
Abstract: - In this paper, we are interested in the singular positive solutions of the inhomogeneous radial equation(
|u′|p−2u′

)′
(r) +

N − 1

r
|u′|p−2u′(r) + uq(r) + f(r) = 0, r > 0,

where N ≥ 1, p > 2, q > 1 and f is a continuous radial and strictly positive function on (0,+∞).
More precisely, we study the solutions u that cannot be extended by continuity at zero, that is, lim

r→0
u(r) = +∞.

We give existence and nonexistence results and we describe the behavior of entire solutions near infinity. The
study needs some assumptions on p, q, N and explicit conditions on the inhomogeneous term f .

Key-Words: - Inhomogeneous elliptic equation; entire solutions; strictly positive solutions; energy function;
asymptotic behavior near infinity.

1 Introduction
The purpose of this paper is to study the following
equation

(|u′|p−2u′)′+
N − 1

r
|u′|p−2u′+uq+f(r) = 0, r > 0,

(1)
where N ≥ 1, p > 2, q > 1 and f is a continuous
radial and strictly positive function on (0,+∞).
We are interested in the singular positive solutions
of (1) that satisfy lim

r→0
u(r) = +∞. The study

is a continuation of the work carried out by [6],
where the authors proved the existence of a maxi-
mal solution u defined on ]0, rmax[ such that u ∈
C0(]0, rmax[) ∩ C1(]0, rmax[) and

(
|u′|p−2u′

)′ ∈
C1(]0, rmax[) where 0 < rmax ≤ +∞ and satisfy-
ing

(P)

{
(|u′|p−2u′)′ + N−1

r |u′|p−2u′ + uq + f = 0, r > 0,

lim
r→0

u(r) = +∞, lim
r→0

r(N−1)/(p−1)u′(r) = 0,

where N ≥ 1, p > 2, q > 1 and f is a strictly pos-
itive, continuous radial function on (0,+∞). They
presented also the behavior of singular solutions near
the origin. In this work, we give the existence of en-
tire solutions of problem (P ), present their behavior
near infinity, and prove the nonexistence results.

Equation (1) can be considered as a natural gener-
alization of pure Laplacian case p = 2 studied in the

papers, [2], [3]. It is presented as follows

u′′(r)+
N − 1

r
u′(r)+uq(r)+f(r) = 0, r > 0, (2)

where p > 1,N ≥ 3 and f is a strictly positive, con-
tinuous radial function on (0,+∞). Equation (2) ap-
peared in probability theory in the study of stochas-
tic processes. It plays a central role in establish-
ing some limit theorems for super-Brownian motion,
[15]. Therefore, it has been extensively studied in
much literature. [3], studied the existence and nonex-
istence of solutions of equation (2). He proved that

if q ≤ N

N − 2
or if q >

N

N − 2
and f ≥ Cr

2q

q−1 for

some constant C > 0, equation (2) does not have any

solution. But when q >
N

N − 2
and f is dominated by

a function of the formC/(1+r)
N−2

q forC > 0 suffi-
ciently small, equation (2) has a solution. [2], studied
the existence of global positive solutions of equation
(2), and in the paper, [1], presented the asymptotic
behavior near the origin and infinity of positive radial
solutions. We also refer the readers to see, [14], [8],
[17] for more details about the equation (2) and the
references therein.

When f ≡ 0, equation (2) becomes the classic
Emden-Fowler equation. In [9], [10], [11], Emden-
Fowler gave the existence results and a classification
of global radial solutions on RN and RN\{0}. In the
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case N > 2, two critical values
N

N − 2
and

N + 2

N − 2
appear. [12], presented local and global results in the

non-radial case when q <
N + 2

N − 2
. [7], have just ex-

tended them to the critical case q =
N + 2

N − 2
.

The motivation to study the equation (1) grew
from earlier work of [16], in case f ≡ 0 and p > 2
for the equation(
|u′|p−2u′

)′
+
N − 1

r
|u′|p−2u′ + uq(r) = 0, r > 0.

(3)
They have shown the existence of two critical val-

ues
N(p− 1)

N − p
and

N(p− 1) + p

N − p
. [13], studied

the existence of global solutions and asymptotic be-
havior near the origin of radial solutions when q <
N(p− 1)

N − p
. The non-radial case was proved by [5].

In this paper, we shall further extend the analysis
of the equation (3) by adding an inhomogeneous sin-
gular term f which has an impact on the existence and
the asymptotic behavior of solutions of equation (1).
We show under some assumptions that if the term f
behaves like r−pq/(q+1−p) near infinity, then the solu-

tion u of problem (P ) behaves like r−p/(q+1−p) near
infinity. In particular, we have the following results

in the case N > p and q >
N(p− 1)

N − p
,

(i) If

f(r) =
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

×

r−pq/(q+1−p),

then problem (P ) possesses a positive explicit solu-
tion given by

u(r) =

(
p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)1/(q+1−p)

×

r−p/(q+1−p). (4)

(ii) If f(r) ∼
+∞

lr−pq/(q+1−p) for some l such that

0 < l ≤ q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

,

then there exists a solution u of problem (P ) such that

u(r) ∼
+∞

br−p/(q+1−p) for some b > 0.

(iii) If f(r) ∼
+∞

lr−pq/(q+1−p) for some l such that

l >
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

,

then problem (P ) does not possess any entire solu-
tion.

The rest of the paper is divided in three sections.
In section 2, we give the existence of entire solutions
of problem (P ). In section 3, we present the asymp-
totic behavior of solutions near infinity in the cases

q 6= N(p− 1) + p

N − p
and q =

N(p− 1) + p

N − p
. The last

section is devoted to the nonexistence results.

2 Existence of Entire Solutions
In this section, we study the existence of entire so-
lutions of problem (P ) while recalling that the exis-
tence of maximal solutions of problem (P ) defined
on (0, rmax), 0 < rmax ≤ +∞ has been established

if N > p and q >
N(p− 1)

N − p
in the paper, [6].

