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1    Introduction 
In this section, firstly we will introduce a 

literature review of the most relevant work done 

in 𝜌 − attractive elements in MFS. Afterward, we 

will provide the theoretical background listing the 

most related topics to our work. Lastly, we provide 

in detail information on our mathematical 

definitions and theorems applied.  

 

Literature review 

In [20] authors developed the following notion of 

attractive points of nonlinear mapping in Hilbert 

spaces: 

Let 𝑋 be a nonempty subset of a Hilbert space 𝐻 

and 𝑇: 𝑋 → 𝐻. Then the set of attractive points 

𝐴(𝑇) is given by, 

 
𝐴(𝑇) = {𝑎 ∈ 𝐻 ∶  ‖𝑇𝑥 − 𝑎‖ ≤ ‖𝑥 − 𝑎‖ ∀ 𝑥 ∈ 𝑋} 

They provided evidence for the idea that there are 

attractive points in a Hilbert space for the so-

called hybrid mappings. With the exception and 

closedness, they continued to demonstrate a weak 

Mann-type convergence theorem. 

Research on attractive points gained momentum 

as a result of the hypothesis provided by [3]. 

Different mapping classes were combined. Non-

spreading mappings are considered to be a new 

class of mappings proposed by, [18]. 

A mapping 𝑇: 𝑋 → 𝑋  is said to be non-spreading 

mapping if for any 𝑎, 𝑏 ∈ 𝑋 . Then, 

‖𝑇𝑎 − 𝑇𝑏‖2 ≤
1

2
(‖𝑎 − 𝑇𝑏‖2 + ‖𝑇𝑎 − 𝑏‖2) . 

Using the Hausdorff metric,  [19], developed the 

category of  𝑘 − non-spreading multivalued 

mappings based on generalized non-spreading 

mappings. In CAT(0) spaces, [1], investigated the 

convergence theorems and attractive points for 

normally generalized hybrid mappings (a non-

linear generalization of a Hilbert space known as 

"Hadamard spaces"). 

The strong and weak convergence theorem of the 

Ishikawa iteration for an (𝛼, 𝛽) − generalized 

hybrid mapping in a uniformly convex Banach 

space was confirmed by [4], in 2015 as well.  For 

normally generalized hybrid mappings in CAT(0) 

spaces, [2], developed an attractive point theorem. 

Recently, many mathematicians have developed 

an interest in fixed point theory in MFS. The first 

proposed the concept of MFS was introduced in, 

[7], and it was furthermore generalized in, [8]. 

Continuing in the same direction, [9], [10], 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.10 Mohammad Amro, Abdalla Tallafha, Wasfi Shatanawi

E-ISSN: 2224-2880 79 Volume 22, 2023

https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Hadamard_space


worked on fixed point theory in the field of MFS 

where he proved Banach contraction principle in 

that space. An introduction of some fixed points 

for generalized contraction mappings in MFS was 

carried out, [11].  

The proof of results of approximating fixed points 

in MFS was proposed for the first time by [12], 

after that,  a multivalued 𝜌 −quasi nonexpansive 

mappings in MFS was handled, [13].  Cyclic 

Kannan maps in MFS were investigated by [14], 

where sufficient conditions for the existence and 

uniqueness of fixed points were given. Detailed 

discussions on modular spaces are also provided 

in, [5], [15], [16].  

In 2021, [6], introduced the notion of 

𝜌 −attractive elements in MFS, they also 

established a class of mappings called 𝜌 −

𝑘 −non-spreading mappings and verified the 

existence results and some approximation results 

in the setup of MFS. 

The efforts mentioned above encourage us to 

broaden the idea of attractive elements in the 

context of MFS. This paper's main goal is to 

define classes of 𝜌 − 𝛼 − and 𝜌 − 𝛼 − 𝑘 −non-

spreading mappings. This will enable us to 

demonstrate both the existence and 

approximation results for attractive elements in 

MFS, various numerical examples will be used to 

support our findings. 

 

Theoretical background 

Now we will review some fundamental concepts 

and definitions related to our topic, before 

introducing the definitions, it is worth mentioning 

that we will use the symbols as defined in Table 

1: 

 

Table 1. symbols. 

Symbol Meaning 

Ω nonempty set 

Σ nontrivial 𝜎 −algebra of subsets of Ω 

𝑃 a nontrivial 𝛿 −ring of subsets of Ω 

ℰ 
linear space of all simple functions 

with supports from 𝑃 

ℳ∞ 
space of all extended measurable 

functions 

  Note that: 

1) 𝑃 is closed with respect to forming of 

countable intersections, and finite unions 

and differences.  

i.e., suppose that  𝐸 ∩  𝐴 ∈  𝑃  for any 

𝐸 ∈  𝑃  and 𝐴 ∈  𝑃. Assume that there 

exists an increasing sequence of sets 

𝐾𝑛  ∈  𝑃  such that  Ω = ∪ 𝐾𝑛. 

2) A measurable function 𝑓 ∶  Ω →  [−∞, ∞] 

such that there exists a sequence {𝑔𝑛} ⊂

𝐸 , |𝑔𝑛| ≤  |𝑓| 𝑎𝑛𝑑 𝑔𝑛 (𝜔) →

 𝑓(𝜔)  ∀   𝜔 ∈ Ω. 

 

Definition 1.1, [3]. 

Let 𝜌 ∶  ℳ∞ →  [0, ∞] be an even, convex, and 

nontrivial function. We say that 𝜌 is a regular 

convex function pseudomodular if: 

a) 𝜌(0) = 0; 

b) 𝜌 is monotone, i.e., |𝑓(𝜔)|  ≤  |𝑔(𝜔)| for 

any 𝜔 ∈  Ω ⟹ 𝜌(𝑓)  ≤  𝜌(𝑔), where 

𝑓, 𝑔 ∈  ℳ∞; 

c) 𝜌 is orthogonally subadditive, i.e., 

𝜌(𝑓𝜒𝐴∪𝐵) ≤  𝜌(𝑓𝜒𝐴) +

 𝜌(𝑓𝜒𝐵) ∀   𝐴, 𝐵 ∈  𝛴    such that   𝐴 ∩

𝐵 ≠  𝜙, 𝑓 ∈  ℳ∞;   𝜒𝐴 denotes the 

characteristic function of the set 𝐴. 

d) 𝜌  has Fatou property, that is, |𝑓𝑛(𝜔)|  ↑

 |𝑓(𝜔)|∀𝜔 ∈  Ω ⟹ 𝜌(𝑓𝑛) ↑  𝜌(𝑓), where 

𝑓 ∈  ℳ∞; 

e) 𝜌  is order continuous in  

ℰ, i.e., 𝑔𝑛  ∈  ℰ, and |𝑔𝑛(𝜔)|  ↓  0 ⟹

𝜌(𝑔𝑛) ↓  0. 

 

Definition 1.2, [2]. 

 A set 𝐴 ∈  Σ  is  𝜌 −null if 𝜌(𝑔1𝐴) = 0   ∀   𝑔 ∈

 ℰ. 

A property holds 𝜌 −almost everywhere (𝜌 −

𝑎. 𝑒.) if the set {𝜔 ∈ Ω ∶ 𝜌(𝜔) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} is 

𝜌 −null. 

We identify any pair of measurable sets whose 

symmetric difference is 𝜌 −null as well as any 

pair of measurable functions differing only on a 

𝜌 −null set. For this, we define ℳ = {𝑓 ∈

ℳ∞: |𝑓(𝜔)| < ∞  𝜌 − 𝑎. 𝑒.} where each 𝑓 ∈ ℳ 

is an equivalence class of functions equal  𝜌 −

𝑎. 𝑒., rather than an individual function. 

Definition 1.3, [2]. 
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Let 𝜌 be a regular convex function 

pseudomodular. Then, we say that 𝜌 is a regular 

convex function modular if 𝜌(𝑓) = 0 ⟹ 𝑓 =

0  𝜌 − 𝑎. 𝑒. 

