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1 Introduction 
In recent times, the study of optimization problems 

in the setting of manifolds has emerged as a very 

significant area of research. It is possible to model 

various practical problems that arise in numerous 

areas related to engineering in a much more 

effective manner on the setting of a manifold, rather 

than that of Euclidean space, see, [1], [8]. In fact, 

extending and generalizing the methods of 

optimization from Euclidean spaces to manifolds 

have various important advantages from theoretical 

as well as practical standpoints. For instance, 

numerous non-convex mathematical programming 

problems can be converted into convex 

mathematical programming problems by employing 

the Riemannian geometry perspective (see, for 

instance, [17], [18]). Furthermore, it can be 

observed that the relative interior of several 

important constraints in certain mathematical 

programming problems can be viewed as Hadamard 

manifolds, for instance, the positive orthant ℝ++
𝑛

 

(see, for instance, [15]) equipped with the Dikin 

metric 𝑌−2 = 𝑑𝑖𝑎𝑔 (
1

𝑦1
2 , . . . ,

1

𝑦𝑛
2), and the hypercube 

(0,1)𝑛 (see, for instance, [16]) equipped with the 

metric 𝑌−2 (𝐼 − 𝑌)−2=diag (𝑦1
−2(1 −

𝑦1)−2, … , 𝑦𝑛
−2(1 − 𝑦𝑛)−2) are Hadamard manifolds. 

As a result, several constrained optimization 

problems can be suitably transformed into much 

simpler unconstrained problems by appropriate use 

of the Riemannian geometry. Due to this fact, a 

wider range of optimization problems can be 

investigated by formulating the problems in the 

framework of Riemannian and Hadamard 

manifolds. The notions of geodesic convex sets and 

geodesic convex function in manifold setting are 

developed to generalize the definitions of convex 

sets and convex functions (see, [21], [26]). Further, 

the notions of geodesic pseudoconvex and geodesic 

quasiconvex functions were introduced in [26], by 

generalizing geodesic convex functions in the 

setting of Riemannian manifolds. In the last few 

years, several authors have extended many 

interesting ideas of mathematical programming 

from Euclidean spaces to the setting of Riemannian 

as well as Hadamard manifolds, see, [3], [5], [13], 

[29], [30], [31], [32], and the references cited 

therein. 
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In the theory of mathematical programming, an 

optimization problem that is accompanied by some 

complementarity constraints, or certain variational 

inequality constraints is termed a mathematical 

programming problem with equilibrium constraints 

(in brief, (MPEC)). One of the first attempts in 

investigating such optimization problems is due to 

[7], where the existence of efficient solutions for 

(MPECs) is explored. Due to its immense scope of 

applicability in numerous fields of science, 

technology, and engineering (see, for instance, [19], 

[20]), (MPECs) have been studied by numerous 

authors in recent years. For further details and an 

updated survey of (MPEC) and its applications, we 

refer the readers to [12], [14], [22], [23], [24], [27], 

[28], and the references cited therein. 

 

Several regularity and optimality conditions for 

(MPECs) were deduced in [4]. The existence of 

efficient solutions for (MPECs) was investigated in 

[7]. In [6], the Wolfe type duality model for 

(MPECs) was explored and several interesting 

duality results were derived. Optimality conditions 

and duality for semi-infinite (MPECs) were studied 

in [12]. Several duality results for multiobjective 

(MPECs) were derived in [23]. Further, optimality 

criteria and duality for multiobjective (MPECs) 

were studied in [24]. Recently, optimality criteria 

for multiobjective (MPEC) on Hadamard manifolds 

were derived in [25]. 

 

Motivated by the results derived in [6], [14], 

[23], [24], in this article we consider a certain class 

of multiobjective mathematical programming 

problem with equilibrium constraints on the 

framework of Hadamard manifolds (in short, 

((MPPEC)) as our primal problem. We formulate 

two different kinds of dual problems related to 

(MPPEC), namely, Wolfe and Mond-Weir type dual 

problems. Further, we deduce weak, strong as well 

as strict converse duality relations that relate 

(MPPEC) and the corresponding dual problems 

under geodesic quasiconvexity and pseudoconvexity 

restrictions. To the best of our knowledge, this is for 

the first time that duality results for (MPPEC) have 

been investigated in the context of Hadamard 

manifolds.  

The main contributions and novelty of the work 

in this article are twofold. Firstly, the results in this 

paper generalize the corresponding duality results 

deduced in [24], in the setting of a more general 

space, that is, Hadamard manifolds. The results 

obtained in this article extend the corresponding 

results of [23], from Euclidean space to the context 

of Hadamard manifolds. Secondly, the duality 

results obtained in this article also extend the 

corresponding duality results derived in [6], for a 

more general category of optimization problems, 

that is, (MPPEC) and generalize them on the 

framework of a wider space, which is Hadamard 

manifolds. 

 

This article is organized in the following 

manner. Some basic mathematical preliminaries and 

concepts are recalled in Section 2. Moreover, we 

discuss the generalized Guignard constraint 

qualification and Karush-Kuhn-Tucker type 

necessary optimality criteria for (MPPEC). In 

Section 3, we formulate the Wolfe type dual 

problem related to (MPPEC) and deduce the weak, 

strong as well as strict converse duality relations 

that relate (MPPEC) and the dual problem 

employing geodesic pseudoconvexity restrictions. In 

Section 4, the Mond-Weir dual problem related to 

(MPPEC) is formulated, and weak, strong as well as 

strict converse duality relations that relate (MPPEC) 

and the dual problem are derived using geodesic 

pseudoconvexity and quasiconvexity assumptions. 

We conclude our discussions in Section 5 along 

with some future research directions. 

 

 

2 Problem Formulation 
In this section, we recollect some notation, 

preliminary definitions, and concepts that will be 

used in the rest of the paper.  

 

The 𝑛 −dimensional Euclidean plane is 

indicated by using the standard symbol ℝ𝑛
. The set 

containing every natural number is signified by ℕ . 
The symbol ∅ is used to denote any empty set.  The 

symbol ⟨⋅,⋅⟩ is employed to indicate the standard 

Euclidean inner product on ℝ𝑛
. Let 𝑐, 𝑑 ∈ ℝ𝑛

 be 

arbitrary pair of vectors in ℝ𝑛
. The following 

notation for inequalities will be employed in this 

article: 

   

𝑐 ≺ 𝑑 ⟺ 𝑐𝑗 < 𝑑𝑗, ∀𝑗 = 1,2, … , 𝑛. 

𝑐 ⪯ 𝑑 ⟺ cj ≤ 𝑑𝑗 , ∀𝑗 = 1,2, … , n, and 

                         𝑐𝑟 < 𝑑𝑟,  for at least one 𝑟 ∈
{1,2, . . , 𝑛}. 
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We now recollect some basic definitions and 

concepts from Riemannian manifolds as well as 

Hadamard manifolds which will be required in the 

sequel.  

