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1 Introduction
Samet et al., [1], proposed 𝛼-𝜓-contractive type map-
ping and 𝛼-admissible mappings. Karapinar and
Samet, [2], take the concept further by introducing
generalized 𝛼-𝜓-contractive type mapping broaden
the Banach contraction principle, Khojastesh et al.,
[3], presented simulation function and the notion of
Z-contraction with respect to simulation function. Ar-
goubi et al., [4], extend the results of Joonaghany et
al., [5]. In this paper, we introduce Suzuki - type ra-
tional Z𝜓-contraction.

For more results in rational type contractions and
Z-contractions, we refer to the papers in, [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], and references
therein.

2 Preliminaries
Throughout this article, the term ℕ refers to the set of
all nonnegative integers. Furthermore, ℝ represents
real numbers, and ℝ+ = [0, ∞).

Samet et al., [1], defined the class of 𝛼- acceptable
mappings in 2012.
Definition 2.1. [1] A mapping 𝐺 ∶ Ω → Ω is called
𝛼-admissible if for all 𝜎, 𝛿 ∈ Ω we have

𝛼(𝜎, 𝛿) ≥ 1 implies 𝛼(𝐺𝜎, 𝐺𝛿) ≥ 1,
where 𝛼 ∶ Ω × Ω → [0, ∞) is a given function.
Definition 2.2. [1] Let Ω be a nonempty set, 𝐺, 𝐻 ∶
Ω → Ω and 𝛼, 𝛽 ∶ Ω × Ω → [0, ∞). The two
mappings (𝐺, 𝐻) is called a pair of (𝛼, 𝛽)-admissible
mappings, if

𝛼(𝜎, 𝛿) ≥ 1 and 𝛽(𝜎, 𝛿) ≥ 1 implies

𝛼(𝐺𝜎, 𝐻𝛿) ≥ 1 and 𝛽(𝐻𝜎, 𝐺𝛿) ≥ 1 and
𝛽(𝐺𝜎, 𝐻𝛿) ≥ 1 and𝛼(𝐻𝜎, 𝐺𝛿) ≥ 1 for all𝜎, 𝛿 ∈ Ω.

Khojasteh et al., [3], introduced the simulation
function class in 2015. Furthermore, Argoubi et al.,
[4], modified the simulation function definition and
defined it as follows.

Definition 2.3. [4] A simulation function is a function
𝜁 ∶ [0, ∞) × [0, ∞) → ℝ that satisfies the following
conditions
(i) 𝜁(𝛿, 𝜎) < 𝜎 − 𝛿 for all 𝜎, 𝛿 > 0,
(i) if {𝛿𝑛} and {𝜎𝑛} are sequences in (0, ∞) such

that lim
𝑛→∞

𝛿𝑛 = lim
𝑛→∞

𝜎𝑛 = 𝑙 ∈ (0, ∞), then

lim sup
𝑛→∞

𝜁(𝛿𝑛, 𝜎𝑛) < 0.

Joonaghany et al., [5], proposed a new concept
of the 𝜓-simulation function, and with it, the Z𝜓-
contraction in the standard metric space. The con-
cept of the Z𝜓-contraction encompasses several dis-
tinct types of contraction, including the Z-contraction
defined in, [3].

Denote that Ψ = {𝜓 ∶ ℝ+ → ℝ+ |𝜓 is continuous
and nondecreasing, and 𝜓(𝑠) = 0 ⇔ 𝑠 = 0}.
Definition 2.4. [5]We say that 𝜁 ∶ ℝ+ × ℝ+ → ℝ is a
𝜓-simulation function, if there exists 𝜓 ∈ Ψ such that
(𝜁1) 𝜁(𝛿, 𝜎) < 𝜓(𝜎) − 𝜓(𝛿) for all 𝜎, 𝛿 > 0,
(𝜁2) if {𝛿𝑛} and {𝜎𝑛} are the sequences in (0, ∞)

such that lim
𝑛→∞

𝛿𝑛 = lim
𝑛→∞

𝜎𝑛 > 0 then

lim sup
𝑛→∞

𝜁(𝛿𝑛, 𝜎𝑛) < 0.

Let Z𝜓 is a collection of all 𝜓-simulation func-
tions. Take note that “simulation” becomes “simu-
lation function” in sentence, [3].
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Example 2.5. [5] Let 𝜓 ∈ Ψ
(i) 𝜁1(𝛿, 𝜎) = 𝑘𝜓(𝜎) − 𝜓(𝛿) for all 𝜎, 𝛿 ∈ [0, ∞),

where 𝑘 ∈ [0, 1).
(ii) 𝜁2(𝛿, 𝜎) = 𝜑(𝜓(𝜎))−𝜓(𝛿) for all 𝜎, 𝛿 ∈ [0, ∞),

where 𝜑 ∶ [0, ∞) → [0, ∞) so that 𝜑(0) = 0 and
for each 𝜎 > 0, 𝜑(𝜎) < 𝜎,

lim sup
𝛿→𝜎

𝜑(𝛿) < 𝜎.