The class of all nonzero regular convex function 

modular defined on Ω is denoted by ℛ . 

 

Definition 1.4, [7]. 

Let 𝜌  be a convex function modular. Then the 

modular function space ℒ𝜌 is defined as: 

ℒ𝜌 = {𝑓 ∈ ℳ∞: 𝜌(𝜆𝑓) ⟶ 0 𝑎𝑠 𝜆 ⟶ 0}. 

Generally, the modular 𝜌 is not subadditive so it 

is not like a norm. 

Therefore, the modular space ℒ𝜌can be fitted with 

an 𝐹 −norm defined by: 

‖𝑓‖𝜌 = 𝑖𝑛𝑓 {𝛾 > 0: 𝜌 (
𝑓

𝛾
) ≤ 𝛾}. 

If 𝜌 is a convex modular. Then, 

‖𝑓‖𝜌 = 𝑖𝑛𝑓 {𝛾 > 0: 𝜌 (
𝑓

𝛾
) ≤ 1}. 

defines a norm on the modular space ℒ𝜌, and is 

called the Luxemburg norm.  

 

Definition 1.5, [10]. 

Let ℒ𝜌 be a modular space. Then: 

a) The sequence {𝑓𝑛}  ⊂  ℒ𝜌 is said to be 

𝜌 −convergent to 𝑓 ∈ ℒ𝜌 if 𝜌(𝑓𝑛  −  𝑓) →

0 𝑎𝑠 𝑛 →  ∞; 

b) The sequence {𝑓𝑛}  ⊂  ℒ𝜌 is said to be 

𝜌 −Cauchy if 𝜌(𝑓𝑛  −  𝑓𝑚) →

0  𝑎𝑠  𝑛, 𝑚 →  ∞; 

c) We say that ℒ𝜌 is 𝜌 −complete if and 

only if any 𝜌 −Cauchy sequence in 

ℒ𝜌 𝑖𝑠 𝜌 −convergent. 

 

Definition 1.6, [7]. 

A subset 𝐸 of ℒ𝜌 is called: 

a) 𝜌 −closed if the 𝜌 −limit of a 𝜌-

convergent sequence of 𝐸 always belongs 

to 𝐸; 

b) 𝜌 −compact if every sequence in 𝐸 has a 

𝜌 −convergent subsequence in 𝐸; 

c) 𝜌 −bounded if 𝛿𝜌(𝐸)  =  𝑠𝑢𝑝{ 𝜌(𝑓 −

 𝑔) ∶  𝑓, 𝑔 ∈  𝐸 }  <  ∞; 

d) The 𝜌 −distance between 𝑓 𝑎𝑛𝑑 𝐸 is 

defined as: 

𝑑𝜌(𝑓, 𝐸) = 𝑖𝑛𝑓{𝜌(𝑓 − 𝑗): 𝑗 ∈ 𝐸}. 

The nomenclature defined for 𝜌 is similar to 

metric spaces but 𝜌 does not satisfy triangle 

inequality. Hence, if a sequence in ℒ𝜌 is 

𝜌 −convergent it does not imply 𝜌 −Cauchy. This 

is only true if and only if     𝜌 satisfies 

∆2 −condition. 

 

Definition 1.7, [17]. 

The modular function 𝜌 is said to satisfy 

the   ∆2 −condition if   𝜌(2𝑓𝑛)  →  0 as 𝑛 

approaches ∞, whenever 𝜌(𝑓𝑛)  →  0 as 𝑛 

approaches    ∞. 

The modular 𝜌 satisfies some uniform convexity 

type properties. 

 

Definition 1.8, [16]. 

Let 𝜌 ∈ ℛ: 

a) For 𝑟 >  0, 𝜖 >  0. Define, 
𝐷1(𝑟, 𝜖) = {(𝑓, ℎ) ∶ 𝑓, ℎ ∈ ℒ𝜌,

𝜌(𝑓)  ≤  𝑟,

𝜌(ℎ) ≤  𝑟, 𝜌(𝑓 −  ℎ)  

≥  𝜖𝑟}. 

Let 

𝛿1(𝑟, 𝜖)  =  𝑖𝑛𝑓 {1 −  (
1

𝑟𝜌) (
𝑓+ℎ

2
) ∶

 (𝑓, ℎ)  ∈  𝐷1(𝑟, 𝜖)} , 𝑖𝑓 𝐷1(𝑟, 𝜖)  ≠  𝜙, 

and 𝛿1(𝑟, 𝜖) = 1   if 𝐷1(𝑟, 𝜖) = 𝜙. We say 

that 𝜌 satisfies (𝑈𝐶1) if for every 𝑟 >

 0, 𝜖 > 0, 𝛿1(𝑟, 𝜖) > 0. 

a) Note that for every 𝑟 >  0, 𝐷1(𝑟, 𝜖)  ≠  𝜙 

for every 𝜖 > 0 small 

enough. 

We say that 𝜌 satisfies (𝑈𝑈𝐶1) if for 

every 𝑠 ≥  0, 𝜖 > 0, there exists 

𝜂1(𝑠, 𝜖)  >  0 depending only upon 𝑠 and 

𝜖 such that 𝛿1(𝑟, 𝜖)  > 𝜂1(𝑠, 𝜖)  >  0 for 

any 𝑟 >  𝑠. 

b) We say that 𝜌 satisfies (𝑈𝑈𝐶2) if for 

every 𝑠 ≥  0, 𝜖 >  0, there exists 

𝜂2(𝑠, 𝜖)  >  0 depending upon 𝑠 and 𝜖 

such that 𝛿2(𝑟, 𝜖)  > 𝜂2(𝑠, 𝜖)  >  0 for 

any 𝑟 >  𝑠. Note that (𝑈𝐶1)  ⟹
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 (𝑈𝑈𝐶1) 𝑎𝑛𝑑 (𝑈𝐶𝐶1)  ⟹  (𝑈𝑈𝐶2). If 

𝜌 ∈ ℛ   satisfies    ∆2 −condition, then 

(𝑈𝑈𝐶2) is equivalent to (𝑈𝑈𝐶1). 

 

Definition 1.9, [6]. 

We will say that 𝜌 is uniformly continuous if for 

every 𝜖 >  0 and 𝑅 >  0, there exists 𝛿 >  0 

such that:  
|𝜌(𝑔) −  𝜌(𝑔 +  ℎ)| <  𝜖  𝑖𝑓 𝜌(ℎ) ≤  𝛿,

𝜌(𝑔)  ≤  𝑅. 

A sequence {𝑡𝑛}  ⊂  (0, 1) is called bounded 

away from 0 if there exists 𝑎 >  0 such that 𝑡𝑛  ≥

 𝑎 for every 𝑛 ∈  ℕ. Similarly, {𝑡𝑛}  ⊂  (0, 1) is 

called bounded away from 1 if there exists 𝑏 <

 1 such that 𝑡𝑛  ≥  𝑏 for every 𝑛 ∈  ℕ. The 

following lemma helps study the convergence of 

fixed points as well as attractive elements in the 

(𝑈𝑈𝐶1) MFS. 

Lemma 1.1, [6]. 

Let 𝜌 ∈ ℛ satisfy (𝑈𝑈𝐶1) and let {𝑡𝑛}  ⊂  (0, 1) 

be bounded away from 0  𝑎𝑛𝑑  1. If ∃ 𝑅 ≥ 0 such 

that: 
limsup

𝑛
 𝜌(𝑓𝑛) ≤ 𝑅,

limsup
𝑛

 𝜌(𝑔𝑛) ≤ 𝑅, 𝑎𝑛𝑑   

lim
𝑛→∞

 𝜌(𝑡𝑛𝑓𝑛 + (1 − 𝑡𝑛)𝑔𝑛) = 𝑅,    

then 
lim

𝑛→∞
 𝜌(𝑓𝑛 − 𝑔𝑛) = 0.    

The following theorem is necessary because MFS 

do not satisfy the triangle inequality. 