 

We shall be using the notation ℳ to signify a 

smooth manifold having dimension 𝑛, where 𝑛 is 

any natural number. Let 𝑦̂ ∈ ℳ be arbitrary. The set 

that contains every tangent vector at the element 𝑦̂ ∈
ℳ is known as the tangent space at 𝑦̂ ∈ ℳ, and is 

denoted by 𝑇𝑦̂ℳ. For any element 𝑦̂ ∈ ℳ, 𝑇𝑦̂ℳ is 

a real vector space, having a dimension 𝑛. In case 

we are restricted to real manifolds, 𝑇𝑦̂ℳ is 

isomorphic to the 𝑛 −dimensional Euclidean space 

ℝ𝑛
. 

 

A Riemannian metric, denoted by 𝒢 on the set 

ℳ is a 2-tensor field that is symmetric as well as 

positive-definite. For every pair of elements  

𝑤1, 𝑤2 ∈ 𝑇𝑦̂ℳ, the inner product of 𝑤1 and 𝑤2 is 

given by: 

 

⟨𝑤1, 𝑤2⟩𝑦̂ = 𝒢𝑦̂(𝑤1, 𝑤2), 

 

where the symbol 𝒢𝑦̂ denotes the Riemannian metric 

at the element 𝑦̂ ∈ ℳ. The norm corresponding to 

the inner product ⟨𝑤1, 𝑤2⟩𝑦̂ is denoted by | ⋅ |𝑦̂ (or 

simply |  ⋅ |, when there is no ambiguity regarding 

the subscript). 

 

Let a, b ∈ ℝ, a < 𝑏 and ν: [𝑎, 𝑏] → ℳ be any 

piecewise differentiable curve that joins the 

elements 𝑦̂  and 𝑧̂ in ℳ, that is, we have:  

 

ν(a) = ŷ, ν(b) = ẑ. 
    

The length of the curve 𝜈 is denoted by 𝑙 (𝜈) and is 

defined in the following manner: 

 

                   𝑙(ν) ≔ ∫ |
𝑏

𝑎
ν′(𝑡)|𝑑𝑡. 

 

For any differentiable curve 𝜈, a vector field 𝑌 is 

referred to be parallel along the curve 𝜈, provided 

that the following condition is satisfied: 

 

                            ∇ν′𝑌 = 0. 
 

If  ∇ν′ν′ = 0, then 𝜈 is termed as a geodesic. If 

||ν|| = 1, then the curve 𝜈 is said to be normalised. 

For any  𝑦̂ ∈ ℳ, the exponential function 

exp𝑦̂: 𝑇𝑦̂ℳ → ℳ is given by exp𝑦̂(𝑤̂) = ν(1), 

where ν is a geodesic that satisfies ν(0) = 𝑦̂ and 

ν′(0) = 𝑤̂. A Riemannian manifold ℳ is referred 

to as geodesic complete, provided that the 

exponential function exp𝑦̂(𝑤̂) is defined for every 

arbitrary ŵ ∈ Tŷℳ and 𝑦̂ ∈ ℳ.   

 

A Riemannian manifold is referred to as a 

Hadamard manifold (or, Cartan-Hadamard 

manifold) provided that ℳ is simply connected, 

geodesic complete, as well as has a nonpositive 

sectional curvature throughout. Henceforth, in our 

discussions, the notation ℳ will always signify a 

Hadamard manifold of dimension 𝑛, unless it is 

specified otherwise.  

 

Let 𝑦̂ ∈ ℳ be some arbitrary element lying in 

the Hadamard manifold ℳ. Then, the exponential 

function on the tangent space expŷ: Tŷℳ → ℳis a 

globally diffeomorphic function. Moreover, the 

inverse of the exponential function exp𝑦̂
−1: ℳ →

𝑇𝑦̂ℳ satisfies expŷ
−1(ŷ) = 0. Furthermore, for 

every pair of arbitrary elements 𝑦1̂, 𝑦2̂ ∈ ℳ, there 

will always exist some unique normalized minimal 

geodesic νy1̂,y2̂
: [0,1] → ℳ, such that the geodesic 𝜈 

satisfies the following: 

 

γy1̂,y2̂
(τ) = expy1̂

(τexp y1̂

−1(y2̂)) , ∀τ ∈ [0,1]. 

 

Thus, every Hadamard manifold ℳ of 

dimension 𝑛 is diffeomorphic to the 𝑛-dimensional 

Euclidean space ℝ𝑛
. The gradient of any smooth 

function Θ: ℳ → ℝ is symbolized by grad Θ and is 

a vector field on ℳ that is defined as: 

  

              dΘ(X) = ⟨grad Θ, X⟩ = X(Θ),  
 

where 𝑋 is also some vector field on the manifold 

ℳ. 

 

The following definition is from [26]. 

 

Definition 2.1. Any non-empty subset 𝒟 of a 

Hadamard manifold ℳ is termed as a geodesic 

convex set in ℳ, if for every 𝑦, 𝑦̃ ∈ 𝒟 and for every 

geodesic γ𝑦,𝑦̃: [0,1] → ℳ joining the points 𝑦 and ỹ, 

we have 

                   γ𝑦,𝑦̃(𝑡) ∈ 𝒟, ∀𝑡 ∈ [0,1],  

 

where, γ𝑦,𝑦̃(t) = expy(t expy
−1 ỹ). 

 

The following definitions are from [2]. 
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Definition 2.2.    Let 𝒟 ⊆ ℳ be a geodesic convex 

set.  Let Ψ: 𝒟 → ℝ be any real valued function on 

the set 𝒟. 
 

(i) The function Ψ is termed as a geodesic 

(respectively, strictly geodesic) pseudoconvex 

function at z̃ ∈ 𝒟, provided that for any arbitrary 

element z ∈ 𝒟 (respectively, 𝑧 ∈ 𝒟, 𝑧 ≠ 𝑧̃), we have 

 
Ψ(𝑧) − Ψ(𝑧̃) < (≤)0 ⇒ ⟨𝑔𝑟𝑎𝑑 Ψ(𝑧̃), exp𝑧

−1(𝑧)⟩𝑧 < 0. 
 

(ii) The function Ψ is termed as a geodesic 

quasiconvex function at 𝑧̃ ∈ 𝒟, provided that for 

any arbitrary element z ∈ 𝒟, we have 

 

  Ψ(z) − Ψ(z̃) ≤ 0 ⇒ ⟨grad Ψ(z̃), expz̃
−1(z)⟩

z̃
≤ 0. 

          

Remark 1.  (i) If ℳ = ℝn
, then grad Ψ(z̃) =

∇Ψ(z̃), where ∇Ψ(z̃) denotes the gradient of the 

function Ψ at z̃ in ℝ𝑛
, and expz̃

−1(z) = z − z̃. In this 

case, the definitions of geodesic pseudoconvex and 

quasiconvex functions correspond to the usual 

standard definitions of differentiable pseudoconvex 

and quasiconvex functions (see, for instance, [10], 

pp. 146) for Euclidean spaces. 

 

(ii) If the function Ψ: 𝒟 → ℝ is a geodesic convex 

function, then the function Ψ is automatically 

geodesic pseudoconvex as well as geodesic 

quasiconvex (see, Definition 10.1 in [26], and 

Definition 13.2.1 in [21]).  

 

For further detailed exposition on geodesic 

quasiconvexity and pseudoconvexity in the setting 

of Hadamard manifolds, we refer to [21], [26]. 

