x⟩α = Λ(Λ,α)({x}) ∩ {x}(Λ,α).

Theorem 48. Let (X, τ) be a topological space.
Then, the following properties hold:

(1) Λ(Λ,α)(A) = {x ∈ X | A ∩ {x}(Λ,α) ̸= ∅} for
each subset A of X .

(2) For each x ∈ X , Λ(Λ,α)(⟨x⟩sp) = Λ(Λ,α)({x}).

(3) For each x ∈ X , [⟨x⟩α](Λ,α) = {x}(Λ,α).

(4) If U is (Λ, α)-open in (X, τ) and x ∈ U , then
⟨x⟩α ⊆ U .

(5) If F is (Λ, α)-closed in (X, τ) and x ∈ F , then
⟨x⟩α ⊆ F .

Proof. (1) Suppose that A ∩ {x}(Λ,α) = ∅. Then, we
have x ̸∈ X − {x}(Λ,α) which is a (Λ, α)-open set
containing A. Thus, x ̸∈ Λ(Λ,α)(A) and hence

Λ(Λ,α)(A) ⊆ {x ∈ X | A ∩ {x}(Λ,α) ̸= ∅}.

Next, let x ∈ X such that A ∩ {x}(Λ,α) ̸= ∅ and sup-
pose that x ̸∈ Λ(Λ,α)(A). There exists a (Λ, α)-open
set U containing A and x ̸∈ U . Let y ∈ A∩{x}(Λ,α).
Thus, U is a (Λ, α)-neighbourhood of y which does
not contain x. By this contradiction x ∈ Λ(Λ,α)(A).

(2) Let x ∈ X . Then,

{x} ⊆ {x}(Λ,α) ∩ Λ(Λ,α)({x}) = ⟨x⟩α,

by Lemma 44, Λ(Λ,α)({x}) ⊆ Λ(Λ,α)(⟨x⟩α). Next,
we show the opposite implication. Suppose that
y ̸∈ Λ(Λ,α)({x}). Then, there exists a (Λ, α)-
open set V such that x ∈ V and y ̸∈ V . Since
⟨x⟩α ⊆ Λ(Λ,α)({x}) ⊆ Λ(Λ,α)(V ) = V , we have
Λ(Λ,α)(⟨x⟩α) ⊆ V . Since y ̸∈ V , y ̸∈ Λ(Λ,α)(⟨x⟩α).
This shows that Λ(Λ,α)(⟨x⟩α) ⊆ Λ(Λ,α)({x}) and
hence Λ(Λ,α)({x}) = Λ(Λ,α)(⟨x⟩α).

(3) By the definition of ⟨x⟩α, we have {x} ⊆
⟨x⟩α and {x}(Λ,α) ⊆ (⟨x⟩α)(Λ,α) by Lemma 3.
On the other hand, we have ⟨x⟩α ⊆ {x}(Λ,α) and
[⟨x⟩α](Λ,α) ⊆ [{x}(Λ,α)](Λ,α) = {x}(Λ,α). Thus,
(⟨x⟩α)(Λ,α) ⊆ {x}(Λ,α).

(4) Since x ∈ U and U is a (Λ, α)-open set, we
have Λ(Λ,α)({x}) ⊆ U . Thus, ⟨x⟩α ⊆ U .

(5) Since x ∈ F and F is a (Λ, α)-closed set, we
have ⟨x⟩α = {x}(Λ,α) ∩ Λ(Λ,α)({x}) ⊆ {x}(Λ,α) ⊆
F (Λ,α) = F .

Theorem 49. The following properties are equivalent
for any points x and y in a topological space (X, τ):

(1) Λ(Λ,α)({x}) ̸= Λ(Λ,α)({y}).

(2) {x}(Λ,α) ̸= {y}(Λ,α).