Theorem 1.1, [6]. 

Let 𝜌 ∈ ℛ satisfy ∆2 −condition. Let {𝑓𝑛} and 

{𝑔𝑛} be two sequences in ℒ𝜌. Then: 
lim

𝑛→∞
 𝜌(𝑔𝑛) = 0 ⟹  𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌(𝑓𝑛 + 𝑔𝑛)

= lim
𝑛→∞

 𝜌(𝑓𝑛)    

and 
lim

𝑛→∞
 𝜌(𝑔𝑛) = 0 ⟹  𝑙𝑖𝑚𝑖𝑛𝑓𝑛 𝜌(𝑓𝑛 + 𝑔𝑛)

= lim
𝑛→∞

 𝜌(𝑓𝑛)    

 

Definition 1.10, [6]. 

Let 𝑋 ⊂  ℒ𝜌 be convex and 𝜌 −bounded. A 

function 𝜏 ∶  𝑋 →  [0, ∞] is called a 𝜌 −type if 

there exists a sequence {𝑦𝑘} of elements of 𝑋 

such that for any 𝑥 ∈  𝑋 , 𝜏(𝑥)  =

 𝑙𝑖𝑚𝑠𝑢𝑝𝑘  𝜌(𝑦𝑘  −  𝑥) . 

Now the following lemma establishes an 

important minimizing sequence property of 

uniformly convex MFS which is used to prove the 

existence of fixed points. 

Lemma 1.2, [17]. 

Assume that 𝜌 ∈ ℛ is (𝑈𝑈𝐶1). Let 𝑋 be a 

𝜌 −closed 𝜌 −bounded convex nonempty subset 

of ℒ𝜌. Let 𝜏 be a 𝜌 −type defined on 𝑋. Then any 

minimizing sequence in 𝜏 is 𝜌-convergent. Its 𝜌-

limit is independent of the minimizing sequence. 

The following lemma is a modification of the 

above that is used to prove the existence of 

attractive elements without the condition of 

closedness. 

Lemma 1.3, [6]. 

Assume that 𝜌 ∈ ℛ is (𝑈𝑈𝐶1). Let 𝑋 be a 

𝜌 −bounded convex nonempty subset of ℒ𝜌. Let 𝜏 

be a 𝜌 −type defined on 𝑋. Then any minimizing 

sequence in 𝜏 is 𝜌 −convergent in ℒ𝜌. Its 𝜌 −limit 

is independent of the minimizing sequence. 

 

Definition 1.11, [3]. 

Let 𝜌 ∈ ℛ. The growth function of a modular 

function 𝜌 denoted by 𝜔𝜌 is defined as : 

𝜔𝜌(𝑥) = 𝑠𝑢𝑝 {
𝜌(𝑥𝑓)

𝜌(𝑓)
, 0 < 𝜌(𝑓) < ∞} ,

∀ 𝑥 ∈ [0, ∞) 

Note that if 𝑥 ∈ [0,1], then 𝜔𝜌(𝑥) ≤ 1. 

 

Definition 1.12, [3]. 

Let 𝑋 be a nonempty subset of a Hilbert space 𝐻. 

Let 𝑇: 𝑋 → 𝑋 be a mapping. 𝑥 ∈ 𝑋 is said to be a 

fixed point of 𝑇 if 𝑥 = 𝑇𝑥. 

The set of all fixed points is denoted by 𝐹(𝑇). 

 

Definition 1.13, [14]. 

Let 𝑋 be a nonempty subset of a Hilbert space 𝐻. 

A mapping 𝑇: 𝑋 → 𝑋 is said to be: 

(a) 𝜌 −nonexpansive mapping if 𝜌(𝑇𝑥 − 𝑇𝑦) ≤

𝜌(𝑥 − 𝑦), ∀𝑥, 𝑦 ∈ 𝑋. 

(b) 𝜌 −quasi-nonexpansive mapping if 𝜌(𝑇𝑥 −

𝑦) ≤ 𝜌(𝑥 − 𝑦), ∀𝑥 ∈ 𝑋 & 𝑦 ∈ 𝐹(𝑇). 

Theorem 1.2, [6]. 
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Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶1) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded convex subset of ℒ𝜌. Let 

𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝑘 −non-spreading mapping 

with   𝑘 ∈ (0,0.5]. Then 𝑇 has a 𝜌 −attractive 

point. 

Theorem 1.3, [6]. 

Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶2) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded, 𝜌 − closed convex 

subset of ℒ𝜌. Let 𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝛼 −non-

spreading mapping with 𝛼 ∈ (0,1), 𝑘 ∈ (0, 𝛼]. 

Then 𝑇 has a fixed point. 

 

 

2 Main Results 

We start this section by giving the notions of 

mappings 𝜌 − 𝛼 −and 𝜌 − 𝛼 − 𝑘 −non-spreading 

mappings. Then, we explain the concept of 

ρ−attractive elements and prove the existence and 

some of the convergent results. 

 

Definition 2.1 

Let 𝜌 ∈ ℛ. And 𝑇: 𝑋 → ℒ𝜌. Then: 

(1)  𝑇 is 𝜌 − 𝛼 −non-spreading mapping if 

for 𝛼 ∈ (0,1) we have: 
𝜌2(𝑇𝑥 − 𝑇𝑦) ≤ 𝛼𝜌2(𝑥 − 𝑇𝑦)

+ (1 − 𝛼)𝜌2(𝑇𝑥 − 𝑦)  ∀𝑥, 𝑦 ∈ 𝑋 

(2) 𝑇 is  𝜌 − 𝛼 − 𝑘 −non-spreading mapping 

if for 𝛼 ∈ (0,1) 𝑎𝑛𝑑  𝑘 > 0 we have: 
𝜌2(𝑇𝑥 − 𝑇𝑦) ≤ 𝑘(𝛼𝜌2(𝑥 − 𝑇𝑦)

+ (1 − 𝛼)𝜌2(𝑇𝑥 − 𝑦))  ∀𝑥, 𝑦 ∈ 𝑋 

Note that for 𝛼 =
1

2
 , 𝑘 = 1 we get a 𝜌 −

1

2
 −

1 −non-spreading mapping which is similar to 

𝜌 −
1

2
 −non-spreading mapping with 𝐹(𝑇) ≠ ∅ is 

𝜌 −quasi-nonexpansive mapping. 

In fact, if 𝑦 is a fixed point of 𝑇, then from the 

previous definition taking  ∝=
1

2
 , 𝑘 = 1 we get: 

𝜌2(𝑇𝑥 − 𝑇𝑦) ≤
1

2
𝜌2(𝑥 − 𝑇𝑦) +

1

2
𝜌2(𝑇𝑥 − 𝑦) 

⟹ 2𝜌2(𝑇𝑥 − 𝑇𝑦) ≤ 𝜌2(𝑥 − 𝑇𝑦) + 𝜌2(𝑇𝑥 − 𝑦) 

⟹ 2𝜌2(𝑇𝑥 − 𝑦)

≤ 𝜌2(𝑥 − 𝑦)

+ 𝜌2(𝑇𝑥 − 𝑦) 𝑠𝑖𝑛𝑐𝑒 𝑦 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑇 

⟹ 𝜌2(𝑇𝑥 − 𝑦) ≤ 𝜌2(𝑥 − 𝑦). 

 

Definition 2.2 (𝝆 −attractive element) 

Let 𝜌 be a convex modular function, 𝑋 be a 

nonempty subset of ℒ𝜌, and 𝑇: 𝑋 → 𝑋 be a 

mapping. Then a function 𝑦 ∈ ℒ𝜌 is called 

𝜌 −attractive element of 𝑇 if  ∀𝑥 ∈ 𝑋 we have 

𝜌(𝑇𝑥 − 𝑦) ≤ 𝜌(𝑥 − 𝑦). 
The set of all 𝜌 −attractive elements of 𝑇 is 

denoted by 𝐴𝜌(𝑇). 