Theorem 2.1. Assume that N > p and q >
N(p− 1)

N − p
. Then problem (P ) possesses an entire so-

lution u.

Proof. Let u be a maximal solution of problem (P )
defined on (0, rmax), where 0 < rmax ≤ +∞. We
will proceed in four steps to prove that u is entire.
Step 1. u′ < 0 on the set {r ∈ (0, rmax) : u(r) >
0}.
First, we prove that u is strictly decreasing near 0. We
argue by contradiction. Suppose that there exists a
small r such that u′(r) = 0, then by equation (1), we

have
(
|u|p−2u′

)′
(r) = −uq(r)− f(r) < 0 (because

f > 0 and u > 0 near 0). Therefore u′ 6= 0 near
0. Moreover, since lim

r→0
u(r) = +∞, then u must be

decreasing near 0. If there exists a first zero r0 ∈
(0, rmax) of u

′ such that u′(r0) = 0 and u(r0) >

0, then
(
|u|p−2u′

)′
(r0) ≥ 0, but by equation (1) we

have
(
|u′|p−2u′

)′
(r0) = −uq(r0) − f(r0) < 0. We

deduce that u′ < 0 on the set {r ∈ (0, rmax) : u(r) >
0}.
Step 2. u > 0 and u′ < 0 on (0, rmax).
Let r1 ∈ (0, rmax) the first zero of u. Since u ≥
0 on (0, rmax), then necessarily u′(r1) = 0. Using
equation (1), we have(
rN−1|u′|p−2u′

)′
(r) = −rN−1uq(r)− rN−1f(r).

(5)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.28 Arij Bouzelmate, Hikmat El Baghouri

E-ISSN: 2224-2880 233 Volume 22, 2023



We integrate (5) on (r, r1) for r ∈ (0, r1) and since
(uq + f) > 0 on (0, r1) and u

′(r1) = 0, we obtain
u′(r) > 0 on (0, r1). This contradicts the first step.
Consequently u > 0 on (0, rmax) and by the first step
u′ < 0 on (0, rmax).

Step 3. u(r) = O
(
r−

p

q+1−p

)
for any r ∈ (0, rmax).

Since f is positive, then by equation (5), we have for
any r ∈ (0, rmax)(

rN−1|u′|p−2u′
)′
(r) ≤ −rN−1uq(r). (6)

Integrating this last inequality on
(r
2
, r
)

for r ∈
(0, rmax) and using the fact that u′(r) < 0 on
(0, rmax), we obtain for any r ∈ (0, rmax)

|u′|p−2u′(r) < −
(
2N − 1

N 2N

)
ruq(r).

Since u > 0 and u′ < 0 on (0, rmax), then for any
r ∈ (0, rmax) we have

u′(r)u−q/(p−1)(r) < −
(
2N − 1

N 2N

)1/(p−1)

r1/(p−1).

Since q >
N(p− 1)

N − p
> p − 1, then for any r ∈

(0, rmax) we have(
u(p−1−q)/(p−1)

)′
(r) >

q + 1− p

p− 1

(
2N − 1

N 2N

)1/(p−1)

×

r1/(p−1).

Integrating this last inequality on (0, r) for r ∈
(0, rmax) and using the fact that lim

r→0
u(r) = +∞ and

q > p− 1, we obtain

0 < u(r) ≤Mr−p/(q+1−p) for any r ∈ (0, rmax),
(7)

where

M =

(
N 2N

2N − 1

(
p

q + 1− p

)p−1
)1/(q+1−p)

. (8)

Step 4. rmax = +∞.
Suppose by contradiction that rmax < +∞. Then
lim

r→rmax

u(r) = +∞. But by letting r → rmax in (7),

we get a contradiction. Consequently the solution u
is entire.

3 Asymptotic Behavior Near Infinity
In this section, we investigate the asymptotic be-
havior near the infinity of solutions of problem (P ).

Under some additional assumptions on f , we prove

that any solution of (P )must behave like r−p/(q+1−p)

at infinity. The study requires some ideas from [4].

First, let us define for any c 6= 0 the following
function

(rcu(r))′ = rc−1Ec(r), (9)

where
Ec(r) = cu(r) + ru′(r). (10)

By equation (1), for any r > 0 such that u′(r) 6= 0
we have

(p− 1)
∣∣u′∣∣p−2

(r)E′
c(r) =(p− 1)

(
c− N − p

p− 1

)
×∣∣u′∣∣p−2

u′(r)− ruq(r)

− rf(r). (11)

Therefore, if Ec(r0) = 0 for some r0 > 0, equation
(1) implies that

(p− 1) rp−1
0

∣∣u′∣∣p−2
(r0)E

′
c(r0) = −(p− 1)

(
c− N − p

p− 1

)
×

|c|p−2c up−1(r0)− rp0u
q(r0)

− rp0f(r0) (12)

We start with the following preliminary results.

Proposition 3.1. Let u be a solution of problem (P ).
Then

u(r) > 0 and u′(r) < 0, for any r > 0, (13)

Moreover, if q > p− 1, then

0 < u(r) ≤M r−p/(q+1−p), (14)

whereM is given by (8).

Proof. We follow the same reasoning of the first three
steps of the proof of Theorem 2.1 by taking rmax =
+∞.

Proposition 3.2. Assume that N > p. Let u be a
solution of problem (P ). Then E(N−p)/(p−1)(r) > 0
for large r.