(ii) 𝜁3(𝛿, 𝜎) = 𝜓(𝜎) − 𝜑(𝜎) − 𝜓(𝛿) for all 𝜎, 𝛿 ∈
[0, ∞), where 𝜑 ∶ [0, ∞) → [0, ∞) is a mapping
such that, for each 𝜎 > 0,

lim inf
𝛿→𝜎

𝜑(𝛿) > 0.

It is clear that 𝜁1, 𝜁2, 𝜁3 ∈ Z𝜓.
Lemma 2.6. [16] Let (Ω, 𝑑) be a metric space, and
let {𝜎𝑛} be a sequence in Ω such that

lim
𝑛→∞

𝑑(𝜎𝑛, 𝜎𝑛+1) = 0.

If {𝜎2𝑛} numbers is not a Cauchy sequence. Then,
there exists an 𝜀 > 0 and monotone increasing se-
quences of natural {𝑚𝑘} and {𝑛𝑘} such that𝑛𝑘 > 𝑚𝑘
and 𝑑(𝜎2𝑚𝑘

, 𝜎2𝑛𝑘
) ≥ 𝜀 and

(i) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘
, 𝜎2𝑛𝑘

) = 𝜀,

(ii) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘+1) = 𝜀,

(iii) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘
, 𝜎2𝑛𝑘+1) = 𝜀,

(iv) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘
) = 𝜀.

Motivated by the all above results, we develop the
concept of Suzuki-type rational Z𝜓-contraction and
demonstrate several typical fixed point results in met-
ric spaces. We also provide an example that supports
our primary theorem.

3 Main Result
Now we state our main results.

Definition 3.1. Let (Ω, 𝑑) be a metric space. Let
𝐺, 𝐻 ∶ Ω → Ω be two mappings. we call the pair
(𝐺, 𝐻) is Suzuki - type rational Z𝜓-contraction if for
all 𝜎, 𝛿 ∈ Ω and 𝐿 ≥ 0 such that

1
2 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿)} ≤ 𝑑(𝜎, 𝛿) implies

𝜁(𝛼(𝜎, 𝐺𝜎)𝑁(𝜎, 𝛿), 𝑀(𝜎, 𝛿)) ≥ 0,
(1)

where 𝜁 ∈ Z𝜓,

𝑁(𝜎, 𝛿) = 𝛽(𝛿, 𝐻𝛿)𝑑(𝐺𝜎, 𝐻𝛿)
and

𝑀(𝜎, 𝛿) = max {𝑑(𝜎, 𝛿), 𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿),
𝐴(𝜎, 𝛿) + 𝐵(𝜎, 𝛿)

1 + 𝑑(𝜎, 𝐺𝜎) + 𝑑(𝛿, 𝐻𝛿), 𝐴(𝜎, 𝛿) + 𝐵(𝜎, 𝛿)
1 + 𝑑(𝜎, 𝐻𝛿) + 𝑑(𝛿, 𝐺𝜎)}

+ 𝐿 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿), 𝑑(𝜎, 𝐻𝛿), 𝑑(𝛿, 𝐺𝜎)},
which

𝐴(𝜎, 𝛿) = 𝑑(𝜎, 𝐺𝜎)𝑑(𝜎, 𝐻𝛿)
and

𝐵(𝜎, 𝛿) = 𝑑(𝛿, 𝐻𝛿)𝑑(𝛿, 𝐺𝜎).
Theorem 3.2. Let (Ω, 𝑑) be a complete metric space,
and let 𝐺, 𝐻 ∶ Ω → Ω be two mappings and 𝛼, 𝛽 ∶
Ω × Ω → [0, ∞). Suppose that the following condi-
tions are satisfied

(i) (𝐺, 𝐻) is pair of (𝛼, 𝛽)- admissible mappings,
(ii) there exists 𝜎0 ∈ Ω such that 𝛼(𝜎0, 𝐺𝜎0) ≥ 1

and 𝛽(𝜎0, 𝐻𝜎0) ≥ 1,
(iii) the pair (𝐺, 𝐻) is Suzuki - type rational Z𝜓-

contraction,
(iv) either, 𝐺 and 𝐻 are continuous or for every se-

quence {𝜎𝑛} inΩ such that𝛼(𝜎𝑛, 𝜎𝑛+1) ≥ 1 and
𝛽(𝜎𝑛, 𝜎𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0} and 𝜎𝑛 →
𝜌, we have 𝛼(𝜎, 𝐺𝜎) ≥ 1 and 𝛽(𝜎, 𝐻𝜎) ≥ 1.