Now, before we prove the existence of 

𝜌 −attractive element of 𝑇, we start with the 

following two lemmas. 

Lemma 2.1 

Let 𝜌 ∈ ℛ be uniformly continuous. Let 𝑋 ∈

ℒ𝜌(nonempty) and 𝑇: 𝑋 → ℒ𝜌, with 𝐴𝜌(𝑇) ≠ ∅. 

Then 𝐴𝜌(𝑇) is closed. 

Remark:  

To prove this, we have to show that for any 

{𝑦𝑛} ⊂ 𝐴𝜌(𝑇),   such that  lim
𝑛→∞

𝜌(𝑦𝑛 − 𝑦) =

0, then  𝑦 ∈ 𝐴𝜌(𝑇). 

Proof: 

Let  𝑥 ∈ 𝑋 ⟹  𝜌(𝑇𝑥 − 𝑦) ≤ 𝜌((𝑇𝑥 − 𝑦𝑛) −

(𝑦 − 𝑦𝑛)), 

Since 𝜌 is uniformly continuous and taking 

lim
𝑛→∞

𝜌(𝑇𝑥 − 𝑦) ≤ 𝜌((𝑇𝑥 − 𝑦𝑛) − (𝑦 − 𝑦𝑛))  ⟹

 𝜌(𝑇𝑥 − 𝑦) ≤ lim
𝑛→∞

𝜌(𝑇𝑥 − 𝑦𝑛) ≤ lim
𝑛→∞

𝜌(𝑥 −

𝑦𝑛) = 𝜌(𝑥 − 𝑦). 𝑖. 𝑒 𝑦 ∈

𝐴𝜌(𝑇).  Hence 𝐴𝜌(𝑇) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑.     ∎  

The equation above showcase clearly that an 

attractive point is not necessarily a fixed point 

from their definitions. In this point, it is worth 

mentioning that if the mapping is 𝜌 −quasi-

nonexpansive mapping then the 𝜌 −attractive 

elements which are in 𝑋 must be fixed points of  

𝑇. 

Lemma 2.2 

Let 𝜌 ∈ ℛ be uniformly continuous, 𝑋 ∈ ℒ𝜌 

(nonempty), and 𝑇: 𝑋 → ℒ𝜌 be an 𝜌 −quasi-

nonexpansive mapping. Then 𝐴𝜌(𝑇)  ∩ 𝑋 =

𝐹(𝑇). 

Proof: 

(⟹) 𝐿𝑒𝑡 𝑦 ∈ 𝐴𝜌(𝑇)  ∩ 𝑋.  𝑇ℎ𝑒𝑛 𝑦 ∈

𝐴𝜌(𝑇).  𝑆𝑜 𝜌(𝑇𝑥 − 𝑦) ≤ 𝜌(𝑥 − 𝑦) ∀ 𝑥 ∈ 𝑋. 
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𝑁𝑜𝑤 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑐𝑎𝑠𝑒  𝐿𝑒𝑡 𝑥 = 𝑦

⟹  𝜌(𝑇𝑦 − 𝑦) ≤ 𝜌(𝑦 − 𝑦) = 0

⟹ 𝜌(𝑇𝑦 − 𝑦) = 0 ⟹ 𝑇𝑦 = 𝑦

⟹ 𝑦 ∈ 𝐹(𝑇). 

Conversely, 

(⟸) 𝐿𝑒𝑡 𝑧 ∈ 𝐹(𝑇).  𝑆𝑖𝑛𝑐𝑒 𝑇  𝑖𝑠  𝜌-quasi-

nonexpansive mapping, then for           𝑥 ∈ 𝑋,

𝑤𝑒 ℎ𝑎𝑣𝑒  𝜌(𝑇𝑥 − 𝑧) ≤ 𝜌(𝑥 − 𝑧).   𝑆𝑜, 𝑧 ∈

𝐴𝜌(𝑇).  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝑧 ∈ 𝐴𝜌(𝑇)  ∩ 𝑋.      ∎   

Now, we have to prove the existence of 

𝜌 −attractive point for 𝜌 − 𝛼 −non-spreading 

mapping for 𝛼 ∈ (0,1). 

Theorem 2.1 

Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶1) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded convex subset of ℒ𝜌. Let 

𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝛼 −non-spreading mapping 

with 𝛼 ∈ (0,1). Then 𝑇 has a 𝜌 −attractive point. 

Proof: 

Let {𝑥0} ⊂ 𝑋. Define the 𝜌 − type, 𝜏: 𝑋 → [0, ∞) 

by  

𝜏(𝑥) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑥 − 𝑇𝑛(𝑥0)) 

By Lemma 1.3. ∃ a minimizing sequence (say 

{𝑦𝑛}) of 𝜏, s.t.  

𝜏(𝑦𝑛) = 𝑖𝑛𝑓𝑥∈𝑋𝜏(𝑥). 

But {𝑇𝑛(𝑥0)} ⊂ 𝑋 and 𝑋 is 𝜌 −bounded 

(Definition 1.6), we get: 

𝜏(𝑥) ≤ 𝛿𝜌(𝑋) < ∞  ∀𝑥 ∈ 𝑋.  

Also 

𝜏(𝑇𝑥) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌(𝑇𝑥 − 𝑇𝑛(𝑥0)). 

Now, by Definition 2.1 (1), we have: 

𝜌2(𝑇𝑛(𝑥0) − 𝑇𝑥)

≤ 𝛼𝜌2(𝑇𝑥 − 𝑇𝑛−1(𝑥0))

+ (1 − 𝛼)𝜌2(𝑥 − 𝑇𝑛(𝑥0)). 

Letting 𝑛 → ∞ we have: 

𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌2(𝑇𝑛(𝑥0) − 𝑇𝑥)

≤ 𝛼 𝑙𝑖𝑚𝑠𝑢𝑝𝑛𝜌2(𝑇𝑥 − 𝑇𝑛−1(𝑥0))

+ (1 − 𝛼) 𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌2(𝑥

− 𝑇𝑛(𝑥0)). 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒    𝜏2(𝑇𝑥)

≤ 𝛼𝜏2(𝑇𝑥) + (1 − 𝛼)𝜏2(𝑥). 

𝐼𝑚𝑝𝑙𝑖𝑒𝑠   𝜏2(𝑇𝑥) ≤
1 − 𝛼

1 − 𝛼
𝜏2(𝑥). 

𝑆𝑜,   𝜏2(𝑇𝑥) ≤  𝜏2(𝑥). 

Thus  

𝜏2(𝑇𝑦𝑛) ≤ 𝜏2(𝑦𝑛).   𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  {𝑇(𝑦𝑛)} is also 

a minimizing sequence of 𝜏. 

Now, depending on Lemma 1.3 {𝑦𝑛} converges to 

some 𝑦 ∈ ℒ𝜌 and for any other minimizing 

sequence converges to 𝑦, then lim
𝑛→∞

𝑇𝑦𝑛 = 𝑦. 

So, we have to show that 𝑦 is the 𝜌 −attractive 

point of  𝑇. 

By Definition 2.1 (1) and uniformly continuous of 

𝜌 , we get: 

𝑙𝑖𝑚𝑛→∞𝜌2(𝑇𝑦𝑛 − 𝑇𝑥) ≤ 𝛼𝑙𝑖𝑚𝑛→∞𝜌2(𝑇𝑥 −

𝑦𝑛) + (1 − 𝛼)𝑙𝑖𝑚𝑛→∞𝜌2(𝑥 − 𝑇𝑦𝑛). 

So, 

  𝜌2(𝑦 − 𝑇𝑥) ≤ 𝛼𝜌2(𝑇𝑥 − 𝑦)

+ (1 − 𝛼)𝜌2(𝑥 − 𝑦). 

Hence  (1 − 𝛼)𝜌2(𝑦 − 𝑇𝑥) ≤ (1 − 𝛼)𝜌2(𝑥 − 𝑦). 

