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Abstract: - Let G be a simple graph. L( G) is the Laplacian matrix of G. We de fine a simple undirected graph
PG3(R) whose vertices are all the elements of the ring R and two distinct vertices a, b are adjacent if and only if
a.b=0orb.a=0o0ra+b=0o0ra+bisaunitelement of R. Also,we define asi mple undirected
graph PG4(R) whose vertices are all the elements of the ring R and two distinct vertices a, b are adjacent if and
only if a.b =0 o0r b.a = 0or a + b = 0. In this paper we discuss degree of the vertices PG3(R), PG4(R) for
R = Z, where, Z,, is the group of integer modulo n. Also, discuss planarity of the graph PG3(R), PG4(R) for
R = Z,. Here we introduced Laplacian of the graphs PG3(R), PG4(R) for R = Z,, and R = Z,, X Z,, where, p is
prime and we find their girth, algebraic connectivity, clique number and discuss Eulerian property.

Key-Words: - Laplacian matrix, prime graph, planarity, girth.

Received: July 7, 2022. Revised: January 7, 2023. Accepted: February 6, 2023. Published: March 2, 2023.

1 Introduction two distinct vertices a, b are adjacent if and only if
In 1973 Fiedler worked on Algebraic connectivity aRb = 0 or bRa = 0. This grap h isden oted by
of graphs, [ 6]. In 1994 Merris introduced m any PG(R) [14]. In this paper m odified the adjacency

properties of the Laplacian matrix of graphs, [11]. In condition of these graphs we introduce two new
1995 He discussed r elations between the spectrum simple undirected graphs oneis ~ PG3(R), whose
of the Laplacian and properties of graphs, [12]. The vertices are all the elements of the ring R and two
first branch of algebraic graph theor y involves the distinct vertices a,b are adjacent if and only if
study of graphs in connection with linear algebra. In ab=0orb.a=0o0ra+b=0o0ra+

particular, it studies the spectrum of the adjacency b is a unit element of R and other is PG,(R)
4

matrix or the Laplacian  matrix of a graph. The whose vertices are all the elements of the ring R and

Laplacian matrix of a graph G which is denoted by
L(G) issi mply them atrix D(G) — A(G) where,
D(G) is degree matrix and A(G) is adjacency matrix
of the graph G whose (i, j)- entry is equal to 1 if
vertices i,j are adjacent and 0 otherwise. In this 2 Preliminary Definitions

paper we introduce the Laplacian matrix of PG, (R), Definition 2.1: Let G be a graph of n vertices. The
PG4(R) for R =2, and R = Z, X Z,. Also, we Laplacian matrix of the graph G is denoted by L(G)
is defined as L(G) = D(G) — A(G) where D(G) is
the degree matrix of the graph G and A(G) is the
adjacency matrix of G. Then i-jth entry of the n X n
Laplacian matrix L(G) are given by

two distinct vertices a, b are adjacent if and only if
a.b=0orb.a=00ra+b=0.

discuss some properties of the graphs. Kishor F.
Pawar and Sandeep S. Joshi defined asim ple
undirected graph PG1(R) whose vertices are all the
elements of the ring R and two distinct vertices a, b

are adjacent if and only if a.b=0orb.a= Ly

O or a+ bis aunitelementof R, [4]. Healso deg v, if i=]

defined the graph PG,(R) whose vertices are all the =1—1 if i # j and v; is adjacent to v;
elements of the ring R and two distinct vertices a, b 0 otherwise

are adjacent if and only if a.b=0orb.a=
Definition 2.2: let R be a ring. A non-zero element

a of R is called a zero-div isor if there is a non-zero
element b in R suchthat a.b =0 or b.a = 0. The

0 ora+ b isazero-divisor (including zero) of t he
ring R, [15]. Satyanarayana defined the prime graph
whose vertices are all ele ments of the ring R and
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set of zero-divisors in a ring R is denot ed by Z(R),

[4].

Definition 2.3: The ele ments which are not zero-

divisors are called units. The set of all units in a ring
R is denoted by U(R), [4].

Definition 2.4: The number of edges incident to a

vertex v is called the degree of the vertex v, and it is
denoted by d(v).

Definition 2.5: Let G be a graph, The
number of vertices(lines) whose removal makes the
graph G disconnected is called vertex-connectivi ty
of the graph G. Vertex
connectivity of G is denoted by v(G).

minimum

(line-connectivity)

Definition 2.6: The girth of a graph G is the shortest
cycle in the graph G, which is denoted by gr{G}. If
the graph G contains no cy cle, then the girth of the
graph G is equal to infinity.