Proof. Taking c =
N − p

p− 1
in (11), we see that

E′
(N−p)/(p−1)(r) < 0 for any r > 0. Therefore,

E(N−p)/(p−1)(r) 6= 0 for large r. Suppose by contra-
diction that E(N−p)/(p−1)(r) < 0 for large r. Then,
lim

r→+∞
E(N−p)/(p−1)(r) ∈ [−∞, 0[. We distinguish

two cases.
Case 1. lim

r→+∞
E(N−p)/(p−1)(r) = −∞.
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Using Proposition 3.1, we have u(r) > 0 and u′(r) <
0 on (0,+∞), which implies that lim

r→+∞
u(r) exists

and is finite. Now, by relation (10) we have necessar-
ily lim

r→+∞
ru′(r) = −∞, which is impossible since u

is positive.
Case 2. −∞ < lim

r→+∞
E(N−p)/(p−1)(r) < 0.

Then ru′(r) converges necessarily to 0 when r →
+∞. This implies that lim

r→+∞
u(r) < 0 (because

N > p). Which is impossible.
We conclude that E(N−p)/(p−1)(r) > 0 for large
r.

Proposition 3.3. Assume that N > p and q > p− 1.
Let u be a solution of problem (P ). Then the function

rp/(q+1−p)+1u′(r) is bounded for large r.

Proof. Using Propositions 3.1 and 3.2, we have u is
strictly decreasing andE(N−p)/(p−1) > 0, for large r.
This implies that

0 < r|u′(r)| < N − p

p− 1
u(r) for large r. (15)

Recall by Proposition 3.1, that rp/(q+1−p)u(r) is
bounded for any r > 0. Therefore, by (15), we easily
get that rp/(q+1−p)+1u′(r) is bounded for large r.

Now, to prove the next Theorems, we introduce
the following change of variable which will be very
useful. So let us define the function

υ(t) = r
p

q+1−pu(r) where t = ln r. (16)

So υ satisfies the following equation

y′(t) +

(
N − pq

q + 1− p

)
y(t) + υq(t) + j(t) = 0,

(17)
where

j(t) = e
pq

q+1−p
tf(et), (18)

y(t) = |k|p−2k(t), (19)

k(t) = υ′(t)− p

q + 1− p
υ(t). (20)

It’s easy to see that

k(t) = r
p

q+1−p
+1u′(r). (21)

Proposition 3.4. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a solution of problem (P ). Sup-

pose that rpq/(q+1−p)f(r) and rp/(q+1−p)u(r) con-

verge when r → +∞. Then rp/(q+1−p)+1u′(r) con-
verges also when r → +∞ and

lim
r→+∞

rp/(q+1−p)+1u′(r) =

−p
q + 1− p

lim
r→+∞

rp/(q+1−p)u(r). (22)

Proof. According to Proposition 3.1 and logarithmic
change (16), we have υ is bounded for large t, which
gives by Proposition 3.3 that k is bounded for large t.
Therefore by expression (19), we have y is bounded
for large t. We show that y is monotone for large
t. Suppose by contradiction that there exist two se-
quences {γi} and {ρi} going to+∞ as i→ +∞ such
that {γi} and {ρi} are respectively local minimum
and local maximum of y, satisfying γi < ρi < γi+1

and

−∞ < lim inf
t→+∞

y(t) = lim
i→+∞

y(γi)

< lim sup
t→+∞

y(t) = lim
i→+∞

y(ρi) ≤ 0. (23)

Using equation (17) and the fact that y′(γi) =
y′(ρi) = 0, we obtain

(
N − pq

q + 1− p

)
y(γi) + υq(γi) + j(γi) =(

N − pq

q + 1− p

)
y(ρi) + υq(ρi) + j(ρi) = 0.

Since υ(t) and j(t) converge when t tends to+∞ and

N >
pq

q + 1− p
, then lim

i→+∞
y(γi) = lim

i→+∞
y(ρi),

which contradicts the estimate (23). Therefore k(t)
converges when t → +∞. So, by (20), υ′(t)
converges necessarily to 0 when t → +∞. Con-

sequently, rp/(q+1−p)+1u′(r) converges when r →
+∞ and (22) is satisfied.

Proposition 3.5. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a solution of problem (P ). Sup-

pose that lim
r→+∞

rpq/(q+1−p)f(r) = l > 0.

If lim
r→+∞

rp/(q+1−p)u(r) = b. Then b is one of the two

roots λ1 and λ2 of the equation

sq−
(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1

sp−1+l = 0,

(24)
such that 0 < λ1 ≤ λ2.
In particular, if

l =
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

,

(25)
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then

b =(
p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)1/(q+1−p)

.

(26)

Proof. Using logarithmic change (16), we have υ(t)
converges to b ≥ 0 when t → +∞. Hence,
combining with Proposition 3.4, k(t) converges also

and lim
t→+∞

k(t) =
−p

q + 1− p
b. Therefore, by

(19), lim
t→+∞

y(t) = −
(

p

q + 1− p

)p−1

bp−1. Since

lim
t→+∞

j(t) = l, then by equation (17), y′(t) converges

necessarily to 0. Therefore, by letting t→ +∞ in the
same equation, we obtain

bq − Λq+1−pbp−1 + l = l − ψ(b) = 0, (27)

where

Λ =

((
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)1/(q+1−p)

.

(28)

and

ψ(s) = Λq+1−psp−1 − sq, s ≥ 0. (29)

A simple study gives

max
s≥0

ψ(s) = ψ

((
p− 1

q

)1/(q+1−p)

Λ

)
= L, (30)

where

L =
q + 1− p

p− 1

(
p− 1

q

)q/(q+1−p)

Λq

=
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

.

(31)

Since l > 0, we can easily see that the equation
l − ψ(s) = 0 has two roots λ1 and λ2 such that 0 <
λ1 ≤ λ2. Then, by (27), b = λ1 > 0 or b = λ2 > 0.
Moreover if l = L, this last equation has only one ex-

plicit root, that is, λ1 = λ2 =

(
p− 1

q

)1/(q+1−p)

Λ.