𝑇ℎ𝑢𝑠  𝜌2(𝑇𝑥 − 𝑦) ≤ 𝜌2(𝑥 − 𝑦). 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑦 is a 𝜌 −attractive point of 

𝑇.                                                                                ∎ 

Consequently, we have to prove the existence of 

𝜌 −attractive point for 𝜌 − 𝛼 − 𝑘 −non-spreading 

mapping for 𝛼 ∈ (0,1), 𝑘 ∈ (0, 𝛼]. 

Theorem 2.2 

Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶1) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded convex subset of ℒ𝜌. Let 

𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝛼 − 𝑘 −non-spreading 

mapping with 𝛼 ∈ (0,1), 𝑘 ∈ (0, 𝛼]. Then 𝑇 has a 

𝜌 −attractive point. 

Proof: 

Let {𝑥0} ⊂ 𝑋. Define the 𝜌 − type, 𝜏: 𝑋 → [0, ∞) 

by  

𝜏(𝑥) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑥 − 𝑇𝑛(𝑥0)) 

By Lemma 1.3. ∃ a minimizing sequence (say 

{𝑦𝑛}) of 𝜏, s.t.  

𝜏(𝑦𝑛) = 𝑖𝑛𝑓𝑥∈𝑋𝜏(𝑥). 

Since {𝑇𝑛(𝑥0)} ⊂ 𝑋 and 𝑋 is 𝜌 − bounded 

(Definition 1.6) we get: 

𝜏(𝑥) ≤ 𝛿𝜌(𝑋) < ∞  ∀𝑥 ∈ 𝑋. 

Also 

𝜏(𝑇𝑥) = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌(𝑇𝑥 − 𝑇𝑛(𝑥0)). 

Now, by Definition 2.1 (2), we have: 

𝜌2(𝑇𝑛(𝑥0) − 𝑇𝑥)

≤ 𝑘(𝛼𝜌2(𝑇𝑥 − 𝑇𝑛−1(𝑥0))

+ (1 − 𝛼)𝜌2(𝑥 − 𝑇𝑛(𝑥0)))   
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Letting 𝑛 → ∞ we have: 
𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌2(𝑇𝑛(𝑥0) − 𝑇𝑥)

≤ 𝑘 (𝛼 𝑙𝑖𝑚𝑠𝑢𝑝𝑛𝜌2(𝑇𝑥

− 𝑇𝑛−1(𝑥0))

+ (1 − 𝛼) 𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌2(𝑥

− 𝑇𝑛(𝑥0))). 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒  𝜏2(𝑇𝑥)

≤ 𝑘𝛼𝜏2(𝑇𝑥) + 𝑘(1 − 𝛼)𝜏2(𝑥). 

𝑆𝑜, 𝜏2(𝑇𝑥) ≤
(1 − 𝛼)𝑘

1 − 𝛼𝑘
𝜏2(𝑥). 

Since 
(1−𝛼)𝑘

1−𝛼𝑘
< 1, we get: 

 𝜏2(𝑇𝑥) ≤  𝜏2(𝑥). 

Thus, 

𝜏2(𝑇𝑦𝑛) ≤ 𝜏2(𝑦𝑛).  𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 {𝑇(𝑦𝑛)} is also a 

minimizing sequence of 𝜏. 

Now, depending on Lemma 1.3, {𝑦𝑛} converges 

to some 𝑦 ∈ ℒ𝜌 and for any other minimizing 

sequence converges to 𝑦. Then lim
𝑛→∞

𝑇𝑦𝑛 = 𝑦. 

So, we have to show that 𝑦 is the 𝜌 −attractive 

point of 𝑇. 

Since 𝜌 is uniformly continuous, we have 
𝑙𝑖𝑚𝑛→∞𝜌2(𝑇𝑦𝑛 − 𝑇𝑥)

≤ 𝑘(𝛼𝑙𝑖𝑚𝑛→∞𝜌2(𝑇𝑥 − 𝑦𝑛)

+ (1 − 𝛼)𝑙𝑖𝑚𝑛→∞𝜌2(𝑥 − 𝑇𝑦𝑛)). 

𝑇ℎ𝑢𝑠  𝜌2(𝑦 − 𝑇𝑥)

≤ 𝛼𝑘𝜌2(𝑇𝑥 − 𝑦)

+ (1 − 𝛼)𝑘𝜌2(𝑥 − 𝑦). 

𝐻𝑒𝑛𝑐𝑒  (1 − 𝛼𝑘)𝜌2(𝑦 − 𝑇𝑥)

≤ (1 − 𝛼)𝑘𝜌2(𝑥 − 𝑦). 

𝑆𝑜, 𝜌2(𝑇𝑥 − 𝑦) ≤ 𝜌2(𝑥 − 𝑦). 

Therefore  𝑦 is a 𝜌 −attractive point of  

𝑇.                                                               ∎ 

Note that Theorem 2.1 is a special case of 

Theorem 2.2 when (𝑘 = 1). 

As a special case, if we take 𝛼 =
1

2
  𝑎𝑛𝑑  𝑚 =

𝑘

2
 , 

then Definition 2.1 (2) implies that 
𝜌2(𝑇𝑥 − 𝑇𝑦) ≤ 𝑚(𝜌2(𝑥 − 𝑇𝑦) + 𝜌2(𝑇𝑥 − 𝑦)), 

which is Definition 2.1. in, [6], (𝜌 − 𝑚 −non-

spreading mapping). 

In our main result if we take 𝛼 =
1

2
 𝑎𝑛𝑑 𝑚 =

𝑘

2
, 

then we obtain the results of Theorem 1.2 and 1.3, 

[6].  

 

Corollary 2.1, [6]. 

Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶1) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded convex subset of ℒ𝜌. Let 

𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝑚 −non-spreading mapping 

with  𝑚 ∈ (0,0.5]. Then 𝑇 has a 𝜌 −attractive 

point. 

Corollary 2.2, [6]. 
Let ℒ𝜌 be complete, 𝜌 ∈ ℛ is (𝑈𝑈𝐶2) and 

uniformly continuous. Assume that 𝑋 is a 

nonempty 𝜌 − bounded, 𝜌 − closed convex 

subset of ℒ𝜌. Let 𝑇: 𝑋 → 𝑋 be a 𝜌 − 𝛼 −non-

spreading mapping with 𝛼 ∈ (0,1), 𝑚 ∈ (0, 𝛼]. 

Then 𝑇 has a fixed point. 

Theorem 2.3 

Let 𝜌 ∈ ℛ satisfy (𝑈𝑈𝐶2) and ∆2 −condition. Let 

𝑋 is a nonempty convex subset of ℒ𝜌 and 𝑇: 𝑋 →

ℒ𝜌 be a 𝜌 − 𝛼 −non-spreading mapping with 𝛼 ∈

(0,1), 𝑘 ∈ (0, 𝛼]. Suppose 𝐴𝜌(𝑇) is nonempty, 

define the sequence {𝑥𝑛} as follows: 

𝑥𝑛+1 = 𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛,     

𝑦𝑛 = 𝑏𝑛𝑥𝑛 + (1 − 𝑏𝑛)𝑇𝑥𝑛                                (1) 

with 0 < 𝑎𝑛 , 𝑏𝑛 < 1. Then lim
𝑛→∞

𝜌(𝑓𝑛 − ℎ) exists 

for 𝑧 ∈ 𝐴𝜌(𝑇) and lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑇𝑥𝑛) = 0. 