Definition 2.7: The second smallest eigenvalue of
L(G) is called algebraic connectivity of G. algebraic
connectivity is denoted by  a(G). IfL(G) has
eigenvalues Ay = A, = --- > A, = 0 (where
|V (G)]), then A,_; is called algebraic connectivity,
[5].

n =

Definition 2.8: A connected graph G is called
Eulerian if there exists a walk with no repeated
edges which includes all edges of the graph G.

Definition 2.9: A graph that can be d rawn in the
plane without any edge crossing is called a planar
graph. If any graph contains a non-planar subgraph,
then the graph is non-planar.

Definition 2.10: In a graph G the maximal complete
subgraph is called a clique. The number of vertices
in a clique is called clique number.

Definition 2.11: For aring R a sim ple undirected
graph G=(V,E) is said to be prime graph of R which
is denoted by PG;(R) if all elements of R are taken
as vertices of the graph and two  distinct vertices a

and b are adjacent if either (i) a.b =0o0rb.a =0

or (ii) @ + b is an unit element of R, [4].
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Definition 2.12: Let R be a ring. A graph G=(V, E)
is said to be the prim e graph of R (denotedb 'y
PG (R)) if vertices of the graph G are all elements of
the ring R and two distinct vertices are adjacent if

and only if aRb = 0 or bRa = 0, [14].

Definition 2.13: Foraring R a sim ple undirected
graph G= (V, E) is said to be graph I',(R) if all the
non-zero elements of R as vertices an d two distinct

vertices a and b are adjacent if and only  if either
a.b =0o0orb.a =0o0ra+bis azero- divisor
(including zero), | 12].

Theorem 2.14: Algebraic connectivity of a graph G
isa(G) = nifand only if G = K,,.

Theorem 2.15: A connected graph G is Eulerian if
and only if all the vertices of the graph G are of
even degree.

Theorem 2.16: Every non-zero vertices of the graph
PGy(Z,) areunitele ment of Z, and deg(u) =
¢(p) — 1 for any odd prime

Theorem 2.17: Every planar graph has a vertex of
degree at most five.

3 Main Results

Definition 3.1: A simple undirected graph PG3(R)
whose vertices are all the elements of the ring R and
two distinct vertices a, b are adjacent if and only if
a.b=0orb.a=0o0ra+b=0o0ra+

b is a unit element of R.

Definition 3.2: A simple undirected graph PG4(R)
whose vertices are all the elements of the ring R and
two distinct vertices a, b are adjacent if and only if

a.b=0o0orb.a=00ra+b=0.

Definition 3.3: Degree, Planarity, Eulerian
property of PG5(Z,,)

Theorem 3.3.1: The graph PG5(Z,,) is planar if and
onlyifn =2,3,4and 6

Proof: For n = 2, the graph PG3(Z,,) is a complete

graph K, soitis planar. The graph PG3(Z3) is a
complete graph K; which is also a planar graph. For
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n = 4, the graph PG5(Z,) is a com plete graph K,,
so it is a planar graph.

O
1 S
=2 =+
3
PG3(Zes)
O
1 5
F- 8 [S)
3
PG3(Ze)

Fig. 1: Graph PG3(Zg)

In the above graph structures, we can see the graph
PG3(Zs) can be drawn with no edge crossing. So,
the graph PG3(Z¢) is a planar graph.

If n is prime, then the graph PG5(Z,,) is a complete
graph K,,. If n > 3 (n is prime) the graph PG3(Z},)
always has a subgraph Kz, So the gra ph is not
planar. If n =2" where m = 3, a subgraph
induced by { a,n — a,b,n — b, 0} forms a complete
graph Kz where, a is an even element and b is an
odd element of Z,,. So, the graph is not planar.

For n = p™ where m >1, A subgraph induced by
{p,n—p, p™Ln—p™ 1,0} formsacom plete
graph Ks. So, the graph PG3(Z,) for n = p™ where
m >1 is not planar.

If n=p;t.py2.p3° ... p* Where, py, g, =Py are
distinct prime and n; € N for i = 1,2, ..., k then the
subgraph induced by {p,n—p,p,<,n—p.¥, 0}
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forms acom plete subgraph Ks where, =
ng _npz N3 MNk—1
120 2N 2 e

Hence the result.

Theorem 3.3.2: Degree of any unit vertex of the
graph PG3(Z,2) is ¢(n). Where; n = p?.

Proof: Let a be a unit ele ment of PG5 (sz). There

is ¢(n) number of unit elements. For ev ery unit
element, there exists an element b such that a + b is
a unit ele ment. Also, a + a = 2a is aunitin
PG, (sz), but the gr aph is sim ple, so a is not
adjacent with itself.

So, the number of b is ¢(n) — 1. --- (1)
a.0=0=a~0.
0 is already count in (1)

Also, there isaverte x ¢ =mn—a forwhich

a+c=0=>=>a~c.