Hence by (27) and (30), we have explicitly

b =

(
p− 1

q

)1/(q+1−p)

Λ

=

(
p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)1/(q+1−p)

.

(32)

Proposition 3.6. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a solution of problem (P ). Sup-

pose that lim
r→+∞

rpq/(q+1−p)f(r) = l > 0. Then

lim inf
r→+∞

rp/(q+1−p)u(r) > 0 (33)

and
lim sup
r→+∞

rp/(q+1−p)+1u′(r) < 0. (34)

Proof. The proof will be done in two steps.

Step 1. lim inf
r→+∞

rp/(q+1−p)u(r) > 0.

Assume by contradiction that

lim inf
r→+∞

rp/(q+1−p)u(r) = 0. This means that

lim inf
t→+∞

υ(t) = 0. Since υ(t) is bounded for large t,

we distinguish two cases.
• υ(t) is monotone for large t.
Then lim

t→+∞
υ(t) = 0. Since u′(r) < 0 for any r > 0

and E(N−p)/(p−1)(r) > 0 for large r (by Proposition
3.2), then we have for large t,

0 < |k(t)| < N − p

p− 1
υ(t). (35)

It follows that lim
t→+∞

k(t) = 0 and by relation

(19), lim
t→+∞

y(t) = 0. Therefore, by equation (17),

lim
t→+∞

y′(t) = −l < 0. But this is a contradiction

with lim
t→+∞

y(t) = 0.

• υ(t) is oscillating for large t.
Then there exists a sequence {µi} going to +∞
as i → +∞ such that υ has a local minimum
in µi. Therefore using our hypotheses, we have
lim

i→+∞
υ(µi) = 0, υ′(µi) = 0 and υ′′(µi) ≥ 0 (υ′′ ex-

ists because u′ < 0). Which gives lim
i→+∞

k(µi) = 0

and k′(µi) ≥ 0 and so lim
i→+∞

y(µi) = 0 and

y′(µi) ≥ 0. Therefore, by equation (17), we have
lim

i→+∞
y′(µi) = −l < 0. This is a contradiction.

It follows from both cases that
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lim inf
r→+∞

rp/(q+1−p)u(r) > 0.

Step 2. lim sup
r→+∞

rp/(q+1−p)+1u′(r) < 0.

Since u′ < 0, we assume by contradiction that

lim sup
r→+∞

rp/(q+1−p)+1u′(r) = 0. This means that

lim sup
t→+∞

k(t) = 0. In the same way as the first step,

since k(t) is bounded for large t (by Proposition 3.3),
we distinguish two cases.
• k(t) is monotone for large t.
Then lim

t→+∞
k(t) = 0. That is,

lim
r→+∞

rp/(q+1−p)+1u′(r) = 0. This yields by

L’Hôpital’s rule that lim
r→+∞

rp/(q+1−p)u(r) = 0. But

this contradicts the fact that lim inf
r→+∞

rp/(q+1−p)u(r) >

0 by the first step.
• k(t) oscillates for large t.
Then there exists a sequence {ρi} going to +∞ as
i → +∞ such that k has a local maximum in ρi.
Therefore, lim

i→+∞
k(γi) = 0 and k′(γi) = 0 and

so lim
i→+∞

y(γi) = 0 and y′(γi) = 0. Therefore, by

equation (17), we have lim
i→+∞

υq(γi) = −l < 0. This

is impossible since υ is positive.

We deduce that lim sup
r→+∞

rp/(q+1−p)+1u′(r) < 0. The

proof is complete.

The following theorem gives a sufficient condition

to obtain explicitly lim inf
r→+∞

rp/(q+1−p)u(r).

Theorem 3.7. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a solution of problem (P ). Sup-

pose that

lim
r→+∞

rpq/(q+1−p)f(r) =
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

.

(36)

Then

lim inf
r→+∞

rp/(q+1−p)u(r) =(
p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)1/(q+1−p)

.

Proof. Note that if υ converges, we obtain the result
directly by using Proposition 3.5. Otherwise, since υ
is bounded, it must oscillate. Then there exists a se-
quence {µi} going to +∞ as i → +∞ such that υ

has a local minimum in µi. Therefore υ
′(µi) = 0 and

υ′′(µi) ≥ 0. Hence, using (20), we have k(µi) =
−p

q + 1− p
υ(µi) and k′(µi) = υ′′(µi) ≥ 0. This

yields

y(µi) = −
(

p

q + 1− p

)p−1

υp−1(µi)

and

y′(µi) = (p− 1) |k(µi)|p−2 k′(µi) ≥ 0.

Using equation (17) with t = γi, we obtain

0 ≤ y′(µi) = Λq+1−pυp−1(µi)− υq(µi)− j(µi)

= ψ (υ(µi))− j(µi)

≤ L− j(µi),

where ψ and L are respectively given by (29) and
(31). Since lim

t→+∞
j(t) = L, then lim

i→+∞
ψ (υ(µi)) =

lim
i→+∞

j(µi) = L. Hence, according to (30),

lim
i→+∞

υ(µi) = lim inf
t→+∞

υ(t) =

(
p− 1

q

)1/(q+1−p)

Λ,

where Λ is given by (28). This completes the proof.

Now, we study the convergence of rp/(q+1−p)u(r)
at infinity to improve the previous result which gives

only lim inf
r→+∞

rp/(q+1−p)u(r). For this, we assume that

f is differentiable and satisfies the following condi-
tions:

(K1)

∫ +∞

1

(
rpq/(q+1−p)f

)+
r
dr < +∞,

(K2)

∫ +∞

1

(
rpq/(q+1−p)f

)−
r
dr < +∞.

The study depends on the comparison of q with
N(p− 1)

N − p
and

N(p− 1) + p

N − p
. We start with the case

N(p− 1)

N − p
< q 6= N(p− 1) + p

N − p
.