Proof: 

Suppose that 𝑧 ∈ 𝐴𝜌(𝑇), since 𝜌 is convex, we 

get: 
𝜌(𝑥𝑛+1 − 𝑧) = 𝜌(𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛 − 𝑧) 

 ≤ 𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑧) + (1 − 𝑎𝑛)(𝑇𝑦𝑛 − 𝑧)) 

 ≤ 𝑎𝑛𝜌(𝑇𝑥𝑛 − 𝑧) + (1 − 𝑎𝑛)𝜌(𝑇𝑦𝑛 − 𝑧) 

   ≤ 𝑎𝑛𝜌(𝑥𝑛 − ℎ) + (1 − 𝑎𝑛)𝜌(𝑦𝑛 − 𝑧)            (2) 

Also, we have: 
𝜌(𝑦𝑛 − 𝑧) = 𝜌(𝑏𝑛𝑥𝑛 + (1 − 𝑏𝑛)𝑇𝑥𝑛 − 𝑧) 

                                   

≤ 𝜌(𝑏𝑛(𝑥𝑛 − 𝑧) + (1 − 𝑏𝑛)(𝑇𝑥𝑛

− 𝑧)) 

                                

≤ 𝑏𝑛𝜌(𝑥𝑛 − 𝑧) + (1 − 𝑏𝑛)𝜌(𝑥𝑛

− 𝑧) 

                               ≤ 𝜌(𝑥𝑛 − 𝑧)                           (3) 

Therefore: 
𝜌(𝑥𝑛+1 − 𝑧) ≤ 𝜌(𝑥𝑛 − 𝑧) 
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Now because of {𝑥𝑛} is 𝜌 − bounded and 𝜌(𝑥𝑛 −

𝑧) is a nonincreasing sequence, we get that  

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑧) exists for 𝑧 ∈ 𝐴𝜌(𝑇). 

However, we have to show that lim
𝑛→∞

𝜌(𝑥𝑛 −

𝑇𝑥𝑛) = 0. 

Let lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑧) = 𝐾                                (4) 

For 𝑧 ∈ 𝐴𝜌(𝑇), we have 𝜌(𝑇𝑥𝑛 − 𝑧) ≤ 𝜌(𝑥𝑛 −

𝑧).  

So, 𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑇𝑥𝑛 − 𝑧) ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑥𝑛 − 𝑧)  

𝑖𝑚𝑝𝑙𝑖𝑒𝑠  𝑙𝑖𝑚𝑠𝑢𝑝𝑛 𝜌(𝑇𝑥𝑛 − 𝑧) ≤ 𝐾                  (5) 

Also,    𝜌(𝑇𝑦𝑛 − 𝑧) ≤ 𝜌(𝑦𝑛 − 𝑧) ≤ 𝜌(𝑥𝑛 − 𝑧). 

Which implies that 𝜌(𝑇𝑦𝑛 − 𝑧) ≤

𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑇𝑦𝑛 − 𝑧) ≤ 𝐾         (6) 

And    𝜌(𝑦𝑛 − 𝑧) ≤ 𝜌(𝑥𝑛 − 𝑧) →

𝑙𝑖𝑚𝑠𝑢𝑝𝑛  𝜌(𝑦𝑛 − 𝑧) ≤ 𝐾                                   (7) 

Thus, 

𝐾 = lim
𝑛→∞

𝜌(𝑥𝑛+1 − 𝑧)

= lim
𝑛→∞

𝜌(𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛

− 𝑧) 

= lim
𝑛→∞

𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑧) + (1 − 𝑎𝑛)(𝑇𝑦𝑛 − 𝑧))  .                                                                        

(8) 

By (5), (6), (8) and Lemma 1.1, we get: 

lim
𝑛→∞

𝜌(𝑇𝑥𝑛 − 𝑇𝑦𝑛) = 0. 

Now we have to prove lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑇𝑥𝑛) = 0.  

For 𝜀 > 0, then ∃ 𝑛0 ∈ ℕ such that: 

 𝜌(𝑇𝑥𝑛 − 𝑇𝑦𝑛) < 𝜀,      ∀𝑛 ≥ 𝑛0 

By the definition of growth function, we have: 

𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑇𝑦𝑛)) ≤ 𝜔𝜌(𝑎𝑛)𝜌(𝑇𝑥𝑛 − 𝑇𝑦𝑛)

≤ 𝜌(𝑇𝑥𝑛 − 𝑇𝑦𝑛) ≤ 𝜀 

Thus, 

lim
𝑛→∞

𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑇𝑦𝑛)) = 0.                       (9) 

Now, 

𝜌(𝑥𝑛+1 − 𝑧)   = 𝜌(𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛 − 𝑧)

= 𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑇𝑦𝑛) + (𝑇𝑦𝑛

− 𝑧)). 

So, by Theorem 1.1 and (9), we get: 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝜌(𝑥𝑛+1 − 𝑧)

= 𝑙𝑖𝑚𝑖𝑛𝑓𝑛 𝜌(𝑎𝑛(𝑇𝑥𝑛 − 𝑇𝑦𝑛)

+ (𝑇𝑦𝑛 − 𝑧)) 

   =    𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝜌(𝑇𝑦𝑛 − 𝑧) 

Therefore, 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛 𝜌(𝑇𝑦𝑛 − 𝑧) = 𝐾. 

Now, 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝜌(𝑇𝑦𝑛 − 𝑧) ≤ 𝑙𝑖𝑚𝑖𝑛𝑓𝑛 𝜌(𝑦𝑛 − 𝑧) → 𝐾 ≤

𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝜌(𝑦𝑛 − 𝑧)                                          (10) 

By (7) and (10), we get: 

lim
𝑛→∞

𝜌(𝑦𝑛 − 𝑧) = 𝐾 

Consequently, 

lim
𝑛→∞

𝜌(𝑦𝑛 − 𝑧) = lim
𝑛→∞

𝜌(𝑏𝑛(𝑥𝑛 − 𝑧) +

(1 − 𝑏𝑛)(𝑇𝑥𝑛 − 𝑧)) = 𝐾                                (11) 

Hence, by (4), (5), (11), and Lemma 1.1, we 

obtain: 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑇𝑥𝑛) = 0            ∎ 

 

Definition 2.3 

Let 𝑋 be a nonempty subset of ℒ𝜌. A mapping 

𝑇: 𝑋 → 𝑋 is said to satisfy condition (𝐽) if there 

exists a nondecreasing function 𝛾: [0, ∞) →

[0, ∞) with 𝛾(0) = 0, 𝛾(𝑗) > 0  ∀𝑗 ∈ (0, ∞), 

such that 𝜌(𝑥 − 𝑇𝑥) ≥ 𝛾 (𝐷𝜌 (𝑥, 𝐴𝜌(𝑇)))  where 

𝐷𝜌 (𝑥, 𝐴𝜌(𝑇)) = inf{𝜌(𝑥 − 𝑦): 𝑦 ∈ 𝐴𝜌(𝑇)}. 

The following example explains a mapping that 

satisfies the condition (𝐽). 

Example 2.1 

Let ℎ (the set of real numbers) be the space 

modulared as 𝜌(𝑥) = |𝑥| . Let 𝑋 = {𝑥 ∈ ℎ𝜌: 0 <

𝑥 < 1}, define 𝑇: 𝑋 → 𝑋  as  𝑇𝑥 =
𝑥

2
 . 

Clearly, 𝑇 is 𝜌 −
1

4
− 1 −non-spreading mapping. 

Clear that 𝑦 ∈ ℎ𝜌 is an attractive point of 𝑇 if 

𝜌(𝑇𝑥 − 𝑦) ≤ 𝜌(𝑥 − 𝑦) ∀𝑥 ∈ 𝑋. 

Suppose that 𝑦 ∈ 𝐴𝜌(𝑇), then: 

          |
𝑥

2
− 𝑦| ≤ |𝑥 − 𝑦|                                   (12) 

|
𝑥

2
− 𝑦|

2

≤ |𝑥 − 𝑦|2 

                 |
𝑥

2
− 𝑦|

2
− |𝑥 − 𝑦|2 ≤ 0                 

(
𝑥

2
− 𝑦 + 𝑥 − 𝑦) (

𝑥

2
− 𝑦 − 𝑥 + 𝑦)

≤ 0                                                           

(
3𝑥

2
− 2𝑦) (

−𝑥

2
) ≤ 0                            

Hence, we have 𝑦 ≤
3𝑥

2
 . Because 𝑦 must satisfy 

equation (12) ∀   0 < 𝑥 < 1,   𝑦 ≤ 0 . Therefore 

𝐴𝜌(𝑇) = (−∞, 0]. 