Unless specified otherwise, we shall employ the 

notation ℳ to denote an 𝑛 −dimensional Hadamard 

manifold. 

 

In this article, the following multiobjective 

mathematical programming problem with 

equilibrium constraints on the Hadamard manifold 

is considered: 

  
(𝑀𝑃𝑃𝐸𝐶)  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 Φ(𝑧) ≔ (Φ1(𝑧), … , Φ𝑙(𝑧)), 

subject to    Ψ(z) ≤ 0, 

                    ϑ(z) = 0, 

                   P(z) ≥ 0, 

                   Q(z) ≥ 0, 

          P(z)TQ(z) = 0, 

 

where every component of the objective function 

Φj: ℳ → ℝ (𝑗 ∈ 𝐼Φ ≔ {1,2, … , 𝑙}), and constraints 

Ψ𝑗: ℳ → ℝ (𝑗 ∈ 𝐼Ψ ≔ {1,2, … , 𝑝}), ϑj: ℳ →

ℝ (j ∈ Iϑ ≔ {1,2, … , q}), Pj, Qj: ℳ → ℝ, (𝑗 ∈ 𝐽 ≔

{1,2, … , 𝑚}) are real-valued and smooth functions 

defined on some 𝑛 −dimensional Hadamard 

manifold ℳ, where 𝑛 is a natural number. We use 

the symbol ℱ to indicate the set of all feasible 

solutions to (MPPEC). 

Let 𝑦̃ ∈ ℱ be any arbitrary feasible element. We 

now define a few index sets as follows that will 

render the subsequent analysis convenient: 

 

𝐽Ψ ≔ 𝐽Ψ(𝑦̃) = {𝑗: Ψ𝑗(𝑦̃) = 0}, 

 ℐ1 ≔ ℐ1(𝑦̃) = {𝑗: 𝑃𝑗(ỹ) = 0, 𝑄𝑗(ỹ) > 0}, 

  ℐ2 ≔ ℐ2(𝑦̃) = {𝑗: 𝑃𝑗(𝑦̃) = 0, 𝑄𝑗(𝑦̃) = 0}, 

 ℐ3 ≔ ℐ3(𝑦̃) = {𝑗: 𝑃𝑗(𝑦̃) > 0, 𝑄𝑗(𝑦̃) = 0}. 

 

The following definition will be employed in the 

sequel. 

 

Definition 2.3. ([11]). Any arbitrary feasible 

element ỹ ∈ ℱ is termed as a Pareto efficient (resp., 

weak Pareto efficient) solution of (MPPEC), 

provided that there does not exist any other feasible 

element z ∈ ℱ, that satisfies the following:  

 

Φ(z) ⪯ (resp., ≺)Φ(ỹ). 
 

For any arbitrary feasible element 𝑦̃ ∈ ℱ, we now 

define the sets ℬk (for every k ∈ IΦ) and ℬ that will 

be used in the discussion that follows. 

 

 ℬk ≔ {y ∈ ℱ: Φj(y) ≤ Φj(ỹ),  ∀j ∈ IΦ,  j ≠ k}, 

ℬ ≔ {𝑦 ∈ ℱ: Φ𝑗(𝑦) ≤ Φ𝑗(𝑦̃),  ∀𝑗 ∈ 𝐼Φ}. 
 

Remark 2. (i) From the above definitions of the sets 

ℬk and ℬ, it is clear that 

 

                      ⋂ ℬ𝑘𝑙
𝑘=1 = ℬ. 

 

 (ii) In case IΦ = {1}, then (MPPEC) reduces to a 

single-objective (MPEC). In such cases, we have 

 

ℬ1 = ℱ. 
 

The following definition of the Bouligand tangent 

cone on the Hadamard manifold is from [9]. 

 

Definition 2.4.  ([9]).   Let 𝒟 ⊆ ℳ and z ∈ cl(𝒟). 
The contingent cone (in other terms, Bouligand 

tangent cone) of 𝒟 at 𝑧 is symbolized by the 

notation 𝒯(𝒟, z), and is the set defined as follows: 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.31

Balendu Bhooshan Upadhyay, 
Arnav Ghosh, I. M. Stancu-Minasian

E-ISSN: 2224-2880 262 Volume 22, 2023



𝒯(𝒟, 𝑧): = {𝑤 ∈ 𝑇𝑧ℳ: ∃𝑡𝑛 ↓ 0, ∃𝑤𝑛 ∈ 𝑇𝑧ℳ, 𝑤𝑛

→ 𝑤, ∀𝑛 ∈ 𝑁, exp𝑧(𝑡𝑛𝑤𝑛) ∈ 𝒟}. 
 

The following definitions and theorem are from 

[25]. 

 

Definition 2.5. Let ỹ ∈ ℱ be any arbitrary feasible 

element. The modified linearizing cone to the set ℬ 

at the feasible element 𝑦̃ is the set defined as 

follows: 

 

𝑇𝐿𝑖𝑛(ℬ, 𝑦̃) ≔ {𝑢 ∈ 𝑇𝑦̃ℳ: 

⟨𝑔𝑟𝑎𝑑 Φ𝑗(𝑦̃), 𝑢⟩ ≤ 0, ∀𝑗 ∈ 𝐼Φ, 

⟨𝑔𝑟𝑎𝑑 Ψ𝑗(𝑦̃), 𝑢⟩ ≤ 0, ∀𝑗 ∈ 𝐽Ψ, 

⟨𝑔𝑟𝑎𝑑 ϑ𝑗(𝑦̃), 𝑢⟩ = 0, ∀𝑗 ∈ 𝐼ϑ, 

⟨𝑔𝑟𝑎𝑑 ℳ𝑗(𝑦̃), 𝑢⟩ = 0, 𝑗 ∈ ℐ1, 

⟨𝑔𝑟𝑎𝑑 𝒩𝑗(𝑦̃), 𝑢⟩ = 0, ∀𝑗 ∈ ℐ3, 

⟨𝑔𝑟𝑎𝑑 ℳ𝑗(𝑦̃), 𝑢⟩ ≥ 0, ∀𝑗 ∈ ℐ2, 

⟨𝑔𝑟𝑎𝑑 𝒩𝑗(𝑦̃), 𝑢⟩ ≥ 0, ∀𝑗 ∈ ℐ2, 

⟨𝑔𝑟𝑎𝑑 ℳ𝑗(𝑦̃), 𝑢⟩⟨𝑔𝑟𝑎𝑑 𝒩𝑗(𝑦̃), 𝑢⟩ = 0, ∀𝑗 ∈ ℐ2}. 
 

Definition 2.6. Let us assume that 𝑦̃ ∈ ℱ is any 

arbitrary feasible element of (MPPEC). The 

generalized Guignard constraint qualification (in 

short, (GGCQ)) is said to hold at 𝑦̃ provided that the 

following inclusion relation is satisfied:   

𝑇𝐿𝑖𝑛(ℬ, 𝑦̃) ⊆ ⋂ 𝑐𝑙

𝑙

𝑖=1

𝑐𝑜𝒯(ℬ𝒾 , 𝑦̃). 