Then 𝐺 and 𝐻 have a unique common fixed point in
Ω.
Proof. By condition (ii), there exists 𝜎0 ∈ Ω such that
𝛼(𝜎0, 𝐺𝜎0) ≥ 1. Define the sequence {𝜎𝑛} in Ω by
letting 𝜎1 ∈ Ω such that

𝜎1 = 𝐺𝜎0, 𝜎2 = 𝐻𝜎1, 𝜎3 = 𝐺𝜎2, 𝜎4 = 𝐻𝜎3

continuing in this manner, we obtain

𝐺𝜎𝑛 = 𝜎𝑛+1 and 𝐻𝜎𝑛+1 = 𝜎𝑛+2.
From (𝐺, 𝐻) is a pair of (𝛼, 𝛽)-admissible, we have

𝛼(𝜎0, 𝐺𝜎0) = 𝛼(𝜎0, 𝜎1) ≥ 1,
𝛼(𝐺𝜎0, 𝐻𝜎1) = 𝛼(𝜎1, 𝜎2) ≥ 1, and
𝛼(𝐻𝜎1, 𝐺𝜎2) = 𝛼(𝜎2, 𝜎3) ≥ 1

continuing this process, we get

𝛼(𝜎𝑛, 𝜎𝑛+1) ≥ 1 for all 𝑛 ≥ 0.
In the same way, we get

𝛽(𝜎𝑛, 𝜎𝑛+1) ≥ 1 for all 𝑛 ≥ 0.
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If 𝜎𝑛 = 𝜎𝑛+1 for some 𝑛 ∈ ℕ, then 𝜌 = 𝜎𝑛 is a
common fixed point for 𝐺 or 𝐻 . Consequently, we
assume that 𝜎𝑛 ≠ 𝜎𝑛+1 for all 𝑛 ∈ ℕ.
Because

1
2 min{𝑑(𝜎2𝑛, 𝐺𝜎2𝑛), 𝑑(𝜎2𝑛+1, 𝐻𝜎2𝑛+1)}
≤ 𝑑(𝜎2𝑛, 𝜎2𝑛+1)

from (1), we have

𝜁(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1), 𝑀(𝜎2𝑛, 𝜎2𝑛+1)) ≥ 0
and
𝜓(𝑀(𝜎2𝑛, 𝜎2𝑛+1)) − 𝜓(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1))
> 0.

So,

𝜓(𝑀(𝜎2𝑛, 𝜎2𝑛+1)) > 𝜓(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1).

Because 𝜓 is strictly increasing, we have

𝑀(𝜎2𝑛, 𝜎2𝑛+1) > 𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1),
(2)

where

𝑁(𝜎2𝑛, 𝜎2𝑛+1) = 𝛽(𝜎2𝑛+1, 𝐻𝜎2𝑛+1)𝑑(𝜎2𝑛+1, 𝜎2𝑛+2)),
(3)

and

𝑀(𝜎2𝑛, 𝜎2𝑛+1)
= max {𝑑(𝜎2𝑛, 𝜎2𝑛+1), 𝑑(𝜎2𝑛, 𝜎2𝑛+1),
𝑑(𝜎2𝑛+1, 𝜎2𝑛+2),

𝐴(𝜎2𝑛, 𝜎2𝑛+1) + 𝐵(𝜎2𝑛, 𝜎2𝑛+1)
1 + 𝑑(𝜎2𝑛, 𝜎2𝑛+1) + 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2) ,

𝐴(𝜎2𝑛, 𝜎2𝑛+1) + 𝐵(𝜎2𝑛, 𝜎2𝑛+1)
1 + 𝑑(𝜎2𝑛, 𝜎2𝑛+2) + 𝑑(𝜎2𝑛+1, 𝜎2𝑛+1)}

+ 𝐿 min{𝑑(𝜎2𝑛, 𝜎2𝑛+1), 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2),
𝑑(𝜎2𝑛, 𝜎2𝑛+2), 𝑑(𝜎2𝑛+1, 𝜎2𝑛+1)},

(4)

which

𝐴(𝜎2𝑛, 𝜎2𝑛+1) = 𝑑(𝜎2𝑛, 𝜎2𝑛+1)𝑑(𝜎2𝑛, 𝜎2𝑛+2) (5)

and

𝐵(𝜎2𝑛, 𝜎2𝑛+1) = 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2)𝑑(𝜎2𝑛+1, 𝜎2𝑛+1)
(6)

From (4), (5) and (6), we obtain

𝑀(𝜎2𝑛, 𝜎2𝑛+1)
= max {𝑑(𝜎2𝑛, 𝜎2𝑛+1), 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2),

𝑑(𝜎2𝑛, 𝜎2𝑛+1)𝑑(𝜎2𝑛, 𝜎2𝑛+2)
1 + 𝑑(𝜎2𝑛, 𝜎2𝑛+1) + 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2) ,

𝑑(𝜎2𝑛, 𝜎2𝑛+1)𝑑(𝜎2𝑛, 𝜎2𝑛+2)
1 + 𝑑(𝜎2𝑛, 𝜎2𝑛+2) }

+ 𝐿 min{𝑑(𝜎2𝑛, 𝜎2𝑛+1), 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2),
𝑑(𝜎2𝑛, 𝜎2𝑛+2), 0}
= max {𝑑(𝜎2𝑛, 𝜎2𝑛+1), 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2)}.