Now define a continuous nondecreasing function 

𝛾: [0,∞) → [0,∞)by 𝛾(𝑧) =
𝑧

8
 . Then we get: 
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𝛾 (𝐷𝜌 (𝑥, 𝐴𝜌(𝑇))) = 𝛾 (𝐷𝜌(𝑥, (−∞, 0]))

= 𝛾(|𝑥|) =
|𝑥|

8
< |

𝑥

2
− 𝑥| 

Thus, 𝜌(𝑥 − 𝑇𝑥) ≥ 𝛾 (𝐷𝜌 (𝑥, 𝐴𝜌(𝑇)))  ∀𝑥 ∈ 𝑋. 

Theorem 2.4 

Let 𝜌 ∈ ℛ satisfy (𝑈𝑈𝐶2), ∆2 −condition, and 𝜌 

is uniformly continuous. Let 𝑋 be a nonempty 

convex subset of ℒ𝜌 and 𝑇: 𝑋 → 𝑋 be a 𝜌 −

𝛼 −non-spreading mapping with 𝛼 ∈ (0,1), 𝑘 ∈

(0, 𝛼]. Assume 𝐴𝜌(𝑇) ≠ ∅ and 𝑇 satisfies the 

condition (𝐽). Let {𝑥𝑛} be a sequence defined as 

follows: 𝑥𝑛+1 = 𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛, 

𝑦𝑛 = 𝑏𝑛𝑥𝑛 + (1 − 𝑏𝑛)𝑇𝑥𝑛 

with 0 < 𝑎𝑛 , 𝑏𝑛 < 1. Then {𝑥𝑛}  𝜌 −converges to 

𝜌 −attractive point of  𝑇. 

Proof: 

It’s clear that  𝜌(𝑥𝑛+1 − 𝑧) ≤ 𝜌(𝑥𝑛 − 𝑧)and 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑇𝑥𝑛) = 0. Then by condition (𝐽) and 

Theorem 2.3, we get: 

𝑙𝑖𝑚𝑖𝑛𝑓 𝜌(𝑥𝑛 − 𝑇𝑥𝑛) ≥

𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝛾 (𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇))), 

                                    0 ≥

𝑙𝑖𝑚𝑖𝑛𝑓𝑛  𝛾 (𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇))). 

So, lim
𝑛→∞

𝛾 (𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇))) = 0. 

Follow that lim
𝑛→∞

𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇)) = 0, since 

𝛾(0) = 0. 

Now we have to show that {𝑥𝑛} is 𝜌-cauchy. 

Because of  lim
𝑛→∞

𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇)) = 0, let 𝜖 > 0, 

then ∃ 𝑛0 such that for 𝑛 ≥ 𝑛0: 

𝐷𝜌 (𝑥𝑛, 𝐴𝜌(𝑇)) <
𝜖

2
 and {inf 𝜌(𝑥𝑛 − 𝑧) ∶

𝑧 ∈ 𝐴𝜌(𝑇)} <
𝜖

2
 

Then ∃ 𝑧∗ ∈ 𝐴𝜌(𝑇) such that 𝜌(𝑥𝑛0
− 𝑧∗) < 𝜖.  

Now for 𝑛, 𝑚 ≥ 𝑛0, by convexity of  𝜌  and since 

𝜌(𝑥𝑛 − 𝑧) is nonincreasing we get: 

𝜌 (
𝑥𝑛+𝑚 − 𝑥𝑛

2
) ≤ 𝜌 (

(𝑥𝑛+𝑚 − 𝑧) − (𝑥𝑛 − 𝑧)

2
)

≤
1

2
𝜌(𝑥𝑛+𝑚 − 𝑧) +

1

2
𝜌(𝑥𝑛 − 𝑧) 

<
1

2
𝜌(𝑥𝑛0

− 𝑧∗) +
1

2
𝜌(𝑥𝑛0

− 𝑧∗) = 𝜌(𝑥𝑛0
− 𝑧∗)

< 𝜖 

Hence, by ∆2 −condition, {𝑥𝑛} is 𝜌 −cauchy 

sequence. Since ℒ𝜌 is complete, {𝑥𝑛} is 

𝜌 −converge to some 𝑦 ∈ ℒ𝜌. 

Now let lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑦) = 0 . Then by convexity 

of 𝜌 and Theorem 2.3 we get: 

lim
𝑛→∞

𝜌(𝑇𝑥𝑛 − 𝑦) = 0 

Moreover, by definition 2.1 (2) and uniform 

convexity of  𝜌  we have the following: 

𝜌

2

(𝑇𝑥𝑛 − 𝑇𝑥) ≤ 𝑘(𝛼𝜌

2

(𝑥𝑛 − 𝑇𝑥)

+ (1 − 𝛼)𝜌2(𝑇𝑥𝑛 − 𝑥))   

This implies: 

𝜌2(𝑦 − 𝑇𝑥) ≤ 𝑘(𝛼𝜌2(𝑦 − 𝑇𝑥)

+ (1 − 𝛼)𝜌2(𝑦 − 𝑥))  
 

Thus, 
𝜌(𝑦 − 𝑇𝑥) ≤

(1 − 𝛼)𝑘

1 − 𝛼𝑘
𝜌(𝑦 − 𝑥) ≤ 𝜌(𝑦 − 𝑥) 

Therefore, 

𝑦 ∈ 𝐴𝜌(𝑇) and  lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑦) = 0.            ∎ 

 

Definition 2.4, [18]. 

Let  𝑋  be a subset of  ℒ𝜌. A mapping 𝑇: 𝑋 → ℒ𝜌 

is said to be 𝜌 −demicompact if it has the 

property that whenever {𝑥𝑛} ∈ 𝑋 is 𝜌 −bounded 

and the {𝑥𝑛 − 𝑇𝑥𝑛}  is  𝜌 −converge, then 

∃ {𝑥𝑛𝑘
} subsequence which is  𝜌 −converge. 

Theorem 2.5 

Let 𝜌 ∈ ℛ satisfy (𝑈𝑈𝐶2) and ∆2 −condition. In 

addition, 𝜌 is uniformly continuous. Let 𝑋 be a 

nonempty convex subset of ℒ𝜌 and 𝑇: 𝑋 → 𝑋 be a 

𝜌 − 𝛼 −non-spreading mapping with 𝛼 ∈ (0,1),

𝑘 ∈ (0, 𝛼] and 𝜌 −demicompact mapping with 

𝐴𝜌(𝑇) ≠ ∅. Let {𝑥𝑛} be a sequence defined as 

follows: 𝑥𝑛+1 = 𝑎𝑛𝑇𝑥𝑛 + (1 − 𝑎𝑛)𝑇𝑦𝑛, 

𝑦𝑛 = 𝑏𝑛𝑥𝑛 + (1 − 𝑏𝑛)𝑇𝑥𝑛 

with 0 < 𝑎𝑛 , 𝑏𝑛 < 1. Then {𝑥𝑛} 𝜌 −converges to 

𝜌 −attractive point of  𝑇. 

Proof: 

{𝑥𝑛}  is a bounded sequence and lim
𝑛→∞

𝜌(𝑥𝑛 −

𝑇𝑥𝑛) = 0 by Theorem 2.3. 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.10 Mohammad Amro, Abdalla Tallafha, Wasfi Shatanawi

E-ISSN: 2224-2880 87 Volume 22, 2023



Also, ∃ a subsequence {𝑥𝑛𝑘
} of  {𝑥𝑛} and  𝑦 ∈ ℒ𝜌 

such that lim
𝑛→∞

𝜌(𝑥𝑛𝑘
− 𝑦) = 0 by definition 2.4. 