So, the num ber of adjace nt vertices w ith any unit
vertex is ¢p(n) — 1 + 1.

Therefore, the degree of any unit vertex of the graph
PG3(Zy2) is ().

Theorem 3.3.3: Degree of any zero-di visor of the
graph PG3(Z,2) is p?—1.

Proof: zero vertex is adjacent with every vertex

(because, 0.a = 0). So, the degree of zero vertex is
2

p°—1.

Non-zero zero-divisors of Z,)2 are multiples of p.

Any two n on-zero zero-divisors a,b are adjacent
because both are multiples of p, so a.b is multiple
of p? which is 0 in Z 2.

Let u be a unit element and z be any zero-divisor of
sz. Since, u + z is not m ultiple of p, so u + z is

unit. Therefore, any zero-divisor z is adjacent with
every unit element.

Hence, any zero-divisorof Z,zis adjacent with
every element of Z 2.

Degree of any zero-divisor of the graph PG3(Z)2) is
2
p°—1
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Theorem 3.3.4: If p is odd prime, then the graphs
PG3(Z2) and PG3(Z)y) are Eulerian.

Proof: Degree of any  unit vertex of the graph
PG3(Z,2) is ¢(p*) = p(p — 1) which is even for
any prime p. Also, the degree of any zero-divisor of
the graph PG3(Z,z2) is p? — 1, which is even for any
odd prime p. Therefore, the graph  PG3(Z,2) is
Eulerian if p is odd prime.

The graph PG3(Z,) is a complete graph K,,. So, the
degree of every vertex is p — 1, which is even for
any odd prime p. Hence, the graph  PG3(Z,) is
Eulerian if p is odd prime.

Theorem 3.3.5: If z is a non-zero zero divisor and u
is any unit element of Z, ; then

a) degree of z in the graph PG3(Zp4) is
¢(pq) + p, where z is multiple of p.

b) degree of z in the graph PG3(Zp,4) is
¢(pq) + g, where z is multiple of q.

c) degree of u inthe graph  PG3(Zp,) is
¢(pq) — 1.

Where p, q are distinct prime.

Proof: Any non-zero zero di visors of Z,, are
multiples of p and multiples of q.

a) Let z bea non-zero zero divisor whic h is
multiple of p.

For any unit element u there exists b € Z,, such
that z + b = u, there are ¢(pq) number of b(+# z)
which are adjacent with z.

z is adjac ent with such zero-divisors which are
multiples of q. Because, z.¢c = 0 (mod pq) where ¢
is a multiple of q. There are p — 1 numbers of zero-
divisors which are multiples of q.

Also, it is adjacent with zero vertex.

Therefore, the degree of z is = ¢p(pq) + (p — 1) +
1=¢(pq +p.

b) Let z be ano n-zero zero divisor which is
multiple of q.

For any unit element u there exists b € Z,, such

that z + b = u, there are ¢(pq) number of b(# z)
which are adjacent with z.
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z is adjac ent with such zero-divisors which are
multiples of p. Because, z.c¢ = 0 (mod pq) where ¢
is a multiple of p. There are ¢ — 1 numbers of zero-
divisors which are multiples of p.

Also, it is adjacent with zero vertex.

Therefore, the degree of z is = ¢p(pq) + (¢ — 1) +
1=¢(a +q.

¢) Letu be a unit element of Z,, 4.

For any unit element a there exists b € Z, , such
thatu + b = a, also, u + u is a unit element in Zp, ;.

So, there are ¢(pq) — 1 number of b(# u) which
are adjacent with u. Therefore, the degree of u in

the graph PG3(Z, 4) is ¢(pq) — 1.
Where p, q are distinct prime.

Example 3.3.5.1: In the graph PG3(Z;5), non-
zero zero-divisors are 3, 5, 6,9, 10, 12. And
unit elements are 1,2,4,7,8,11, 13, 14.
Degrees of 3,6,9, 12 are ¢p(15) +3 =8+
3 =11.

Degrees of 5,10, 15ar ¢ ¢(15) +5 =8+
5=13.

Degrees of 1,2,4,7,8, 11,13, 14 are
$p(15)-1=8-1=7.

3.4 Laplacian and Algebraic Connectivity of

PG3(Zy,)

Theorem 3.4.1: Laplacian of PG3(Z)) is
Lij=p—-10=))

-1

@ #7J)

Proof: 0,1,2, - p—1 are vertices of PG3(Z,).
Here 0 is adjacent with all other vertices, because,

a.0 = 0 where, @ is any vertex of the graph.
Therefore, deg (0) =p — 1.

Let a is a non-zero element of Zp.
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If weuset he adjacency condition‘ @b =0 or
63

S|

.a

We geta ~ 0 - (D)

If we use the adja cency condition ¢ a+

b is unit element’.