If 𝑀(𝜎2𝑛, 𝜎2𝑛+1) = 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2), then by (2)
becomes

𝑑(𝜎2𝑛+1, 𝜎2𝑛+2) < 𝑑(𝜎2𝑛+1, 𝜎2𝑛+2),

which is a contradiction. Thus we conclude that

𝑀(𝜎2𝑛, 𝜎2𝑛+1) = 𝑑(𝜎2𝑛, 𝜎2𝑛+1). (7)

By (2), we get

𝑑(𝜎2𝑛+1, 𝜎2𝑛+2) < 𝑑(𝜎2𝑛, 𝜎2𝑛+1).

As a result, we can conclude that the sequence
{𝑑(𝜎𝑛, 𝜎𝑛+1)} is nonnegative and nonincreasing.
Therefore, there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑑(𝜎𝑛, 𝜎𝑛+1) = 𝑟.

We assert that 𝑟 = 0. Assume, on the other hand, that
𝑟 > 0.

lim
𝑛→∞

𝑑(𝜎𝑛, 𝜎𝑛+1) = lim
𝑛→∞

𝑀(𝜎𝑛, 𝜎𝑛+1) = 𝑟. (8)

For each 𝑛 ≥ 0 we have

1
2 min{𝑑(𝜎2𝑛, 𝐺𝜎2𝑛), 𝑑(𝜎2𝑛+1, 𝐻𝜎2𝑛+1)}
≤ 𝑑(𝜎2𝑛, 𝜎2𝑛+1)

from (1), we have

𝜁(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1), 𝑀(𝜎2𝑛, 𝜎2𝑛+1)) ≥ 0,

where

𝑁(𝜎2𝑛, 𝜎2𝑛+1) = 𝛽(𝜎2𝑛+1, 𝐻𝜎2𝑛+1)𝑑(𝐺𝜎2𝑛, 𝐻𝜎2𝑛+1)

and hence

lim sup
𝑛→∞

𝜁(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1), 𝑀(𝜎2𝑛, 𝜎2𝑛+1))

≥ 0.
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By condition (𝜁2) of Definition 2.4, we have

lim sup
𝑛→∞

𝜁(𝛼(𝜎2𝑛, 𝐺𝜎2𝑛)𝑁(𝜎2𝑛, 𝜎2𝑛+1),

𝑀(𝜎2𝑛, 𝜎2𝑛+1)) < 0,

which is a contradiction. Thus we conclude that

lim
𝑛→∞

𝑑(𝜎𝑛, 𝜎𝑛+1) = lim
𝑛→∞

𝑀(𝜎𝑛, 𝜎𝑛+1) = 0. (9)

Now we will demonstrate that {𝜎𝑛} is a Cauchy
sequence. Assume, on the other hand, that {𝜎𝑛}
is not a Cauchy sequence. Then, there exists an
𝜀0 > 0 and monotone increasing sequences of nat-
ural numbers {𝑚𝑘} and {𝑛𝑘} such that 𝑛𝑘 > 𝑚𝑘 and
𝑑(𝜎2𝑚𝑘

, 𝜎2𝑛𝑘
) ≥ 0 and

(i) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘
, 𝜎2𝑛𝑘

) = 𝜀0,

(ii) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘+1) = 𝜀0,

(iii) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘
, 𝜎2𝑛𝑘+1) = 𝜀0,

(iv) lim
𝑛→∞

𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘
) = 𝜀0.

As a result of the definition of 𝑀(𝜎, 𝛿), we have

lim
𝑛→∞

𝑀(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)

= lim
𝑛→∞

( max {𝑑(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1), 𝑑(𝜎2𝑛𝑘

, 𝜎2𝑛𝑘+1),
𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑚𝑘

),
𝐴(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘−1) + 𝐵(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)

1 + 𝑑(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘+1) + 𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑚𝑘

) ,

𝐴(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1) + 𝐵(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘−1))
1 + 𝑑(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘
) + 𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘+1)}

+ 𝐿 min{𝑑(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘+1), 𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑚𝑘

),
𝑑(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘
), 𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘+1)}),

(10)
which

𝐴(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1) = 𝑑(𝜎2𝑛𝑘

, 𝜎2𝑛𝑘+1)𝑑(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘

)
(11)

and

𝐵(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)

= 𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑚𝑘
)𝑑(𝜎2𝑚𝑘−1, 𝜎2𝑛𝑘+1). (12)

From (10), (11) and (12), we obtain

lim
𝑛→∞

𝑀(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)

= max{𝜀0, 0, 0, 0, 0} + 𝐿 min{0, 0, 𝜀0, 𝜀0}
= 𝜀0

(13)

and hence

lim
𝑘→∞

𝑑(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘+1) = lim

𝑘→∞
𝑀(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘−1)
= 𝜀0 > 0.