 

Theorem 2.7. Let 𝑦̃ ∈ ℱ be a Pareto efficient 

solution of (MPPEC). Moreover, let us suppose that 

(GGCQ) holds at 𝑦̃. Then there exist real numbers 

τ𝑗 > 0 (𝑗 ∈ 𝐼Φ),  σj
Ψ(j ∈ IΨ), σ𝑗

ϑ(𝑗 ∈

𝐼ϑ), σ𝑗
ℳ𝑎𝑛𝑑 σ𝑗

𝒩(𝑗 ∈ 𝐽), which satisfies the 

following: 

 

∑ τ𝑗𝑔𝑟𝑎𝑑

𝑗∈𝐼Φ

Φ𝑗(𝑦̃) + ∑ σ𝑗
Ψ𝑔𝑟𝑎𝑑

𝑝

𝑗=1

Ψ𝑗(𝑦̃)

+ ∑ σ𝑗
ϑ𝑔𝑟𝑎𝑑

𝑗∈𝐼ϑ

ϑ𝑗(𝑦̃) 

− ∑[𝜎𝑗
ℳ𝑔𝑟𝑎𝑑ℳ𝑗(𝑦̃) + 𝜎𝑗

𝒩𝑔𝑟𝑎𝑑𝒩𝑗(𝑦̃)]

𝑗∈𝐽

= 0, 

(1)  

Ψ𝑗(𝑦̃) ≤ 0, σ𝑗
Ψ ≥ 0, σ𝑗

ΨΨ𝑗(𝑦̃) = 0, ∀𝑗 ∈ 𝐼Ψ, 

ϑ𝑗(𝑦̃) = 0, ∀𝑗 ∈ 𝐼ϑ, 

σ𝑗
ℳ free,  ∀𝑗 ∈ ℐ1, σ𝑗

ℳ ≥ 0, ∀𝑗 ∈ ℐ2, 

σ𝑗
ℳ = 0, ∀𝑗 ∈ ℐ3, 

𝜎𝑗
𝒩  free, ∀𝑗 ∈ ℐ3, 𝜎𝑗

𝒩 ≥ 0, ∀𝑗 ∈ ℐ2, 

σ𝑗
𝒩 = 0, ∀𝑗 ∈ ℐ1. 

       (2)  

 

 

3 Wolfe Duality 
In this section, the Wolfe type dual problem related 

to (MPPEC) is formulated. Subsequently, we prove 

the weak, strong as well as strict converse duality 

relations that relate (MPPEC) and the dual problem 

employing certain geodesic pseudoconvexity 

assumptions. 

 

Let us now consider that  z ∈ ℳ, τ ∈ ℝl, τj >

0 (∀j ∈ IΦ), σ = (σΨ, σϑ, σP, σQ) ∈ ℝp+q+2m
 and 

e = (1,1, … ,1) ∈ ℝl
. The Wolfe type dual model (in 

brief, (WDP)), related to (MPPEC) may be 

formulated as: 

 

(WDP) Maximize   ℒ(z, τ, σ) ≔ Φ(z) + 

            [∑ σj
ΨΨj(z)j∈JΨ

+ ∑ σj
ϑϑj(z)j∈Iϑ  

                      − ∑ σj
PPj(z)j∈J − ∑ σj

QQj(z)]𝑒,j∈J  

 

subject to  

 ∑ τj 𝑔𝑟𝑎𝑑j∈IΦ Φj(z) + ∑ σj
Ψ𝑔𝑟𝑎𝑑j∈JΨ

Ψj(z) +

∑ σ𝑗
ϑ𝑔𝑟𝑎𝑑𝑗∈𝐼ϑ ϑ𝑗(𝑧) − ∑ [σ𝑗

𝑃𝑔𝑟𝑎𝑑 𝑃𝑗(𝑧) +𝑗∈𝐽

  σ𝑗
𝑄𝑔𝑟𝑎𝑑 𝑄𝑗(𝑧)] = 0,                                   (3)  

     σ𝑗
Ψ ≥ 0, ∀𝑗 ∈ 𝐽Φ;   σ𝑗

𝑃 = 0, ∀𝑗 ∈ ℐ3; 

    σ𝑗
𝑄 = 0, ∀𝑗 ∈ ℐ1; 

   ∀𝑗 ∈ ℐ2, either, 𝜎𝑗
𝑃 > 0, 𝜎𝑗

𝑄 > 0, or, 𝜎𝑗
𝑃𝜎𝑗

𝑄 = 0. 

     (4)  

The set of all feasible elements of (WDP) is denoted 

by ℱ𝒲 . We define an auxiliary function ℋ: ℳ → ℝ 

as follows: 

 

   ℋ(𝑧) ≔ ∑ τ𝑗𝑗∈𝐼Φ Φ𝑗 + ∑ σ𝑗
Ψ

𝑗∈𝐽Ψ
Ψ𝑗 

+ ∑ σ𝑗
ϑ

𝑗∈𝐼ϑ

ϑ𝑗 − ∑[σ𝑗
𝑃𝑃𝑗 + σ𝑗

𝑄𝑄𝑗(𝑧)]

𝑗∈𝐽

, 

 

for every z ∈ ℳ. 
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In the following theorem, we establish weak duality 

relation that relates (MPPEC) and (WDP). 

 

Theorem 3.1. Let y ∈ ℱ and (z, τ, σ) ∈ ℱ𝒲. Let ℋ 

be geodesic pseudoconvex at z. Then the inequality 

Φ(𝑦) ⪯ ℒ(𝑧, τ, σ) does not hold. 

 

Proof. On contrary, we suppose that Φ(𝑦) ⪯
ℒ(𝑧, τ, σ). Then there exists some 𝑘 ∈ 𝐼Φ, such that 

 

Φ𝑖(𝑦) ≤ Φ𝑖(𝑧) + ∑ σ𝑗
Ψ

𝑗∈𝐽Ψ

Ψ𝑗(𝑧) + ∑ σ𝑗
ϑϑ𝑗(𝑧)

𝑗∈𝐼ϑ

− ∑[σ𝑗
𝑃𝑃𝑗(𝑧) + σ𝑗

𝑄
𝑄𝑗(𝑧)]

𝑗∈𝐽

, 

for all i ∈ IΦ, i ≠ k and the above inequality holds 

strictly for i = k. Since y ∈ ℱ, (z, τ, σ) ∈ ℱ𝒲, τj >

0 (∀j ∈ IΦ), it follows from the above inequality 

that 

 

∑ τ𝑖Φ𝑖(𝑦)

𝑖∈𝐼Φ

+ ∑ σ𝑗
Ψ(𝑦)

𝑗∈𝐽Ψ

+ ∑ σ𝑗
ϑϑ𝑗(𝑦)

𝑗∈𝐼ϑ

 

− ∑[σ𝑗
𝑃𝑃𝑗(𝑦) + σ𝑗

𝑄𝑄𝑗(𝑦)]

𝑗∈𝐽

 

< ∑ τ𝑖Φ𝑖(𝑧)

𝑖∈𝐼Φ

+ ∑ σ𝑗
Ψ(𝑧)

𝑗∈𝐽Ψ

+ ∑ σ𝑗
ϑϑ𝑗(𝑧)

𝑗∈𝐼ϑ

− ∑[σ𝑗
𝑃𝑃𝑗(𝑧) + σ𝑗

𝑄𝑄𝑗(𝑧)]

𝑗∈𝐽

. 