Theorem 3.8. Assume that N > p and q >
N(p− 1)

N − p
. Let u be a solution of problem (P ). Sup-

pose that lim
r→+∞

rpq/(q+1−p)f(r) = l > 0 and f sat-

isfies

(i) (K1) if q >
N(p− 1) + p

N − p
,

or

(ii) (K2) if
N(p− 1)

N − p
< q <

N(p− 1) + p

N − p
.
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Then

l ≤ q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

(37)

and lim
r→+∞

rp/(q+1−p)u(r) = b where b is one of the

two roots λ1 or λ2 of equation (24) such that 0 <
λ1 ≤ λ2.

To demonstrate Theorem 3.8, we need the classic
result of [12], of which we recall the proof.

Lemma 3.9. Let g be a positive differentiable func-
tion satisfying

(i)

∫ +∞

t0

g(t) dt < +∞ for large t0.

(ii) g′(t) is bounded for large t.

Then lim
t→+∞

g(t) = 0.

Proof. We argue by contradiction and we suppose
that lim

t→+∞
g(t) 6= 0. Then there exist ε > 0 and a

sequence {ti} going to +∞ as i → +∞ satisfying
g(ti) ≥ 2ε. Since g′(t) is bounded for large t, then
there exists a constantC > 0 such that |g′(t)| ≤ C for
large t. By the mean value Theorem for g, we have

g(t) ≥ ε for |t− ti| <
ε

C
.

Choose a subsequence t′i such that t′0 > t0 and t
′
i >

t′i−1 +
2ε

C
t′0 for i > 1. Therefore

n∑
i=1

∫ t′i

t′i−1

g(t) dt >

n∑
i=1

∫ t′i−1+ε/C

t′i−1

g(t) dt

≥ ε2

C
n→ +∞ as n→ +∞.

This implies that∫ +∞

t0

g(t) dt = +∞.

This contradiction completes the proof.

Now, we can prove Theorem 3.8.

Proof. Define the following energy function associ-

ated with equation (17),

I(t)=
p− 1

p
|k(t)|p + p

q + 1− p
y(t)υ(t)

− A

p

(
p

q + 1− p

)p−1

υp(t)

+
υq+1(t)

q + 1
+ lυ(t), (38)

where

A =
q(N − p)− (N(p− 1) + p)

q + 1− p
. (39)

Note that the energy function I plays a central role

in the study of the convergence of rp/(q+1−p)u(r).
First, using Proposition 3.3 we have k(t) is bounded
for large t, which yields that y(t) is bounded for large
t. Hence I(t) is bounded for large t.
The rest of the proof will be done in three steps.
Step 1. The function I(t) converges when t→ +∞.
A simple computation gives

I ′(t) = −AZ(t)− (j(t)− l)υ′(t), (40)

where

Z(t) =

[
|k(t)|p−1 −

( p

q + 1− p

)p−1
υp−1(t)

]
×[

|k(t)| − p

q + 1− p
υ(t)

]
. (41)

Integrating (40) on (T, t) for large T , we get

I(t) = C(T )−AR(t)−(j(t)−l)υ(t)+
∫ t

T
j′(s)υ(s) ds,

(42)
where

C(T ) = I(T ) + (j(T )− l)υ(T ) (43)

and

R(t) =

∫ t

T
Z(s) ds. (44)

Since the function s → sp−1 is monotone, then
Z(t) ≥ 0, which in turn implies that the function
R(t) is positive and increasing. By our hypotheses,
we have A 6= 0, then relation (42) can be expressed
as follows:

R(t) =− I(t)

A
− 1

A
(j(t)− l)υ(t) +

1

A

∫ t

T
j′(s)υ(s) ds

+
C(T )

A
. (45)
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Using the fact that υ(t) and I(t) are bounded for large

t, lim
t→+∞

j(t) = l, − (j′(s))− ≤ j′(s) ≤ (j′(s))+

and

∫ +∞

T

(
j′(s)

)+
ds < +∞ from (K1) if A > 0

or

∫ +∞

T

(
j′(s)

)−
ds < +∞ from (K2) if A < 0,

we obtain R(t) is bounded for large t. Consequently,
R(t) converges when t → +∞, which yields that∫ +∞

T
Z(s) ds exists. By letting t→ +∞ in (42), we

deduce that I(t) converges to a real number noted d
when t→ +∞.
Step 2. lim

t→+∞
υ′(t) = 0.

By expressions (41) and (20) and the fact that k(t) <
0 for large t, we have just to prove that lim

t→+∞
Z(t) =

0. Since

∫ +∞

T
Z(s) ds < +∞, then by Lemma 3.9,

it suffices to prove that Z ′(t) is bounded for large t.
Using expression (41),Z(t) can be written as follows:

Z(t) =|y(t)|p/(p−1) +
p

q + 1− p
υ(t)y(t)

+

(
p

q + 1− p

)p−1

υp−1(t)υ′(t). (46)

Therefore

Z ′(t) =
p

p− 1
k(t)y′(t) +

p

q + 1− p
y(t)υ′(t)

+
p

q + 1− p
υ(t)y′(t) + (p− 1)

(
p

q + 1− p

)p−1

×

υp−2(t)υ′2(t) +

(
p

q + 1− p

)p−1

υp−1(t)υ′′(t).

(47)

Since υ(t), k(t) and j(t) are bounded for large t,
then combining with (20) and (17), υ′(t) and y′(t) are
bounded also for large t. Hence, it remains to prove
that υ′′(t) is bounded for large t. According to (20),
we have

υ′′(t) = k′(t) +
p

q + 1− p
υ′(t). (48)

Then, it suffices to prove that k′(t) is bounded for
large t.
Since k(t) < 0 for large t, we have by (19)

k′(t) =
1

p− 1
|k(t)|2−py′(t). (49)

According to Proposition 3.6, we have lim sup
t→+∞

k(t) <

0. Therefore, there exists a constantM > 0 such that

k(t) ≤ −M for large t. Which implies that, |k(t)|2−p

is bounded for large t. Therefore k′(t) is bounded
for large t and by relations (48) and (47), Z ′(t) is
bounded for large t. Hence, by Lemma 3.9, we get
lim

t→+∞
Z(t) = 0 and therefore lim

t→+∞
υ′(t) = 0.