We get @ ~ b where, b # p—a is any element of
Z, [a+ b is non-zero for b #p—a. In Z, every

non-zero element is a unit so @ + b is a unit for

S|

N

Q

N - (2)
If we use adjacency condition @ + b = 0
Wegeta~p—a E))

From (1) (2) and (3) @ is adjacent with all elements
of Z,, except itself (because the graph is simple).

Therefore, the degree of a is =p — 1. [from (1),
(2) and (3)]

Hence, the degree of every vertex of the graph is
p—1.

So, the graph PG3(Z)) forms a complete graph K.
By definition of Laplacian
Lyj=p—-10G=))
=—1 (i#))

Theorem 3.4.2: If G = PG3(Z,) w here pis a
prime, then algebraic connectivity a(G) = p.

Proof: The graph PG3(Z,) forms a complete graph
K,. We know that ( G) = n ifand only if G = K.
Therefore, algebraic connectivity of G = PG3(Z) is
a(G) = p.

3.5 Laplacian of PG3(Zy, X Z,)

Theorem 3.5.1: Laplacian of the graph PG3(Z, X
Zy) is

Lj=p*-1 (=j=1)
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=(p-1%+2 is zero

divisor)

(l=]¢1, Uu;

=(—1)? (i=j# 1, u; is unit element)

:—1 lf 'UL'= (ﬁ,a)and

where 3, b are non-zero elements of Zp

vy = (b,0)

or

V; = (5,(_))311(1 17]' =

where a, b are non-zero elements of Zy

or

(b,c)

* P —

v; = (a,0) and vj

where b, ¢ are non-zero elements of Zy and b

a

or

v; = (0,a) and v; = (b, ¢ ) where

b, ¢ are non-zero elements of ZpandC#p—a
or

v;=(@0)and v;=(p-a0)

where, @ is non-zero elements of Z),
or

v;= (0,a)and v;=(0,p—a)
where, @ is non-zero element of Z,,

Or

v = (d,E)and vjz(c_,a)
where, 3, b, T, d are non-zero elements of Z, and

cxp—aandd#p—>b
or

v = (d,l_J) and v =
(ﬁ —ap->b ) where b, ¢ are non-zero elements of
Z

=

=0 otherwise
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Where, p is an odd prime.
Proof:

All the elements of
vertices of the graph PG3(Z, X Z,, ). Zero divisors
of Z, X Z,, are of the form (a@,0) and (0, b),Where

a,b are elements of Zp.Unit elements of Zy X 2y

Zp X Z, are consider ed as

are of the for m (@,b) where @, b are non-zero

elements of Zy.

( Since,(0,0).(a,b) =

(

)~(a,lz) va,b ez,
) VabeEZ,

)

(=]
l Ol

Ql

]

Clearly, the vertex (0,0) is adjacent with all other
vertices except itself [since the graph is simple].

=~ degree (0,0) =p? — 1. €))

For (a,0)€ Z,xZ, ,where @ isn on-zero

element of Z;

(a,0)~(0,b) V\ihere b isany element of Z,.
[Since, (a,0).(0,b) = (0,0) ]

There are p numbers of (0, b) in Z,, X Z,, which are

adjacent with (@, 0 ), where b is any element of Zy.
@

(a,0)~(b, ) where b, ¢ are non-zero el ements of
Zpyand b+p-—a.

(@0)+(b,c)=(a+hb,c) isunit

element of Z, X Z, since for p # 2 a+a = 2a is

[Because,

non-zero and (@ + b) is non-zero for b # p — a ]

There are p —1 number of elements in Z, X Z,
are of the form (p — @, ¢). Where @, ¢ are non-zero
elements of Z,. And for no n-zero b,¢ there are

(p — 1) no. of (b, ) in Zp X Zyp.

So, number of (b, €) in the graph which are adjacent
with (@,0)is=(p—-1%2—-(p—1) (i)

Also, (a,0)~(p—a

,0) [Since (a,0) +
(ﬁ - &, 6) = (

)
0] - (D)

0
0,
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=~ From (i), (ii) and (iii)

Number of adjacent vertices in  PG3(Z, X Z, ) with
the vertex (@,0) is

=p+(@-1)P2-(@-D+1=pP-1*+2
- (2)

For any unit element (d, l_J) of Zy X Zy where @, b

are non-zero elements of Z;

(d, b ) is not adjacent with (p — @, ). Where, U is
any element of Z,, and u # p — b,

[ Since, (@,b)+(p-am) =@ b+1) =
(0,b + 1) is not unit element of Zy, X Zy, and not

zero element for i # p — b ]

(iv)

(d, b ) is not adjac ent with (17,15 -b ) Where, ¥
is any element of Z, and ¥ # p — a,

[ since (a,b)+(v,p—b )= (a+w0)

is not unit element of Z,, X Z,, and not zero element

forv#p—a]

()

From (iv) there are (p — 1) number of (p — @, %) in
Zy X Z,. Where, U is any element of Z, and u #
p—b,

From (v) there are (p — 1) number of (17,15 -b )
in Z;, X Z,.Where, U is any element of Z, and v #
p—a

And also, (d, b ) is non-adjacent with itself (since,
the graph is simple).