By condition (𝜁2) of Definition 2.4, we have
lim

𝑘→∞
𝑑(𝜎2𝑛𝑘

, 𝜎2𝑛𝑘+1) = lim
𝑘→∞

𝑀(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)

= 𝜀0 > 0.
(14)

In contrast, we assert that for sufficiently large 𝑘 ∈ ℕ,
if 𝑛𝑘 > 𝑚𝑘 > 𝑘, then

1
2 min{𝑑(𝜎𝑛𝑘

, 𝐺𝜎𝑛𝑘
), 𝑑(𝜎𝑚𝑘−1, 𝐻𝜎𝑚𝑘−1)}

> 𝑑(𝜎𝑛𝑘
, 𝜎𝑚𝑘−1).

(15)

When we let as 𝑘 → ∞ in (15), we get the 𝜀0 ≤ 0,
contradiction. Therefore,

1
2 min{𝑑(𝜎𝑛𝑘

, 𝐺𝜎𝑛𝑘
), 𝑑(𝜎𝑚𝑘−1, 𝐻𝜎𝑚𝑘−1)}

≤ 𝑑(𝜎𝑛𝑘
, 𝜎𝑚𝑘−1)

and from (1), we have

𝜁(𝛼(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

)𝑁(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘−1), 𝑀(𝜎2𝑛𝑘

, 𝜎2𝑚𝑘−1))
≥ 0,
where

𝑁(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘−1)

= 𝛽(𝜎2𝑚𝑘−1, 𝐻𝜎2𝑚𝑘−1)𝑑(𝐺𝜎2𝑛𝑘
, 𝐻𝜎2𝑚𝑘−1).

Therefore,

lim sup
𝑛→∞

𝜁(𝛼(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

)𝑁(𝜎2𝑛𝑘
, 𝜎2𝑛𝑘−1),

𝑀(𝜎2𝑛𝑘
, 𝜎2𝑚𝑘−1)) ≥ 0,

(16)

which contradicts (14). This contradiction proves that
{𝜎𝑛} is a Cauchy sequence, and since Ω is complete,
there exists 𝜌 ∈ Ω such that {𝜎𝑛} → 𝜌 as 𝑛 → ∞.
We assert that 𝜌 is a fixed point shared by 𝐺 and 𝐻.
Because 𝐺 and 𝐻 are continuous, we can conclude
that

𝜌 = lim
𝑛→∞

𝜎2𝑛+1 = lim
𝑛→∞

𝐺𝜎2𝑛

= 𝐺 ( lim
𝑛→∞

𝜎2𝑛) = 𝐺𝜌
and

𝜌 = lim
𝑛→∞

𝜎2𝑛+2 = lim
𝑛→∞

𝐻𝜎2𝑛+1

= 𝐻 ( lim
𝑛→∞

𝜎2𝑛+1) = 𝐻𝜌.
Hence, 𝐺𝜌 = 𝐻𝜌 = 𝜌, that is, 𝜌 is a common fixed
point of 𝐺 and 𝐻. From (iv), we have for every se-
quence {𝜎𝑛} in Ω such that 𝛼(𝜎𝑛, 𝜎𝑛+1) ≥ 1 and
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𝛽(𝜎𝑛, 𝜎𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0} and 𝜎𝑛 → 𝜌 as
𝑛 → ∞, this implies 𝜎2𝑛𝑘+1 → 𝜌 and 𝜎2𝑛𝑘+2 → 𝜌 as
𝑘 → ∞. Now we show that 𝐺𝜌 = 𝐻𝜌 = 𝜌. Assume
𝜌 ≠ 𝐻𝜌. Now we assert that, for each 𝑛 ≥ 1, at least
one of the following statements is true.