 

From the definition of ℋ, it follows that ℋ(y) <
𝐻(z). 
By invoking the geodesic pseudoconvexity 

restriction on ℋ at 𝑧, we get 

 

⟨𝑔𝑟𝑎𝑑 ℋ(𝑧), exp𝑧
−1(𝑦)⟩𝑧 < 0. 

 

which is a contradiction to (3). Thus, the proof is 

complete. 

 

In the following theorem, we establish strong 

duality relation that relates (MPPEC) and (WDP). 

 

Theorem 3.2. Let ỹ ∈ ℱ be any Pareto efficient 

solution of (MPPEC). Let us further suppose that 

(GGCQ) holds at ỹ. Then there exist some τ ∈

𝑅𝑙 , τ ≻ 0, σ = (σΨ, σϑ, σ𝑃 , σ𝑄) ∈ ℝ𝑝+𝑞+2𝑚
, such 

that  

(𝑦̃, τ, σ) ∈ ℱ𝒲 , 
 

and Φ(𝑦̃) = ℒ(𝑦̃, τ, σ). Further, if every assumption 

of the weak duality theorem (Theorem 3.1) holds, 

then (𝑦̃, τ, σ) is a Pareto efficient solution of (WDP). 

Proof. Since (GGCQ) is satisfied with the Pareto 

efficient solution ỹ ∈ ℱ, it follows from Theorem 

2.7 that there exist some τ ∈ ℝ𝑙 , τ ≻ 0, σ =

(σΨ, σϑ, σ𝑃 , σ𝑄) ∈ ℝ𝑝+𝑞+2𝑚
 such that equations (1) 

and (2) of Theorem 2.7 are satisfied. From the 

feasibility conditions of (MPPEC), it follows that  

 

∑ σ𝑗
ΨΨ𝑗(𝑦̃)

𝑗∈𝐽Ψ

+ ∑ σ𝑗
ϑ

𝑗∈𝐼ϑ

ϑ𝑗(𝑦̃)

− ∑[σ𝑗
𝑃𝑃𝑗(𝑦̃) + σ𝑗

𝑄
𝑄𝑗(𝑦̃)]

𝑗∈𝐽

= 0. 

 

This shows that (𝑦̃, τ, σ) ∈ ℱ𝒲 , and Φ(𝑦̃) =
ℒ(𝑦̃, τ, σ). On contrary, suppose that (𝑦̃, τ, σ) is not 

a Pareto efficient solution of (WDP). Then there 

exists (𝑦, τ, σ) ∈ ℱ𝒲, such that ℒ(𝑦̃, τ, σ) ⪯
ℒ(𝑦, τ, σ), or,  Φ(𝑦̃) ⪯ ℒ(𝑦, τ, σ), which contradicts 

the weak duality theorem (Theorem 3.1). Thus, the 

proof is complete. 

 

In the following theorem, we establish the strict 

converse duality relation that relates (MPPEC) and 

(WDP). 

 

Theorem 3.3. Let 𝑦̃ ∈ ℱ and (𝑥, τ, σ) ∈ ℱ𝒲 be 

arbitrary feasible elements of (MPPEC) and (WDP), 

respectively. Let us assume that the following 

inequality holds: 

 

∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑦̃) ≤ ∑ τ𝑗Φ𝑗(𝑥)

𝑗∈𝐼Φ

. 

If the assumption of weak duality theorem 

(Theorem 3.1) is satisfied, then ỹ = x. 
 

Proof. On contrary, let ỹ ≠ x. Given that  

 

∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑦̃) ≤ ∑ τ𝑗Φ𝑗(𝑥)

𝑗∈𝐼Φ

. 

 

From the feasibility conditions and definitions of 

index sets, we infer that 

 

∑ τ𝑖Φ𝑖(𝑦̃)

𝑖∈𝐼Φ

+ ∑ σ𝑗
Ψ(𝑦)

𝑗∈𝐽Ψ

+ ∑ σ𝑗
ϑϑ𝑗(𝑦̃)

𝑗∈𝐼ϑ

 

− ∑[σ𝑗
𝑃𝑃𝑗(𝑦̃) + σ𝑗

𝑄𝑄𝑗(𝑦̃)]

𝑗∈𝐽

 

≤ ∑ τ𝑖Φ𝑖(𝑥)

𝑖∈𝐼Φ

+ ∑ σ𝑗
Ψ(𝑥)

𝑗∈𝐽Ψ

+ ∑ σ𝑗
ϑϑ𝑗(𝑥)

𝑗∈𝐼ϑ

 

− ∑[σ𝑗
𝑃𝑃𝑗(𝑥) + σ𝑗

𝑄𝑄𝑗(𝑥)]

𝑗∈𝐽

. 
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By invoking the geodesic pseudoconvexity 

restriction on ℋ at 𝑥, we get 

 

⟨𝑔𝑟𝑎𝑑 ℋ(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
< 0. 

 

which is a contradiction to (3). Thus, the proof is 

complete. 

 

Remark 3.    (i) If ℳ = ℝn
, then Theorem 3.1 and 

Theorem 3.2 reduce to Theorem 4 and Theorem 5 

derived in [24]. 

(ii) The weak, strong as well as strict converse 

duality relations (Theorem 3.1, Theorem 3.2 and 

Theorem 3.3) extends Theorem 3, Theorem 4 and 

Theorem 5 of [23], on wider space, that is, 

Hadamard manifold, and generalize it for 

(MPPEC). 

 

In the following numerical example, we 

demonstrate the results of Mond-Weir duality on the 

Poincaré half plane, which is a Hadamard manifold 

with negative sectional curvature. 

 

Example 3.4. Consider the Poincaré half plane, 

which is the set defined as ℳ ≔ {z = (z1, z2) ∈
R𝟚: z2 > 0}.  ℳ is then a Riemannian manifold (see, 

for instance, [26]). The tangent space at every 

element z ∈ ℳ is given by Tzℳ = ℝ2
. The 

Riemannian metric on the set ℳ is given by 

⟨w1, w2⟩z ≔ ⟨𝒢(z)w1, w2⟩, ∀w1, w2 ∈ Tzℳ = ℝ2, 
where  

 

   𝒢(𝑧) = (

1

𝑧1
2 0

0
1

𝑧2
2

). 

 Furthermore, it can also be verified that ℳ is also a 

Hadamard manifold having a sectional curvature of 

−1.  
 

Consider the following problem (P) on the set ℳ, 
which is a (MPPEC): 

(P) Minimize  Φ(y) ≔ (y1
2,

y1
2+y2

2

y2
), 

subject to   Ψ(𝑦) ≔
1

𝑦2
− 2 ≤ 0, 

𝑃(𝑦) ≔ 𝑦1
2 ≥ 0, 

𝑄(𝑦) ≔
1

𝑦2
≥ 0, 

𝑃(𝑦)𝑇𝑄(𝑦) = 0, 
 

where the functions Φ1, Φ2: ℳ → ℝ, Ψ, P, Q: ℳ →
ℝ are considered to be smooth functions on ℳ. The 

set of feasible elements 𝐹 for (P) is  

 

F ≔ {x = (x1, x2) ∈ ℳ: x1 = 0, x2 ≥ 1/2}. 
 