Step 3. υ(t) converges when t→ +∞.
Suppose by contradiction that υ(t) is oscillating for
large t. Then there exist two sequences {µi} and {νi}
tend to +∞ when i → +∞ such that {µi} and {νi}
are respectively local minimum and local maximum
of υ, satisfying µi < νi < µi+1 and

0 < lim inf
t→+∞

υ(t) = lim
i→+∞

υ(µi) = α

< lim sup
t→+∞

υ(t) = lim
i→+∞

υ(νi) = β < +∞. (50)

Since υ′(µi) = υ′(νi) = 0, then by relations (38),
(50), (19) and (20), we obtain

lim
i→+∞

I(µi) = ϕ(α) and lim
i→+∞

I(νi) = ϕ(β),

(51)
where

ϕ(s) = ls− Λq+1−p

p
sp +

sq+1

q + 1
= ls−

∫ s

0
ψ(r) dr,

(52)
for any s ≥ 0 and ψ is given by (29). Since
lim

t→+∞
I(t) = d by the first step, then

ϕ(α) = ϕ(β) = d. (53)

Then, there exist δ ∈ (α, β) and xi ∈ (µi, νi) such
that υ(xi) = δ, ϕ′(δ) = 0 andϕ(δ) 6= d. On the other
hand, using step 2, we have lim

i→+∞
υ′(xi) = 0, so by

(20), we obtain lim
i→+∞

k(xi) =
−p

q + 1− p
δ. There-

fore lim
i→+∞

I(xi) = ϕ(δ) = d. Which gives a con-

tradiction. Hence υ(t) converges when t → +∞.
Let lim

t→+∞
υ(t) = b. So, by Proposition 3.5, b is one

of the two roots λ1 and λ2 of equation (24) such that
0 < λ1 ≤ λ2. Finally, by (30), l = ψ(b) ≤ L where
L is given by (31). The proof is complete.

Nowwe give the following result which deals with

the critical case q =
N(p− 1) + p

N − p
.

Theorem 3.10. Assume that N > p and q =
N(p− 1) + p

N − p
. Let u be a solution of problem (P ).

Suppose that lim
r→+∞

rpq/(q+1−p)f(r) = l > 0 and f

satisfies (K1) or (K2). Then u satisfies one of the fol-
lowing cases:
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(i) lim
r→+∞

rp/(q+1−p)u(r) = λ1 or λ2 given in The-

orem 3.8.
(ii) rp/(q+1−p)u(r) is oscillating and

λ1 ≤ α = lim inf
r→+∞

rp/(q+1−p)u(r) < λ2

< β = lim sup
r→+∞

rp/(q+1−p)u(r) ≤ Γ, (54)

where Γ 6= λ1 is the root of the equation

lΓ +
Γq+1

q + 1
− Λq+1−p

p
Γp

=
p− 1

p

(
N − p

p

)p

λp1 −
N(p− 1) + p

Np
λ
Np/(N−p)
1 .

(55)

Moreover, α and β satisfy the following estimates

l =
1

p

(
N − p

p

)p βp − αp

β − α

− N − p

Np

βNp/(N−p) − αNp/(N−p)

β − α
(56)

and

pp

N(N − p)p−1
<

βp − αp

βNp/(N−p) − αNp/(N−p)

≤ 1

p− 1

(
p

N − p

)p N(p− 1) + p

N
. (57)

In both cases, we have the estimate (37).

Proof. According to the notations in the proof of The-
orem 3.8, we have A = 0, where A is given by (39).
Using the fact that υ(t) is bounded, lim

t→+∞
j(t) = l,

j′(s) ≤ (j′(s))+ for (K1) and j′(s) ≥ − (j′(s))−

for (K2), we deduce that the energy function I con-
verges when t→ +∞.
Since υ(t) is bounded, we have two possibilities:
• υ(t) converges when t → +∞, then similarly
to Theorem 3.8, lim

t→+∞
υ(t) = λ1 or λ2, where λ1

and λ2 are two roots of the equation (24) such that
0 < λ1 ≤ λ2. Moreover, the estimate (37) is satis-
fied.
• υ(t) oscillates, then there exist two sequences {µi}
and {νi} tend to +∞ when i → +∞ such that {µi}
and {νi} are respectively local minimum and local
maximum of υ, satisfying µi < νi < µi+1 and re-
lation (50). Therefore k′(µi) = υ′′(µi) ≥ 0 and
k′(νi) = υ′′(νi) ≤ 0 and so by equation (17), we
have

0 ≤ y′(µi) = ψ (υ(µi))− j(µi) (58)

and
0 ≥ y′(νi) = ψ (υ(νi))− j(νi), (59)

where ψ is given by (29). On the other hand, accord-
ing to the proof of Theorem 3.8, we have

lim
t→+∞

I(t) = ϕ(α) = ϕ(β),

where ϕ is given by (52). Since q =
N(p− 1) + p

N − p
and α < β, then

l =
Λq+1−p

p

βp − αp

β − α
− 1

q + 1

βq+1 − αq+1

β − α

=
1

p

(
N − p

p

)p βp − αp

β − α

− N − p

Np

βNp/(N−p) − αNp/(N−p)

β − α
.