Proof. (1) ⇒ (2): Suppose that Λ(Λ,α)({x}) ̸=
Λ(Λ,α)({y}). Then, there exists a point z ∈ X
such that z ∈ Λ(Λ,α)({x}) and z ̸∈ Λ(Λ,α)({y}) or
z ∈ Λ(Λ,α)({y}) and z ̸∈ Λ(Λ,α)({x}). We prove
only the first case being the second analogous. From
z ∈ Λ(Λ,α)({x}) it follows that {x} ∩ {z}(Λ,α) ̸= ∅
which implies x ∈ {z}(Λ,α). By z ̸∈ Λ(Λ,α)({y}),
we have {y} ∩ {z}(Λ,α) = ∅. Since x ∈ {z}(Λ,α),
{x}(Λ,α) ⊆ {z}(Λ,α) and {y} ∩ {x}(Λ,α) = ∅. There-
fore, it follows that {x}(Λ,α) ̸= {y}(Λ,α). Thus,
Λ(Λ,α)({x}) ̸= Λ(Λ,α)({y}) implies that {x}(Λ,α) ̸=
{y}(Λ,α).

(2) ⇒ (1): Suppose that {x}(Λ,α) ̸= {y}(Λ,α).
Then, there exists a point z ∈ X such that z ∈
{x}(Λ,α) and z ̸∈ {y}(Λ,α) or z ∈ {y}(Λ,α) and
z ̸∈ {x}(Λ,α). We prove only the first case being
the second analogous. It follows that there exists a
(Λ, α)-open set containing z and therefore x but not
y, namely, y ̸∈ Λ(Λ,α)({x}) and thus Λ(Λ,α)({x}) ̸=
Λ(Λ,α)({y}).

Theorem 50. Let (X, τ) be a topological space and
x, y ∈ X . Then, the following properties hold:

(1) y ∈ Λ(Λ,α)({x}) if and only if x ∈ {y}(Λ,α).

(2) Λ(Λ,α)({x}) = Λ(Λ,α)({y}) if and only if
{x}(Λ,α) = {y}(Λ,α).

Proof. (1) Let x ̸∈ {y}(Λ,α). Then, there exists a
(Λ, α)-open set U such that x ∈ U and y ̸∈ U . Thus,
y ̸∈ Λ(Λ,α)({x}). The converse is similarly shown.

(2) Let Λ(Λ,α)({x}) = Λ(Λ,α)({y}) for any
x, y ∈ X . Since x ∈ Λ(Λ,α)({x}), x ∈ Λ(Λ,α)({y})
and by (1), we have y ∈ {x}(Λ,α). By Lemma 3,
{y}(Λ,α) ⊆ {x}(Λ,α). Similarly, we have {x}(Λ,α) ⊆
{y}(Λ,α) and hence {x}(Λ,α) = {y}(Λ,α).
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Conversely, suppose that {x}(Λ,α) = {y}(Λ,α).
Since x ∈ {x}(Λ,α), we have x ∈ {y}(Λ,α) and by
(1), y ∈ Λ(Λ,α)({x}). By Lemma 44, Λ(Λ,α)({y}) ⊆
Λ(Λ,α)(Λ(Λ,α)({x})) = Λ(Λ,α)({x}). Similarly,
we have Λ(Λ,α)({x}) ⊆ Λ(Λ,α)({y}) and hence
Λ(Λ,α)({x}) = Λ(Λ,α)({y}).

4 Conclusion

Open sets and closed sets are fundamental con-
cepts for the study and investigation in topological
spaces. This paper is concerned with the concepts
of s(Λ, α)-open sets, p(Λ, α)-open sets, α(Λ, α)-
open sets, β(Λ, α)-open sets and b(Λ, α)-open sets.
The relationships between these concepts are estab-
lished. Moreover, some properties of s(Λ, α)-open
sets, p(Λ, α)-open sets, α(Λ, α)-open sets, β(Λ, α)-
open sets and b(Λ, α)-open sets are obtained. The
ideas and results of this paper may motivate further
research.
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[11] A. Neubrunnová, On certain generalizations of
the notion of continuity, Mat. Časopis 23, 1973,
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