In PG3(Z, X Z, ) total number of non-adjacent

vertices with the vertex (C_l, b ) is =p-1+

p-D+1=2p-1

Therefore, in PG3(Z, X Z,) totalnum ber of

adjacent vertices with the vertex (d, b ) is
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=p?=2p—-1)=(p-1)>

So, degree of all units of Z,, X Z,, in PG3(Z, X Zp)

is=(@p-1)7

By definition of Laplacian,

Laplacian of the graph PG3(Z), X Z}) is
Lj=p*=1 (i=j=1)

=(p-1?+2 (i=j#1, u iszero

divisor)

=(p—1)? (i=j # 1, u is unit element)

=-1 lf V; = ((_),c_l)and Uj=(l_),6)
where 3, b are non-zero elements of Z,
or
v; = (3,0) and vjz(ﬁ,E)
where 3, b are non-zero elements of Z,
or
12 (d,ﬁ)and Uj=(l'_),5)

where b, ¢ are non-zero elements of Z, and b#p-—

a
or

v; = (0,a) and v = (B, 5) where

b, ¢ are non-zero elements of ZyandC#p—a

or

v; = (a,0) and
where, @ is non-zero element of Z),

vi=0F-a0)

or

v;= (0,a)and v;=(0,p—a)

where, @ is non-zero element of Z,,

Or
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v = (d,E)and vjz(c_,a)
where, 3, b, T, d are non-zero elements of Z, and

t+xp—aandd#p—>b
or

V; = (d,l_))and 'Uj =
(ﬁ —ap—-b ) where b, ¢ are non-zero elements of
Z

=

=0 otherwise

Where, p is an odd prime.

Theorem 3.5.2: The graph PGs(Z, X Z,) is
Eulerian, for any odd prime p.

Proof: deg (0,0) =p? — 1. For any odd prime
p, deg (0,0) =p? — 1 is even. Degree of an y zero-
divisor of Z,, X Z,, is (p — 1)% + 2, which is even
for any odd prime p. Degree of any uni t element is
(p — 1)?, which is also even forany ~ odd prime.
Since PGy (Zp X Zp) is connected and all vertices of
PG; (Zp X Zp) are of e

PG; (Zp X Zp) is Eulerian, where p is any od d

ven degree. Therefore

prime.

Theorem 3.5.3:  Girth of the graph PG35(Z, X Z,)
is 3, Where p is any prime.

Proof: Forany odd prime p, unit ele ments
(a,b), ( — a,p — b) and zero element (0, 0 ) make
a cycle of length 3 in PG3(Z), X Z,). For p = 2 zero
element and (1,0 ), (0,1 ) make a cycle of length 3.
Therefore, girth of PG3(Z, X Z,) is 3, where p is

any prime.

Theorem 3.5.4 PG; (Zp X Zp) is not a planar
graph, where p is any odd prime.

Proof: For any odd prime p the graph PG5 (Zp X
Zp) contains a subgraph Kz with the vertices (1,0 ),
(2,0), (0,1), (0,2), and (0,0), which isnot a
planar. Therefore, the graph PG; (Zp X Zp) isnota
planar graph for any odd prime p.
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(1,0) (0,1)
(2,0) (0,2)
(2,2) (1,2)

Fig. 2: PG3(Z5 X Z3)

3.6: Degree, planarity, girth of PG4(Z,,):
Theorem 3.6.1: Let n = p; 1. p,2.p3° ...pe© Where,
P1, D2, Dy are distinct prime and n; € N for i =

1,2, ..., k; and a be any non-zero vertex of PG4(Z,,).

(i) The degree of any vertex a(# g) of the graph

PG,(Z,) is =gcd(a,n) + 1. Where; a? # 0 on
Zy.
(ii) If a? =0(modn) thendegree of a=

gcd(a,n) — 1.
(iii) If n is even, then
The degree of a = % in PGy(Z,,) is

n . n.
=3 -1 1fa=;1seven

=2 ifa="Zisodd
2 2
(iv) If n = a? then degree of the vertex a = a — 1
(v) If gcd(a,n) = 1, then degree of a is 2.