The Wolfe type dual problem related to (P) may be 

formulated in the following manner: 

 

(WD) Maximize  ℒ(z, τ, σ) ≔ Φ(z) 

+σΨΨ(z) − [σj
PP(z) + σQQ(z)]e, 

 

subject to     

∑ τ𝑗𝑔𝑟𝑎𝑑

2

𝑗=1

Φ𝑗(𝑧) + σΨ𝑔𝑟𝑎𝑑Ψ(𝑧) 

−[σ𝑃𝑔𝑟𝑎𝑑𝑃(𝑧) + σ𝑄𝑔𝑟𝑎𝑑𝑄(𝑧)] = 0,                  

 

where, σΨ ∈ ℝ ≥ 0, σ𝑃 ∈ ℝ, σ𝑄 = 0 ∈ ℝ, τ1, τ2 ∈
ℝ, τ1, τ2 > 0, ∑ τ𝑗

2
𝑗=1 = 1,   𝑒 = (1,1). 

The set containing all feasible elements of (WD) is 

denoted by ℱ𝒲 . Consider the element 𝑦̃ = (0,0.5) ∈
𝐹. By simple calculations, 𝑦̃= (0,0.5) is a Pareto 

efficient solution of the problem (P). Let us now 

choose τ1 = τ2 = 1/2, σΨ = 1/8, σ𝑃 = 1, σ𝑄 = 0. 

We observe that the constraint 

 is satisfied. Hence, (ỹ, τ, σ) ∈ ℱ𝒲 . Furthermore, we 

have Φ(ỹ) = ℒ(ỹ, τ, σ). It can be verified that 

 

ℋ(𝑧) ≔ (∑ 𝜏𝑗
2
𝑗=1 Φ𝑗 + 𝜎ΨΨ𝑗 − 𝜎𝑃𝑃𝑗 − 𝜎𝑄𝑄𝑗)(𝑧)  

  

is geodesic pseudoconvex at (0,0.5). Thus, it is 

illustrated that every assumption and implication of 

the weak duality theorem is verified.  

 

 

4 Mond-Weir Duality 
In this section, the Mond-Weir type dual problem 

related to (MPPEC) is formulated. Subsequently, we 

deduce the weak, strong, as well as strict converse 

duality relations that relate (MPPEC) and the dual 

problem employing certain generalized geodesic 

quasiconvexity and pseudoconvexity assumptions.  

 

Let z ∈ ℳ. The Mond-Weir type dual model (in 

brief, (MWD)) related to (MPPEC) may be 

formulated as: 

 

    (MWD) Maximize  Φ(z), 
 

     subject to 
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    ∑ τ𝑗𝑔𝑟𝑎𝑑𝑗∈𝐼Φ Φ𝑗(𝑧) + ∑ σ𝑗
Ψ𝑔𝑟𝑎𝑑𝑗∈𝐽Ψ

Ψ𝑗(𝑧) +

    ∑ σ𝑗
ϑ𝑔𝑟𝑎𝑑𝑗∈𝐼ϑ ϑ𝑗(𝑧) − ∑ [σ𝑗

𝑃𝑔𝑟𝑎𝑑𝑃𝑗(𝑧) +𝑗∈𝐽

               σ𝑗
𝑄

𝑔𝑟𝑎𝑑𝑄𝑗(𝑧)] = 0,                                 (4)  

∑ σ𝑗
ΨΨ𝑗(𝑧)

𝑗∈𝐽Ψ

≥ 0, ∑ σ𝑗
ϑϑ𝑗(𝑧)

𝑗∈𝐼ϑ

≥ 0, 

∑ σ𝑗
𝑃𝑃𝑗(𝑧)

𝑗∈𝐽

≤ 0, ∑ σ𝑗
𝑄

𝑗∈𝐽

𝑄𝑗(𝑧) ≤ 0, 

   σ𝐽Ψ

Ψ ≥ 0, σℐ3

𝑃 = 0, σℐ1

𝑄
= 0, 

and ∀𝑗 ∈ ℐ2, either σ𝑗
𝑃 > 0, σ𝑗

𝑄
> 0 or, σ𝑗

𝑃σ𝑗
𝑄

= 0, 

 

where σ = (σΨ, σϑ, σ𝑃 , σ𝑄) ∈ ℝ𝑝+𝑞+2𝑚, τ(≻ 0) ∈

𝑅𝑙 . 
The set containing every feasible element of 

(MWD) is signified by the symbol ℱℳ . 
 

The following index sets will be helpful in deriving 

duality results in the rest of the paper. 

 

ℐ2
+ ≔ {𝑗 ∈ ℐ2: σ𝑗

𝑃 > 0, σ𝑗
𝑄 > 0},  

ℐ2
0+ ≔ {𝑗 ∈ ℐ2: σ𝑗

𝑃 = 0, σ𝑗
𝑄 > 0},  

ℐ2
0− ≔ {𝑗 ∈ ℐ2: σ𝑗

𝑃 = 0, σ𝑗
𝑄 < 0}, 

ℐ2
+0 ≔ {𝑗 ∈ ℐ2: σ𝑗

𝑄 = 0, σ𝑗
𝑃 > 0}, 

ℐ2
−0 ≔ {𝑗 ∈ ℐ2: σ𝑗

𝑄 = 0, σ𝑗
𝑃 < 0},  

ℐ1
+ ≔ {𝑗 ∈ ℐ1: σ𝑗

𝑃 > 0}, 

ℐ1
− ≔ {𝑗 ∈ ℐ1: σ𝑗

𝑃 < 0}, 

ℐ3
+ ≔ {𝑗 ∈ ℐ3: σ𝑗

𝑄 > 0},  

ℐ3
− ≔ {𝑗 ∈ ℐ3: σ𝑗

𝑄 < 0},  

𝐼ϑ+ ≔ {𝑗 ∈ 𝐼ϑ: σ𝑗
ϑ > 0}, 

𝐼ϑ− ≔ {𝑗 ∈ 𝐼ϑ: σ𝑗
ϑ < 0}.  

 

Now, we derive weak duality relations that relate 

(MPPEC) and (MWD). 

 

Theorem 4.1. Let 𝑦̃ ∈ ℱ and (𝑧, 𝜏, 𝜎) ∈ ℱℳ . Let us 

suppose that the functions Ψ𝑗(𝑗 ∈ 𝐽Ψ), ϑ𝑗(𝑗 ∈

𝐼ϑ+), −ϑ𝑗(𝑗 ∈ 𝐼ϑ−), 𝑃𝑗(𝑗 ∈ ℐ1
− ∪ ℐ2

−0), −𝑃𝑗(𝑗 ∈ ℐ1
+ ∪

ℐ2
+0 ∪ ℐ2

+), 𝑄𝑗(𝑗 ∈ ℐ3
− ∪ ℐ2

0−), −𝑄𝑗(𝑗 ∈ ℐ3
+ ∪ ℐ2

0+ ∪

ℐ2
+) are geodesic quasiconvex at 𝑧. Further, let ℐ1

− ∪
ℐ3

− ∪ ℐ2
0− ∪ ℐ2

−0 = ∅ and ∑ τ𝑗Φ𝑗(⋅)𝑗∈𝐼Φ  be strictly 

geodesic pseudoconvex at 𝑧. Then the inequality  

Φ(𝑦̃) ⪯ Φ(𝑧) does not hold true. 