This proves (56). Now, a simple study of the func-
tion ϕ gives ϕ′(λ1) = ϕ′(λ2) = 0, ϕ′(s) > 0
for 0 < s < λ1, ϕ

′(s) < 0 for λ1 < s < λ2,
ϕ′(s) > 0 for s > λ2 and lim

s→+∞
ϕ(s) = +∞. There-

fore, there exists Γ > λ2 such that ϕ(Γ) = ϕ(λ1).

Since ψ(λ1) = l and q =
N(p− 1) + p

N − p
, then

ϕ(Γ) =
p− 1

p

(
N − p

p

)p

λp1−
N(p− 1) + p

Np
λ
Np/(N−p)
1 ,

(60)
which gives (55). To prove estimate (54), we let i→
+∞ in (58) and (59), we obtain

ψ(β) ≤ l ≤ ψ(α), (61)

that is by (52)

ϕ′(α) ≤ 0 ≤ ϕ′(β). (62)

Combining this with the study of ϕ and the fact that
ϕ(α) = ϕ(β), we deduce that λ1 ≤ α < λ2 <
β. Moreover, we have β ≤ Γ, otherwise ϕ(β) >
ϕ(Γ) = ϕ(λ1) ≥ ϕ(α), which contradicts ϕ(α) =
ϕ(β). Consequently, (54) is satisfied. Concerning
(57), we use the fact that l > 0 and (56) to obtain
the left inequality. To prove the right inequality of
(57), we have β > α > 0, then by (61), we have

βψ(β) ≤ lβ = ϕ(β) +
Λq+1−p

p
βp − βq+1

q + 1

and

αψ(α) ≥ lα = ϕ(α) +
Λq+1−p

p
αp − αq+1

q + 1
,

which in turn implies that

βψ(β)− Λq+1−p

p
βp +

βq+1

q + 1
≤ ϕ(β) = ϕ(α) ≤

αψ(α)− Λq+1−p

p
αp +

αq+1

q + 1
.
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With the expression of ψ, we get

p− 1

p
Λq+1−pβp − q

q + 1
βq+1

≤ p− 1

p
Λq+1−pαp − q

q + 1
αq+1.

The right inequality of (57) can be easily obtained

since q =
N(p− 1) + p

N − p
. The proof is complete.

4 Nonexistence Results
This section concerns the nonexistence theorems of
entire solutions of problem (P ). The study depends
on the parametersN, p, q and the comparison of f(r)

with r−pq/(q+1−p).

Theorem 4.1. Assume that N ≤ p or N > p and

p−1 ≤ q ≤ N(p− 1)

N − p
orN > p and q < p−1. Then

problem (P ) does not possess any entire solution.

Proof. Let u be a solution of problem (P ). We dis-
tinguish five cases.
Case 1. N ≤ p.
It’s easy to see by Proposition 3.1 and equation
(5) that the function r → rN−1|u′|p−2u′(r) is de-
creasing and strictly negative on (0,+∞). Then

lim
r→+∞

rN−1|u′|p−2u′(r) ∈ [−∞, 0[. Therefore, there

exists a constantM0 > 0 such that

rN−1|u′|p−2u′(r) < −M0, (63)

for large r. So

|u′(r)| > M
1/(p−1)
0 r(1−N)/(p−1),

for large r. We get a contradiction by integrating
this last inequality for large r and using the fact that
N ≤ p.
Case 2. N > p and q = p− 1.
Recall, by Proposition 3.2, that E(N−p)/(p−1)(r) > 0
for large r. Then estimation (15) is satisfied. Combin-
ing this with equation (1) and the fact that q = p− 1,
we obtain(
|u′|p−2u′

)′
(r) <up−1(r)×[

(N − 1)

(
N − p

p− 1

)p−1

r−p − 1

]
,

for large r. In particular, we get
(
|u′|p−2u′

)′
(r) < 0

for large r. Since u′(r) < 0, then

lim
r→+∞

|u′|p−2u′(r) ∈ [−∞, 0[. Therefore

lim
r→+∞

u(r) = −∞, which is impossible.

Case 3. N > p and p− 1 < q <
N(p− 1)

N − p
.

In this case we have necessarily
N − p

p− 1
<

p

q + 1− p
, which implies by (14) that

lim
r→+∞

r
N−p

p−1 u(r) = 0. But this contradicts the

fact that r
N−p

p−1 u(r) is positive and strictly increasing
by relation (9) and Proposition 3.2.

Case 4. N > p and q =
N(p− 1)

N − p
.

Using relations (15) and (5), then for large r we
obtain

(
rN−1|u′|p−2u′

)′
(r) ≤ −

(
N − p

p− 1

)−q

rN+q−1|u′|q.

(64)
Which can be written as

−φ′(r) ≤ −
(
N − p

p− 1

)−q

r−1φq/(p−1)(r) for large r,

(65)
where

φ(r) = rN−1|u′|p−1. (66)

Integrating relation (65) on (R, r) for large R and us-
ing the fact that q > p− 1, we obtain for large r,

φ(p−1−q)/(p−1)(r) ≤ φ(p−1−q)/(p−1)(R)

+
p− 1− q

p− 1

(
N − p

p− 1

)−q

ln
( r
R

)
.

(67)

By letting r → +∞ in the last inequality, we get a
contradiction with the fact that φ is positive.
Case 5. N > p and q < p− 1.
Since f is positive, then by equation (5), we have(
rN−1|u′|p−2u′

)′
(r) ≤ −rN−1uq(r) for any r > 0.

(68)

Integrating this last inequality on
(r
2
, r
)
for r > 0

and using the fact that u′(r) < 0 on (0,+∞), we
obtain

|u′|p−2u′(r) < −
(
2N − 1

N 2N

)
ruq(r) for any r > 0.