1
2𝑑(𝜎𝑛𝑘−1, 𝜎𝑛𝑘

) ≤ 𝑑(𝜎𝑛𝑘−1, 𝜌)
or 1

2𝑑(𝜎𝑛𝑘
, 𝜎𝑛𝑘+1) ≤ 𝑑(𝜎𝑛𝑘

, 𝜌).
Assume, on the other hand,

1
2𝑑(𝜎𝑛𝑘−1, 𝜎𝑛𝑘

) > 𝑑(𝜎𝑛𝑘−1, 𝜌)
and 1

2𝑑(𝜎𝑛𝑘
, 𝜎𝑛𝑘+1) > 𝑑(𝜎𝑛𝑘

, 𝜌).
For some 𝑛 ≥ 1, we have
𝑑(𝜎𝑛𝑘−1, 𝜎𝑛𝑘

) ≤ 𝑑(𝜎𝑛𝑘−1, 𝜌) + 𝑑(𝜌, 𝜎𝑛𝑘
)

< 1
2[𝑑(𝜎𝑛𝑘−1, 𝜎𝑛𝑘

) + 𝑑(𝜎𝑛𝑘
, 𝜎𝑛𝑘+1)]

≤ 𝑑(𝜎𝑛𝑘−1, 𝜎𝑛𝑘
),

which is a contradiction, and thus the claim is true.
From (1), we have

1
2 min{𝑑(𝜎2𝑛𝑘

, 𝐺𝜎2𝑛𝑘
), 𝑑(𝜌, 𝐻𝜌)} ≤ 𝑑(𝜎2𝑛𝑘

, 𝜌)
implies
0 ≤ 𝜁(𝛼(𝜎2𝑛𝑘

, 𝐺𝜎2𝑛𝑘
)𝑁(𝜎2𝑛𝑘

, 𝜌), 𝑀(𝜎2𝑛𝑘
, 𝜌))

< 𝜓(𝑀(𝜎2𝑛𝑘
, 𝜌)) − 𝜓(𝛼(𝜎2𝑛𝑘

, 𝐺𝜎2𝑛𝑘
)𝑁(𝜎2𝑛𝑘

, 𝜌)).
So,

𝜓(𝑀(𝜎2𝑘, 𝜌)) > 𝜓(𝛼(𝜎2𝑘, 𝐺𝜎2𝑘)𝑁(𝜎2𝑛𝑘
, 𝜌)).

Because 𝜓 is strictly increasing, we have
𝑀(𝜎2𝑛𝑘

, 𝜌) > 𝛼(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

)𝑁(𝜎2𝑛𝑘
, 𝜌), (17)

where
𝑁(𝜎2𝑛𝑘

, 𝜌) = 𝛽(𝜌, 𝐻𝜌)𝑑(𝐺𝜎2𝑛𝑘
, 𝐻𝜌) (18)

and
𝑀(𝜎2𝑛𝑘

, 𝜌)
= max {𝑑(𝜎2𝑛𝑘

, 𝜌), 𝑑(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

), 𝑑(𝜌, 𝐻𝜌),
𝐴(𝜎2𝑛𝑘

, 𝜌) + 𝐵(𝜎2𝑛𝑘
, 𝜌)

1 + 𝑑(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

) + 𝑑(𝜌, 𝐻𝜌),

𝐴(𝜎2𝑛𝑘
, 𝜌) + 𝐵(𝜎2𝑛𝑘

, 𝜌)
1 + 𝑑(𝜎2𝑛𝑘

, 𝐻𝜌) + 𝑑(𝜌, 𝐺𝜎2𝑛𝑘
)}

+ 𝐿 min{𝑑(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

), 𝑑(𝜌, 𝐻𝜌), 𝑑(𝜎2𝑛𝑘
, 𝐻𝜌),

𝑑(𝜌, 𝐺𝜎2𝑛𝑘
)},

(19)

which
𝐴(𝜎2𝑛𝑘

, 𝜌) = 𝑑(𝜎2𝑛𝑘
, 𝐺𝜎2𝑛𝑘

)𝑑(𝜎2𝑛𝑘
, 𝐻𝜌) (20)

and
𝐵(𝜎2𝑛𝑘

, 𝜌) = 𝑑(𝜌, 𝐻𝜌)𝑑(𝜌, 𝐺𝜎2𝑛𝑘
). (21)

Letting 𝑘 → ∞ in (19), we obtain
lim

𝑘→∞
𝑀(𝜎2𝑘, 𝜌) = 𝑑(𝜌, 𝐻𝜌).

From (17), we have
𝑑(𝐺𝜎2𝑛𝑘

, 𝐻𝜌)
≤ 𝛼(𝜎2𝑛𝑘

, 𝐺𝜎2𝑛𝑘
)𝑁(𝜎2𝑛𝑘

, 𝜌)
< 𝑀(𝜎2𝑛𝑘

, 𝜌),
(22)

where
𝑁(𝜎2𝑛𝑘

, 𝜌) = 𝛽(𝜌, 𝐻𝜌)𝑑(𝐺𝜎2𝑛𝑘
, 𝐻𝜌).

Letting 𝑘 → ∞ in (22), we obtain
𝑑(𝜌, 𝐻𝜌) < 𝑑(𝜌, 𝐻𝜌),

which is a contradiction. Therefore, 𝜌 = 𝐻𝜌. In the
same way, we can find that 𝜌 = 𝐺𝜌. Therefore, the
pair (𝐺, 𝐻) has a common fixed point 𝜌 = 𝐺𝜌 =
𝐻𝜌.