Proof: (i) Let n=p;.p,%p3° ..p* where,

P1,D2, Dy are distinct primes and n; € N for i =
1,2,.., k. Also,let a (a? # 0) beany vertex of
PG,(Z,) and ged(a,n) = p;*.py2.p3° . Dy~
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Np=71z _N3—T3 Ng—Tk

Dy R o D
then a. b is multiple of n. Therefore a.b = 0 in Z,,.

1~ T

If b is multiple of p}’

So, the vertex a is adjacent with b.

Number of b isthe number ofm ultiples of
ny-—r- Nny—r: Nn3—r: Nng—r
Pt Py tpyt P p < ¥ between O to n.
Number of multiples of
n,—r Ny —1; n3—r: Ng—r .
Pt hpyt tpgt P p® K betweenOto n s
_ n
- - = — N1
pill rllp;l2 r2 p;"3 3 pkk k
n
_ pi ph2 pht3 ___pkk
- - — — M —T,
priTTL 2 T2 BT T

= p, Dyt Py R = ged(a,n).

Number of b which satisfies the adjacency condition
a.b = 0is gcd(a,n).

Also, a is adjacent with n — a (using the adjacency
condition a + b = 0).

So, the degree of a is = gcd(a, n) + 1.

(ii) If a®> = 0(mod n) then a.a = 0. So, a satisfies
the adjacency condition a.b = 0. But, the vertex a
is not adjacent to itself because the graph is a simple
graph. So, Number of b which satisfies the
adjacency condition a.b = 0 is gcd(a,n) — 1.

Also, a is adjacent with n — a (using the adjacency
condition a + b = 0). But,a.(n —a) = 0 in Z,.

Therefore, the degree of a is = gcd(a, n) — 1.

(iii) If a = % isevenand b =0, 2, 4, ’% ;o —
2. Then the a djacency condition a.b = 0 or b.a =
0 holds. But, b ig (since, the graph is a sim ple
graph). If we use the adja cency condition a + b =
0, then

simple graph. So, the number of adjacent vertices

g is a djacent to itself. But the graph is

with = is = — 1.
2 2
Ifa= g isoddand b = 0, 2, 4, g— 1,§+ 1,

Thent he
Oor b.a =0 holds.If we use the adjacency

n-—2. adjacency conditi on a.b =
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condition a + b = 0, then % is adj acent to itsel f.
But the graph is a sim ple graph. So, the number of

. . . n . n
adjacent vertices with a = S s

(iv) Let a be any vertex of the graph such that n =
a? and ged(a,n) = p;*.py2.p3° . Dk = a

Since, n=a?, if b is m ultiple of a then a is
adjacent with b because, here a.b =0 on Z,.

Number of b = Number of multiples of a in Z,, =

2
Z = % = a = gcd(a,n). Also, a is adjacent with

n—a because, a + (n—a) =0 on Z,. But, n —
a=a?—-a=a(a—1) which is multiple of a.
since the graph is a simple graph. So, the degree
of ais = gcd(a,n) = a.

v) If gcd(a,n) = 1, then a is unit element of Z,,,
which is adjacent with n — a and zero ele ment.
Therefore, the degree of a is 2.

Theorem 3.6.2: The girth of the graph PG,(Z},) is,

girth PG,(Z,) =
is a prime

ifn=2,3450rn

=3 otherwise

Proof: The graph PG,(Z,) is a complete graph K5,
So girth is infinite. PG,(Z3), PG,(Z,) are union of
two copies of K, and union of three cop ies of K,
with common vertex zero respectively . So, the girth
of PG,(Z3), PG,(Z,) is infinite. PG4(Zs) is a union
of four copi es of K, with co mmon vertex zero.
Therefore, the girth of PG,4(Z5) is infinite.

If n>5 and n isnotprim e then in the graph
always exists a cy cle of length three with the zero
vertex and two non-zero zero divisors of Z, which
are adjacent. Therefore, the girth is 3.

Theorem 3.6.3: The graph PG,(Z,) is Eulerian if
and only if n is odd.

Proof: If n is odd then the degree of zero vertex of
the graph = n — 1 which is an even, and the degree
of any non-zero vertex is either gcd(a,n) +1 or
gcd(a,n) — 1. Since, n is odd, gcd(a, n) is odd. So,
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gcd(a,n)+1 and gecd(a,n) —1 areeven.
Therefore, the graph PG,(Z,,) is Eulerian.

If n is even the degree of zero vertex of the graph =
n — 1 which is odd. So, the graph is not Eulerian if
n is even.

Hence, the graph PG,(Z,) is Eulerian if and onl y if
n is odd.

Theorem 3.6.4: The graph PG4 (Z,,) is not planar if
p,q > 3. Where, p, q are two distinct primes.