Since u > 0 and u′ < 0 on (0,+∞), then for any
r > 0

u′(r)u−q/(p−1)(r) < −
(
2N − 1

N 2N

)1/(p−1)

r1/(p−1).
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Integrating this last inequality on (R, r) for large R
and using the fact that q < p− 1, we obtain

u(p−1−q)/(p−1)(r) ≤ u(p−1−q)/(p−1)(R)

− p− 1− q

p

(
2N − 1

N 2N

)1/(p−1)

×(
rp/(p−1) −Rp/(p−1)

)
. (69)

By letting r → +∞ in the last inequality, we get a
contradiction with the fact that u is positive.
we deduce that problem (P ) does not possess any en-
tire solution in all cases.

Theorem 4.2. Assume that N > p and q >
N(p− 1)

N − p
. Suppose that

lim inf
r→+∞

rpq/(q+1−p)f(r) >
q + 1− p

p− 1
×(

p− 1

q

(
N − pq

q + 1− p

)(
p

q + 1− p

)p−1
)q/(q+1−p)

.

Then problem (P ) does not possess any entire solu-
tion.

Proof. Let u be a solution of problem (P ). First

we show that rp/(q+1−p)u(r) is strictly monotone
for large r. This amounts to proving by (9) that
Ep/(q+1−p)(r) 6= 0 for large r.
Suppose that there exists a large r such that

Ep/(q+1−p)(r) = 0. Taking c =
p

q + 1− p
in (12)

and multiplying by rpq/(q+1−p)−1, we obtain

(p− 1) rpq/(q+1−p)−1
∣∣u′∣∣p−2

E′
p/(q+1−p)(r) =

Λq+1−p rp(p−1)/(q+1−p)up−1(r)− rpq/(q+1−p)uq(r)

− rpq/(q+1−p)f(r), (70)

where Λ is given in relation (28).
Using the change of variable (16), we see that the re-
lation (70) is equivalent to

(p− 1) rpq/(q+1−p)−1
∣∣u′∣∣p−2

(r)E′
p/(q+1−p)(r)

= ψ(υ(t))− j(t), (71)

where ψ is given respectively by (29). Since

lim inf
r→+∞

rpq/(q+1−p)f(r) > L, then there exists ε > 0

such that

j(t) ≥ L+ ε for large t. (72)

Recall, by (30), that max
s≥0

ψ(s) = L, where L is given

by (31).Then by (71), E′
p/(q+1−p)(r) < 0 and so

Ep/(q+1−p)(r) 6= 0 for large r.
Now, we have υ(t) is strictly monotone for large t
and bounded by Proposition 3.1, then υ(t) converges
when t→ +∞. Let lim

t→+∞
υ(t) = b ≥ 0.

We distinguish two cases according to themonotonic-
ity of υ′(t) for large t.
Case 1. υ′(t) is monotone for large t.
Since k(t) is bounded for large t by Proposition 3.3,
then v′(t) is bounded for large t. Therefore v′(t) con-
verges and necessarily lim

t→+∞
υ′(t) = 0 (because υ is

bounded). Therefore lim
t→+∞

k(t) = − p

q + 1− p
b and

so lim
t→+∞

y(t) = −
(

p

q + 1− p

)p−1

bp−1. Accord-

ing to equation (17) and estimate (72), we have

y′(t) ≤ −
(
N − pq

q + 1− p

)
y(t)− υq(t)− L− ε,

for large t. But

lim
t→+∞

(
−
(
N − pq

q + 1− p

)
y(t)− υq(t)− L− ε

)
= ψ(b)− L− ε ≤ −ε,

Hence there exists a constantM > 0 such that y′(t) ≤
−M for large t. Integrating this last inequality on
(T, t) for large T , we get lim

t→+∞
y(t) = −∞. Which

gives a contradiction.
Case 2. υ′(t) is not monotone for large t.
Since υ(t) is strictly monotone for large t, then we
have two possibilities.
• υ′(t) > 0 for large t. Then lim inf

t→+∞
υ′(t) = 0.

Otherwise, there exits C > 0 such that υ′(t) ≥ C
for large t, then integrating this last inequality near
+∞, we obtain lim

t→+∞
υ(t) = +∞, which is im-

possible. Hence there exists ζi tends to +∞ when
i → +∞ such that ζi is a local minimum of υ′ sat-
isfying lim

i→+∞
υ′(ζi) = 0. Consequently, we have

lim
i→+∞

y(ζi) = −
(

p

q + 1− p

)p−1

bp−1.On the other

hand, by deriving relation (20) and taking account
that υ′′(ζi) = 0, we get lim

i→+∞
k′(ζi) = 0. There-

fore lim
i→+∞

y′(ζi) = 0. Taking t = ζi in equation

(17) and tending i → +∞, we obtain lim
i→+∞

j(ζi) =

ψ(b) ≤ L = max
s≥0

ψ(s). But this contradicts the fact

that lim inf
t→+∞

j(t) > L.

• υ′(t) < 0 for large t. In the sameway, using the fact
that υ is bounded, we deduce that lim

t→+∞
sup υ′(t) =

0. Then there exists τi tends to +∞ when i →
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+∞ such that τi is a local minimum of υ′ satisfy-
ing lim

i→+∞
υ′(τi) = 0 and υ′′(τi) = 0. Therefore

lim
i→+∞

y′(τi) = 0 and lim
i→+∞

j(τi) = ψ(b) ≤ L.

Which is impossible like the previous case.
We conclude that problem (P ) does not possess any
entire solution.

5 Conclusion
In this paper, we have studied the existence, the
nonexistence and the asymptotic behavior near
infinity of global singular solutions of problem (P ).
The difficulty of this work lies in the influence of
the inhomogeneous term f which is positive and is

equivalent to the function r−pq/(q+1−p) near infinity.
Under some conditions, we prove that the singular
solution of problem (P ) is equivalent to the function

r−p/(q+1−p) near infinity. The cases where f is
not positive or negligible in front to the function

r−pq/(q+1−p) near infinity are not yet treated and will
be the subject of a future study.
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