 

Proof. On contrary, let us suppose that Φ(𝑦̃) ⪯
Φ(𝑧). Then, as τ ≻ 0, it follows that  

∑ τ𝑗Φ𝑗(𝑦̃)

𝑗∈𝐼Φ

≤ ∑ τ𝑗Φ𝑗(𝑧)

𝑗∈𝐼Φ

. 

From the geodesic strict pseudoconvexity of 

∑ τ𝑗Φ𝑗(⋅)𝑗∈𝐼Φ , it follows that 

⟨∑ τ𝑗𝑔𝑟𝑎𝑑𝑗∈𝐼Φ Φ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
< 0.               (5)  

For every 𝑗 ∈ 𝐽Ψ(𝑧), we have  

 

Ψ𝑗(𝑦̃) ≤ 0 = Ψ𝑗(𝑧). 
 

Then, in light of the geodesic quasiconvexity 

assumption on Ψ𝑗, we obtain the following: 

 

⟨𝑔𝑟𝑎𝑑Ψ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≤ 0, ∀𝑗 ∈ 𝐽Ψ. 

 

For every 𝑗 ∈ 𝐼ϑ, we have  

 

ϑ𝑗(𝑦̃) ≤ 0 = ϑ𝑗(𝑧). 

 

Then, in view of the geodesic quasiconvexity 

assumption on 𝜗𝑗, and definition of index sets, we 

obtain 

 

⟨𝑔𝑟𝑎𝑑ϑ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≤ 0, ∀𝑗 ∈ 𝐼ϑ+, 

      ⟨𝑔𝑟𝑎𝑑ϑ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≤ 0,         ∀𝑗 ∈ 𝐼ϑ−. 

 

Again, −𝑃𝑗(𝑦̃) ≤ 0 = −𝑃𝑗(𝑧), ∀𝑗 ∈ ℐ1
+ ∪ ℐ2

+0 and 

−𝑄𝑗(𝑦̃) ≤ 0 = −𝑄𝑗(𝑧), ∀𝑗 ∈ ℐ3
+ ∪ ℐ2

0+. From the 

geodesic quasiconvexity assumption on 𝑃𝑗 and 𝑄𝑗 

and definitions of index sets, we obtain 

 

    ⟨𝑔𝑟𝑎𝑑𝑃𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≥ 0,     ∀𝑗 ∈ ℐ1

+ ∪ ℐ2
+0, 

⟨𝑔𝑟𝑎𝑑𝑄𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≥ 0, ∀𝑗 ∈ ℐ3

+ ∪ ℐ2
0+. 

 

Since by hypothesis ℐ1
− ∪ ℐ3

− ∪ ℐ2
0− ∪ ℐ2

−0 = ∅, it 

follows from above inequalities that 

⟨ ∑ σ𝑗
Ψ𝑔𝑟𝑎𝑑

𝑗∈𝐽Ψ

Ψ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧

≤ 0, 

⟨∑ σ𝑗
ϑ

𝑗∈𝐼ϑ

𝑔𝑟𝑎𝑑ϑ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧

≤ 0, 

 

⟨ ∑ σ𝑗
𝑃𝑔𝑟𝑎𝑑

𝑗∈ℐ1∪ℐ2

𝑃𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧

≥ 0, 
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⟨ ∑ σ𝑗
𝑄

𝑔𝑟𝑎𝑑

𝑗∈ℐ2∪ℐ3

𝑄𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧

≥ 0. 

 

By combining each of the inequalities obtained 

above, we get the following expression: 

 

⟨∑ σ𝑗
Ψ𝑔𝑟𝑎𝑑𝑗∈𝐽Ψ

Ψ𝑗(𝑧) + ∑ σ𝑗
ϑ𝑔𝑟𝑎𝑑𝑗∈𝐼ϑ ϑ𝑗(𝑧) −

∑ [σ𝑗
𝑃𝑔𝑟𝑎𝑑𝑃𝑗(𝑧) +𝑗∈𝐽

σ𝑗
𝑄

𝑔𝑟𝑎𝑑𝑄𝑗(𝑧)] , exp𝑧
−1(𝑦̃)⟩

𝑧
≤ 0.                 (6) 

 

It follows from (4) and (6) that 

⟨∑ τ𝑗𝑔𝑟𝑎𝑑𝑗∈𝐼Φ Φ𝑗(𝑧), exp𝑧
−1(𝑦̃)⟩

𝑧
≥ 0, which is a 

contradiction to (5). Thus, the proof is complete. 

 

Now, we establish strong duality relation that relates 

(MPPEC) and (MWD). 

 

Theorem 4.2.  Let 𝑦̃ ∈ ℱ be a Pareto efficient 

solution of (MPPEC). Let us further suppose that 

(GGCQ) is satisfied at 𝑦̃. Then there exist some τ ∈

ℝ𝑙 , τ ≻ 0, σ = (σΨ, σϑ, σ𝑃 , σ𝑄) ∈ ℝ𝑝+𝑞+2𝑚
, such 

that (𝑦̃, τ, σ) ∈ ℱℳ , and the corresponding objective 

function values are equal. Moreover, if every 

assumption of weak duality (Theorem 4.1) is 

satisfied, then (𝑦̃, τ, σ) is a Pareto efficient solution 

of (MWD). 

 

Proof. Since (GGCQ) is satisfied at the Pareto 

efficient solution 𝑦̃ ∈ ℱ, it follows from Theorem 

2.7 that there exist some τ ∈ ℝ𝑙 ≻ 0, σ =

(σΨ, σϑ, σ𝑃 , σ𝑄) ∈ ℝ𝑝+𝑞+2𝑚
, such that equations 

(1) and (2) of Theorem 2.7 are satisfied. From the 

feasibility conditions of (MPPEC) it follows that 
(𝑦̃, τ, σ) ∈ ℱℳ , and the corresponding objective 

function values are equal. 

 

On contrary, let us suppose that (𝑦̃, τ, σ) is not a 

Pareto efficient solution of (MWD). Then there 

exists (𝑢, τ, σ) ∈ ℱℳ , such that  

 

Φ(𝑦̃) ⪯ Φ(𝑢, τ, σ), 
 

which is a contradiction to the weak duality theorem 

(Theorem 4.1). Thus, the proof is complete. 

 

Now, we deduce strict converse duality relation that 

relates (MPPEC) and (MWD). 

 

Theorem 4.3. Let 𝑦̃ ∈ ℱ and (𝑥, τ, σ) ∈ ℱℳ be 

arbitrary feasible elements of (MPPEC) and 

(MWD), respectively. Let us assume that the 

following inequality holds: 

∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑦̃) ≤ ∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑥). 