Proof: Zero-divisors of PG4(Z,4) are multiples of p
and multiples of g. Set of non-zero zero-divisors

form a co mplete bipartite graph K, 41, whose
one set of vertices is a set of multiples of p and the
other is a set of m ultiples of q. In PG,(Zy,) there
are (q — 1) number of multiples of p and (p — 1)
number of multiples of q. So, if p,q > 3 then the

graph has a subgraph K33 whichisnot planar.
Therefore, the graph PG,(Z,4) is not a planar graph,

ifp,qg > 3.

Theorem 3.6.5: The graph PG, (Z,2) is not planar if
p =5.

Proof: Inthe graph PG4(Z,2) any zero-divisor is
multiple of p. If a, b two distinct zero-divisors then
a. b has a factor p?. So, a.bh =0 in Zpe. Therefore,

any two zero-divisors are adjacent in the graph. For
p = 5, the number of zero-divisors is = 5 and zero-
divisors form a co mplete graph. So, if p =5 the
graph has a complete subgraph K5. Hence the result.

3.7. Laplacian of PG4(Zp)

Theorem 3.7.1: Laplacian of PG4(Z)) is
Lj=p—-1 (i=j=1)

=2 (i=j#1)

=-1 ifv,=0andv;=a,

or
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if vi= aandv; =0,
or
if wv=aadvi=p—a
or
if w=p—aandv;=a
=0 Otherwise

where @ is any non-zero vertex of PG, (Z,) and p is
any odd prime.

Proof: 0,1,2, - p—1 are vertices of PG,(Zp).
Here the vertex 0 is adjacent with all other vertices.

Therefore, deg (0) =p — 1.
If @ is non-zero element of Z,, then a is adjacent
with 0 and p—a [since a+Pp—a =0, using
adjacency condition of the graph]
Therefore, the degree of any non-zero vertex @ is 2
By definition of Laplacian
Lj=p-1 (G(=j=1)
=2 (=j#1)

=-1 ifvi=6andvj=c_l

lf v; = c_landvj =6

if vv=aandvi=p—a

if v=p—a
=0 Otherwise

Where, a is any non-zero vertex of PG,(Z,) and p
is any odd prime.
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Theorem 3.7.2: If G = PG,(Z,) wherepisa
prime (> 3)then a(G) < 1.

Proof: 0,1,2, - p—1 are vertices of PGy(Zp).
The graph PG,(Z,) and PG,(Z3) are complete
graphs K, and K5 respectively. For p > 3 the graph
PG,(Zy) is union of 1)2;1 copies of K3 in which zero
vertex is common. For deletion of zero vertex the
graph will be disconnected. So, vertex connectivit y
v(G) = 1. We know that if G # K,, then a(G) <
v(G). Therefore, a(G) < 1.

7 N\

Fig.3: PG, (Z;)
3.8. Laplacian of PG4(Z, X Zy)

Theorem 3.8.1:  Laplacian of PG4(Z, X Zp) is

Lij=p*-1 (i=j=1)

p+1 (i=j+#*1, u;is zero divisor)

2 (i =j # 1, u; isunit element)

=-1 lf v = (ﬁ,d)and UJ=(E,6)

where @ is non-zero and b is any element of Zy,
Or

v = (ﬁ,ﬁ)and U]=(6,E)

where @ is non-zero and b is any element of Z,

or
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vi= (@0)and v;=(p—a0)
where a is non-zero element of Zy
or
v;= (0,a)and v;=(0,p—a)
where @ is non-zero element of Z),
or
v; = (d,E)and Uj =
(F-ap-b)
=0 otherwise

Proof: All the elements of Z,, X Z,, are considered
as vertices of the graph PG, (Z,, X Z,). Zero divisors
of Z, X Z, are of the form (&, 0) and (0, b), Where

a,b are elements of Zy .

Units of Z), X Z,, are of the form (@, b) where a,b

are non-zero elements of Zy.

(0,0). (d, l_)) =(0,0) vabe Zy [from Ist
adjacency condition of PG4(R)]

Clearly, zero ele ment (0,0) is adjacent wi th all
other vertices

~ deg (0,0) =p? —1

Now for (a,0) € Z, X Z, , where @ is any non-
zero element of Zp,.

(@,0)~(0,b) where b is any element of Z,

[ using adjacency condition of
PGy(R)

(@,0).(0,b) = (0,0) ]
There are p number of b in Zy.

(a,0)~( —a,0) where
element of Zp.

a isany non-zero

[using 2™ adjacency condition of
PG4(R)
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@0)+ @ —a0)=(0,0)]

~ Number ofadjacent ve rtices witht he vertex
(@0)is=p+1

Degree of (@,0) in PGy(Z, X Z,) is=p +1

Similarly, Degree of (0,a) in PG4(Z, X Z},) is =
p+1

Therefore, Degree of all non-zero zero divisors of
Zp X Zyin PGy(Zy X Zy) is = 2

Now for any unit element (c_l, E) of Zy X 7y, where,

a, b are non-zero elements of Zy.