Moreover, since  𝜌  is uniformly continuous and 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑇𝑥𝑛) = 0, we get: 

lim
𝑛→∞

𝜌(𝑇𝑥𝑛𝑘
− 𝑦) = 0 

Now, return to the definition 2.1 (2) and by the 

uniform continuity of  𝜌  we have: 

lim
𝑛→∞

𝜌2(𝑇𝑥𝑛𝑘
− 𝑇𝑥)  

≤ 𝑘 lim
𝑛→∞

(𝛼𝜌2(𝑥𝑛𝑘
− 𝑇𝑥)

+ (1 − 𝛼)𝜌2(𝑇𝑥𝑛𝑘
− 𝑥)) 

And so: 

𝜌2(𝑦 − 𝑇𝑥) ≤ 𝑘(𝛼𝜌2(𝑦 − 𝑇𝑥)

+ (1 − 𝛼)𝜌2(𝑦 − 𝑥))   

𝜌(𝑦 − 𝑇𝑥) ≤
(1 − 𝛼)𝑘

1 − 𝛼𝑘
𝜌(𝑦 − 𝑥) 

Therefore,   

                                              𝜌(𝑦 − 𝑇𝑥) ≤ 𝜌(𝑦 − 𝑥)  

since  
(1−𝛼)𝑘

1−𝛼𝑘
< 1 

Hence, 𝑦 ∈ 𝐴𝜌(𝑇). 

By Theorem (2.3) if  lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑦) =

0  𝑒𝑥𝑖𝑠𝑡𝑠  ∀ 𝑦 ∈ 𝐴𝜌(𝑇) , then 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑦) = 0  .                                     ∎ 

 

 

3 Numerical Results 

Example 3.1 

Let ℝ (the set of real numbers) be the space 

modulared as 𝜌(𝑥) = |𝑥|. Let 𝑋 = {𝑥 ∈ ℒ𝜌: 0 <

𝑥 < 1}, define 𝑇: 𝑋 → 𝑋 as 𝑇𝑥 =
𝑥

2
 . 

𝑋 is a nonempty convex subset of ℝ that satisfies 

(𝑈𝐶1) conditions.  

𝜌(𝑥) = |𝑥| is a uniformly continuous function 

and (𝑈𝑈𝐶2) holds. 

𝐴𝜌(𝑇) is nonempty. 

𝑥𝑛+1 = 𝑎𝑇𝑥𝑛 + (1 − 𝑎)𝑇𝑦𝑛, where, 

𝑦𝑛 = 𝑏𝑥𝑛 + (1 − 𝑏)𝑇𝑥𝑛 . 

Choose 𝑥1 = 0.3 using Matlab program we get 

the results in Table 2 below. 

We see that the sequence {𝑥𝑛} converges to 0 and 

we can increase the speed of convergence by 

changing the values of 𝑎 𝑎𝑛𝑑 𝑏. 

Note that when 𝑎 𝑎𝑛𝑑 𝑏 are both closed to zero 

then {𝑥𝑛} converge to 0 more rapidly. 

Figure 1 below shows the differences between 

choosing 𝑎 𝑎𝑛𝑑 𝑏 in finding the sequence {𝑥𝑛}. 

Example 3.2 

Let ℝ (the set of real numbers) be the space 

modulared as 𝜌(𝑥) = |𝑥|. Let 𝑋 = {𝑥 ∈ ℒ𝜌: 1 ≤

𝑥 < ∞}, define 𝑇: 𝑋 → 𝑋 as 𝑇𝑥 =
4𝑥−1

5
 . 

𝑋 is a nonempty convex subset of ℝ that satisfies 

(𝑈𝐶1) conditions.  

𝜌(𝑥) = |𝑥| is a uniformly continuous function 

and (𝑈𝑈𝐶2) holds. 

𝐴𝜌(𝑇) is nonempty. 

𝑥𝑛+1 = 𝑎𝑇𝑥𝑛 + (1 − 𝑎)𝑇𝑦𝑛, where, 

𝑦𝑛 = 𝑏𝑥𝑛 + (1 − 𝑏)𝑇𝑥𝑛 . 

Choose 𝑥1 = 6 using Matlab program we get the 

results in Table 3 below. 

We see that the sequence {𝑥𝑛} converges to 1 and 

we can increase the speed of convergence by 

changing the values of 𝑎 𝑎𝑛𝑑 𝑏. 

Note that when 𝑎 𝑎𝑛𝑑 𝑏 are both closed to zero 

then {𝑥𝑛} converge to 0 more rapidly. 

Figure 2 below shows the differences between 

choosing 𝑎 𝑎𝑛𝑑 𝑏 in finding the sequence {𝑥𝑛}. 

 

 

4 Conclusion and Future Work 

In this paper, firstly, we introduced two new classes 

of mapping called ρ − α −  and ρ − α − k −non-

spreading mappings. Specifically, these classes are 

of high importance as they are based on Modular 

Function Spaces (MFS). Moreover, in the following 

sections, we have proved the existence and 

uniqueness of 𝜌 − attractive elements for these 

classes. Furthermore, we have introduced various 

numerical examples to find the attractive elements 

based on our proven theorems. As for future works 

of our study, we are planning to consider recent 

studies of other mappings researches on Modular 

Function Spaces.  
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Table 2. The values of 𝑥𝑛 when  𝑥1 = 0.3 with different values of 𝑎 𝑎𝑛𝑑 𝑏 as follows:  

n 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

2
   

,  𝑏 =
1

2
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

4
  ,  

𝑏 =
1

4
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

4
   

,  𝑏 =
3

4
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

10
  

,  𝑏 =
1

10
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

10
   

,  𝑏 =
9

10
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

100
  ,  

𝑏 =
1

100
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

100
   ,  

𝑏 =
99

100
 

1 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 

2 
0.13125 0.1078125 0.1359375 0.08925 0.14325 0.0764925 0.1492575 

3 
0.057421875 0.038745117 0.06159668 0.026551875 0.068401875 0.019503675 0.074259338 

4 
0.02512207 0.013924026 0.027910995 0.007899183 0.032661895 0.00497295 0.036945877 

5 
0.010990906 0.005003947 0.01264717 0.002350007 0.015596055 0.001267978 0.018381497 

6 
0.004808521 0.001798293 0.005730749 0.000699127 0.007447116 0.000323303 0.009145255 

7 
0.002103728 0.000646262 0.002596746 0.00020799 0.003555998 8.24341E-05 0.004549993 

8 
0.000920381 0.00023225 0.00117665 6.18771E-05 0.001697989 2.10186E-05 0.002263735 

9 
0.000402667 8.3465E-05 0.00053317 1.84084E-05 0.00081079 5.35923E-06 0.001126265 

10 
0.000176167 2.99952E-05 0.000241593 5.47651E-06 0.000387152 1.36647E-06 0.000560345 

11 
7.70729E-05 1.07795E-05 0.000109472 1.62926E-06 0.000184865 3.48415E-07 0.000278786 
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Table 3. The values of 𝑥𝑛 when  𝑥1 = 6 with different values of 𝑎 𝑎𝑛𝑑 𝑏 as follows:  

n 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

2
   ,  𝑏 =
1

2
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

10
  ,  𝑏 =
1

10
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

4
   ,  𝑏 =
3

4
 

𝑥𝑛  𝑓𝑜𝑟 

𝑎 =
1

10
  ,  𝑏 =
9

10
 

1 
6 6 6 6 

2 
4.8 4.352 4.85 4.928 

3 
3.888 3.247181 3.9645 4.085837 

4 
3.19488 2.50651 3.282665 3.424233 

5 
2.668109 2.009964 2.757652 2.904478 

10 
1.422953 1.136765 1.475758 1.56988 

20 
1.027191 1.002508 1.034857 1.051027 

30 
1.001748 1.000046 1.002554 1.004569 

40 
1.000112 1.000001 1.000187 1.000409 

50 
1.000007 1 1.000014 1.000037 
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Fig. 1: Differences between choosing 𝑎 𝑎𝑛𝑑 𝑏 in finding the sequence {𝑥𝑛} of example 3.1 

 

Fig. 2: Differences between choosing 𝑎 𝑎𝑛𝑑 𝑏 in finding the sequence {𝑥𝑛} of example 3.2 
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