We claim 𝐺 and 𝐻 have a unique common fixed
points 𝜌, 𝜌∗ ∈ Ω. Therefore 𝐺𝜌 = 𝐻𝜌 = 𝜌, 𝐺𝜌∗ =
𝐻𝜌∗ = 𝜌∗ and 𝑑(𝜌, 𝜌∗) > 0. Therefore,

1
2 min{𝑑(𝜌, 𝐺𝜌), 𝑑(𝜌∗, 𝐻𝜌∗)}

= 1
2 min{0, 0}

< 𝑑(𝜌, 𝜌∗)
and from (1), we have

0 ≤ 𝜁(𝛼(𝜌, 𝐺𝜌)𝑁(𝜌, 𝜌∗), 𝑀(𝜌, 𝜌∗))
< 𝜓(𝑀(𝜌, 𝜌∗)) − 𝜓(𝛼(𝜌, 𝐺𝜌)𝑁(𝜌, 𝜌∗)).

Because 𝜓 is strictly increasing,
𝑑(𝜌, 𝜌∗) < 𝛼(𝜌, 𝐺𝜌)𝑁(𝜌, 𝜌∗) < 𝑀(𝜌, 𝜌∗), (23)

where
𝑁(𝜌, 𝜌∗) = 𝛽(𝜌∗, 𝐻𝜌∗)𝑑(𝐺𝜌, 𝐻𝜌∗)

and
𝑀(𝜌, 𝜌∗)
= max {𝑑(𝜌, 𝜌∗), 𝑑(𝜌, 𝐺𝜌), 𝑑(𝜌∗, 𝐻𝜌∗),

𝐴(𝜌, 𝜌∗) + 𝐵(𝜌, 𝜌∗)
1 + 𝑑(𝜌, 𝐺𝜌) + 𝑑(𝜌∗, 𝐻𝜌∗) ,

𝐴(𝜌, 𝜌∗) + 𝐵(𝜌, 𝜌∗)
1 + 𝑑(𝜌, 𝐻𝜌∗) + 𝑑(𝜌∗, 𝐺𝜌)}

+ 𝐿 min{𝑑(𝜌, 𝐺𝜌∗), 𝑑(𝜌∗, 𝐻𝜌∗), 𝑑(𝜌, 𝐻𝜌∗),
𝑑(𝜌∗, 𝐺𝜌)},

(24)
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which

𝐴(𝜌, 𝜌∗) = 𝑑(𝜌, 𝐺𝜌)𝑑(𝜌, 𝐻𝜌∗) (25)

and
𝐵(𝜌, 𝜌∗) = 𝑑(𝜌∗, 𝐻𝜌∗)𝑑(𝜌∗, 𝐺𝜌). (26)

From (24), (25) and (26), we obtain

𝑀(𝜌, 𝜌∗) = 𝑑(𝜌, 𝜌∗) > 0. (27)

From (23) and (27), we have

𝑑(𝜌, 𝜌∗) < 𝛼(𝜌, 𝐺𝜌)𝛽(𝜌∗, 𝐻𝜌∗)𝑑(𝜌, 𝜌∗)
< 𝑀(𝜌, 𝜌∗)
= 𝑑(𝜌, 𝜌∗),

which is a contradiction. Therefore, 𝐺 and 𝐻 have a
unique common fixed point.

Corollary 3.3. Let (Ω, 𝑑) be a complete metric space,
and let 𝐺 ∶ Ω → Ω be a mapping and 𝛼, 𝛽 ∶ Ω ×
Ω → [0, ∞). Assume that the following conditions
are satisfied

(i) if for all 𝜎, 𝛿 ∈ Ω,

1
2 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐺𝛿)} ≤ 𝑑(𝜎, 𝛿) implies

𝜁(𝛼(𝜎, 𝐺𝜎)𝑁(𝜎, 𝛿), 𝑀(𝜎, 𝛿)) ≥ 0,
(28)

where 𝜁 ∈ Z𝜓,

𝑁(𝜎, 𝛿) = 𝛽(𝛿, 𝐻𝛿)𝑑(𝐺𝜎, 𝐻𝛿)

and

𝑀(𝜎, 𝛿)
= max {𝑑(𝜎, 𝛿), 𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐺𝛿),
𝑑(𝜎, 𝐺𝜎)𝑑(𝜎, 𝐺𝛿) + 𝑑(𝛿, 𝐺𝛿)𝑑(𝛿, 𝐺𝜎)

1 + 𝑑(𝜎, 𝐺𝜎) + 𝑑(𝛿, 𝐺𝛿) ,

𝑑(𝜎, 𝐺𝜎)𝑑(𝜎, 𝐺𝛿) + 𝑑(𝛿, 𝐺𝛿)𝑑(𝛿, 𝐺𝜎)
1 + 𝑑(𝜎, 𝐺𝛿) + 𝑑(𝛿, 𝐺𝜎) }

+ 𝐿 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐺𝛿), 𝑑(𝜎, 𝐺𝛿), 𝑑(𝛿, 𝐺𝜎)},