(a,b)+

~ The number of adjacent vertices with the vertex
(@b)is=1+1=2

The degree of (@, b ) in PG,(Zy X Zp) is = 2

Degree of all units of Z, X Z,, in PG4(Z, X Zp,) is =
2
By definition of Laplacian

Lj=p*-1 (i=j=1)

=p+1
divisor)

(i =j # 1, u; is non-zero zero

2 (i =j # 1, u; isunit element)

=-1 lf v = (ﬁ,d)and UJ=(E,6)

where @ is non-zero and b is any element of Zy
Or

v = (ﬁ,ﬁ)and U]=(6,E)

where @ is non-zero and b is any element of Z,

or
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vi= (@0)and v;=(p—a0)
where a is non-zero element of Zy
or
v;= (0,a)and v;=(0,p—a)
where @ is non-zero element of Z),
or
v; = (d,E)and Uj =

(ﬁ —-ap->b ) where @, b are non-zero elements of
Z

<

=0 otherwise

Theorem 3.8.2: PG4(Zp X Zp) is Eulerian, where p
is any odd prime.

Proof: deg (0,0) =p? —1 ,forany odd prime
p? — 1 is even. Degree of any zero-divisor of Zp X
Zy, is p + 1, which is even for any odd prime.
Degree of any unit element is 2, wh ich is even.
Since PG, (Zp X Zp) is connected and all vertices of
PGs (Zp X Zp) are of e

PG, (Zp X Zp) is Eulerian, where p is any od d

ven degree. Therefore

prime.

Theorem 3.8.3: Girth of PG4(Z, X Zp) is 3,
Where p is any prime.

Proof: Forany odd prime, zero element and unit
elements (C_l, E) and (p — a,p — b) make a cycle of
length 3 in PG,(Z, X Z},). For p = 2, zero element
and (1,0), (0,1) makes acy cle oflength 3.
Therefore, girth of PG4(Z), X Z)) is 3, where p is

any prime.

Theorem 3.8.4: PG4(ZP X Zp) is not a planar
graph, where p is any odd prime.

Proof: The graph PG4(Z, X Z,) is union of K3
and K, with a common vertex (0,0).So the graph is
a planar for p = 2. If p is any odd prime then the
graph PG4(Zp X Zp) contains a sub graph Kz with
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the vertices (a,0), (0,a), (7—a,0), (0,p—a),
and (0,0), whichisnota
PG4(ZP X Zp) isnota planar graph for any odd

planar. Th erefore

prime p.

Theorem 3.8.5: Clique number of PG4(Z, X Z,) is
5, Where p is any odd prime.

Proof: Forany zero divisor (@,0) there exists a
complete subgraph K5 with vertices (a,0), (0,b ),
(®=a,0), (0,p—b), and (0,0). Similarly, for
any zero divisor of the form (0, a) there exists a
complete subgraph Ks with vertices (@,0), (0,b),
(p—a,0), (ﬁ,pr ), and (0,0). For any unit
element (d, b ) there exists a complete graph K3
(@b), (0,0), (p=ap-Dh).
Therefore, K5 is the m aximal complete subgraph in
PG,(Z, X Zy,). Hence, Clique num ber of PG4 (Z), X
Zy) is 5, Where p is any odd prime.

with  vertices

Example:

(1,2) (1,1)
(0,0)

2,.1) (2.2)

(1,0) (0,1)

(2,0) (0,2)

Flg 4. PG4(Z3 X Z3)

4 Conclusion

The graph PG3(Z,) isplanaronly for n = 2,3,4
and 6. Any zero-divisors of the graph is connected
with every vertex of the graph except itself. The
degree of the unit element of the graph PG3(Z,2) is

¢(p?). Thegra ph PG, (Zp2), PG3(Zy)
PG3(Z, X Z,) are Eulerian for any odd prime p. On
the other hand; the graph PG,(Z,,) is Eulerian if and

and
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only if n is odd. The grap h PG,(Z, X Z,) is also

Eulerian for any oddprim e p. Algebraic

connectivity of the graph PG3(Z,) is p butt he
algebraic connectivity of the PG4 (Z)) is less than or
equal to 1. The graphs PG3(Z, X Z;), PGy(Zp X
Zy,) are not planar for any odd prime p. In the graph

PG4(Z,) there does not existanyc  ycle for n =

2,3,4 and 5 or n is prime.

5 Future Scope

We can work on the graphs PG3(R), PG4(R) for any
non-commutative finite ring R. Chromatic number
and dominating number of the graphs ¢ an be found
out. Also, we can study Laplacian en ergy of the
graphs PG3(R), PG4(R).
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