(ii) 𝐺 is (𝛼, 𝛽) admissible mapping,
(iii) there exists 𝜎0 ∈ Ω such that 𝛼(𝜎0, 𝐺𝜎0) ≥ 1,
(iv) either, 𝐺 and 𝐻 are continuous or for every se-

quence {𝜎𝑛} inΩ such that𝛼(𝜎𝑛, 𝜎𝑛+1) ≥ 1 and
𝛽(𝜎𝑛, 𝜎𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0} and 𝜎𝑛 →
𝜌, we have 𝛼(𝜎, 𝐺𝜎) ≥ 1 and 𝛽(𝜎, 𝐺𝜎) ≥ 1.

Then 𝐺 has a unique fixed point in Ω.

Proof. The proof follows fromTheorem 3.2 by taking
𝐻 = 𝐺.

Example 3.4. Let Ω = [0, ∞), and let 𝑑 ∶ Ω × Ω →
[0, ∞) be defined by

𝑑(𝜎, 𝛿) = { max {𝜎, 𝛿} if 𝜎 ≠ 𝛿,
0 if 𝜎 = 𝛿.

We define 𝐺, 𝐻 ∶ Ω → Ω by 𝐺(𝜎) = 𝜌
4 and 𝐻(𝜎) =

𝜌
5 for all 𝜌 ∈ Ω. Let 𝐺 and 𝐻 are continuous self-
mappings on Ω and 𝛼, 𝛽 ∶ Ω × Ω → [0, ∞) are two
mappings defined by

𝛼(𝜎, 𝛿) = { 1 if 𝜎, 𝛿 ∈ [0, 1],
0 otherwise,

and

𝛽(𝜎, 𝛿) = { 1 if 𝜎, 𝛿 ∈ [0, 1],
0 otherwise.

We now define 𝜁 ∶ [0, ∞) × [0, ∞) → [0, ∞) by
𝜁(𝛿, 𝜎) = 1

2𝜓(𝜎) − 𝜓(𝛿), for all 𝜎, 𝛿 ∈ [0, ∞) and
𝜓(𝛿) = 𝛿

4 . Now

1
2 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿)} ≤ 𝑑(𝜎, 𝛿) implies

𝜁(𝛼(𝜎, 𝐺𝜎)𝛽(𝛿, 𝐻𝛿)𝑑(𝐺𝜎, 𝐻𝛿), 𝑀(𝜎, 𝛿))

= 1
2𝜓(𝑀(𝜎, 𝛿)) − 𝜓(𝛼(𝜎, 𝐺𝜎)𝛽(𝛿, 𝐻𝛿)𝑑(𝐺𝜎, 𝐻𝛿))

= 1
2𝜓(𝑀(𝜎, 𝛿)) − 𝜓(𝑑(𝐺𝜎, 𝐻𝛿))

< 1
8𝑀(𝜎, 𝛿) − 1

4𝑑(𝐺𝜎, 𝐻𝛿)) ≥ 0,

where 𝜁 ∈ Z𝜓 and

𝑀(𝜎, 𝛿)
= max {𝑑(𝜎, 𝛿), 𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿),
𝑑(𝜎, 𝐺𝜎)𝑑(𝜎, 𝐻𝛿) + 𝑑(𝛿, 𝐻𝛿)𝑑(𝛿, 𝐺𝜎)

1 + 𝑑(𝜎, 𝐺𝜎) + 𝑑(𝛿, 𝐻𝛿) ,

𝑑(𝜎, 𝐺𝜎)𝑑(𝜎, 𝐻𝛿) + 𝑑(𝛿, 𝐻𝛿)𝑑(𝛿, 𝐺𝜎)
1 + 𝑑(𝜎, 𝐻𝛿) + 𝑑(𝛿, 𝐺𝜎) }

+ 𝐿 min{𝑑(𝜎, 𝐺𝜎), 𝑑(𝛿, 𝐻𝛿), 𝑑(𝜎, 𝐻𝛿), 𝑑(𝛿, 𝐺𝜎)}.

Therefore, for 𝜎, 𝛿 ∈ [0, 1] and 𝐿 ≥ 0 the pair (𝐺, 𝐻)
is a Suzuki - type rational Z𝜓 contraction. In either
case 𝛼(𝜎, 𝛿) = 0 and 𝛽(𝜎, 𝛿) = 0 then pair (𝐺, 𝐻)
is a Suzuki - type rational Z𝜓 contraction.

As a result, the presumptions of Theorem 3.2 are
all met, and 𝐺 and 𝐻 have a common fixed point in
Ω.
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