If the assumption of weak duality theorem 

(Theorem 4.1) is satisfied, then 𝑦̃ = 𝑥. 
 

Proof. On contrary, let  𝑦̃ ≠ 𝑥. Given that  

 

∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑦̃) ≤ ∑ τ𝑗

𝑗∈𝐼Φ

Φ𝑗(𝑥). 

 

By invoking the geodesic strict pseudoconvexity of 

∑ τ𝑗Φ𝑗(⋅)𝑗∈𝐼Φ  it follows that 

 

⟨ ∑ τ𝑗𝑔𝑟𝑎𝑑

𝑗∈𝐼Φ

Φ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥

< 0. 

For every 𝑗 ∈ 𝐽Ψ(𝑥), we have Ψ𝑗(𝑦̃) ≤ 0 = Ψ𝑗(𝑥). 
Then, in light of the geodesic quasiconvexity 

assumption on Ψ𝑗, we obtain the following 

 

⟨𝑔𝑟𝑎𝑑Ψ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≤ 0, ∀𝑗 ∈ 𝐽Ψ. 

 

For every 𝑗 ∈ 𝐼ϑ, we have ϑ𝑗(𝑦̃) ≤ 0 = ϑ𝑗(𝑥). Then, 

in view of the geodesic quasiconvexity assumption 

on ϑ𝑗, and definition of index sets, we obtain 

 

⟨𝑔𝑟𝑎𝑑 ϑ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≤ 0,       ∀𝑗 ∈ 𝐼ϑ+, 

⟨𝑔𝑟𝑎𝑑 ϑ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≤ 0, ∀𝑗 ∈ 𝐼ϑ−. 

     

Again, −𝑃𝑗(𝑦̃) ≤ 0 = −𝑃𝑗(𝑥), ∀𝑗 ∈ ℐ1
+ ∪ ℐ2

+0and 

−𝑄𝑗(𝑦̃) ≤ 0 = −𝑄𝑗(𝑥), ∀𝑗 ∈ ℐ3
+ ∪ ℐ2

0+. From the 

geodesic quasiconvexity assumption on 𝑃𝑗 and 

𝑄𝑗 and definitions of index sets, we obtain 

 

⟨𝑔𝑟𝑎𝑑𝑃𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≥ 0, ∀𝑗 ∈ ℐ1

+ ∪ ℐ2
+0, 

⟨𝑔𝑟𝑎𝑑𝑄𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≥ 0,    ∀𝑗 ∈ ℐ3

+ ∪ ℐ2
0+. 

 

Since by hypothesis, ℐ1
− ∪ ℐ3

− ∪ ℐ2
0− ∪ ℐ2

−0 =it 

follows from above inequalities that 

⟨ ∑ σ𝑗
Ψ𝑔𝑟𝑎𝑑

𝑗∈𝐽Ψ

Ψ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥

≤ 0, 
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⟨∑ σ𝑗
ϑ𝑔𝑟𝑎𝑑

𝑗∈𝐼ϑ

ϑ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥

≤ 0, 

⟨ ∑ σ𝑗
𝑃𝑔𝑟𝑎𝑑

𝑗∈ℐ1∪ℐ2

𝑃𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥

≥ 0, 

⟨ ∑ σ𝑗
𝑄

𝑗∈ℐ2∪ℐ3

𝑔𝑟𝑎𝑑𝑄𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥

≥ 0. 

 

 

By combining each of the inequalities obtained 

above, we obtain the following expression: 

⟨∑ 𝜎𝑗
Ψ

𝑗∈𝐽Ψ
𝑔𝑟𝑎𝑑Ψ𝑗(𝑥) + ∑ 𝜎𝑗

𝜗𝑔𝑟𝑎𝑑𝑗∈𝐼𝜗 𝜗𝑗(𝑥) −

∑ [𝜎𝑗
𝑃𝑔𝑟𝑎𝑑𝑃𝑗(𝑥) +𝑗∈𝐽

𝜎𝑗
𝑄𝑔𝑟𝑎𝑑𝑄𝑗(𝑥)] , exp𝑥

−1(𝑦̃)⟩
𝑥

≤ 0, (7)  

It follows from (4) and (7) that 

⟨∑ τ𝑗𝑔𝑟𝑎𝑑𝑗∈𝐼Φ Φ𝑗(𝑥), exp𝑥
−1(𝑦̃)⟩

𝑥
≥ 0, which is a 

contradiction. Thus, the proof is complete. 

 

Remark 4. (i) If ℳ = ℝ𝑛
, then Theorem 4.1 and 

Theorem 4.2 reduce to Theorem 6 and Theorem 7 

derived in [24], for Euclidean spaces. 

 

(ii) The weak, strong as well as strict converse 

duality relations (Theorem 4.1, Theorem 4.2 and 

Theorem 4.3) extend Theorem 6, Theorem 7 

and Theorem 8, respectively, derived in [23], on the 

framework of wider space, namely, Hadamard 

manifold, and generalize it for (MPPEC). 

 

In the following numerical example, we illustrate 

the results derived for Mond-Weir duality. 

 

Example 4.4. Consider the problem (P) as 

formulated in Example 3.4. 

 

The Mond-Weir dual problem related to (P), 

denoted by (MWD), may be formulated as follows 

    (MWD) Maximize  Φ(z), 
    subject to 

∑ τ𝑗𝑔𝑟𝑎𝑑

2

𝑗=1

Φ𝑗(𝑧) + σΨ𝑔𝑟𝑎𝑑Ψ(𝑧)

− [σ𝑃𝑔𝑟𝑎𝑑𝑃(𝑧) + σ𝑄𝑔𝑟𝑎𝑑𝑄(𝑧)]
= 0, 

 

σΨΨ(𝑧) ≥ 0; σ𝑃𝑃(𝑧) ≤ 0; 
σ𝑄𝑄(𝑧) ≤ 0; 

σΨ ≥ 0, σ𝑄 = 0; 
  

where σ = (σΨ, σϑ, σP, σQ) ∈ ℝ4, τ1, τ2 >

𝑎𝑛𝑑 ∑ τ𝑗
2
𝑗=1 = 1. The feasible set of (MWD) is 

denoted by ℱℳ . Consider the element 𝑦̃ =
(0,1/2) ∈ 𝐹. By simple calculations, it can be 

verified that 𝑦̃ is a Pareto efficient solution of the 

problem (P). Then by choosing multipliers as τ1 =
τ2 = 1/2,  σΨ = 1/8, σ𝑃 = 1, σ𝑄 = 0, we observe 

that (𝑦̃, τ, σ) ∈ ℱℳ . Moreover, the functions 

Ψ(𝑧), 𝑃(𝑧), 𝑄(𝑧) are geodesic quasiconvex and 

∑ τ𝑗Φ𝑗(⋅)2
𝑗=1  is strictly geodesic pseudoconvex at 𝑦̃. 

Thus, it can be verified that every assumption and 

implication of the weak duality theorem is valid.  

 

 

5 Conclusion 
In this article, we have investigated a certain 

category of multiobjective mathematical 

programming problems with equilibrium constraints 

on Hadamard manifolds (abbreviated as, (MPPEC)). 

We have formulated the Wolfe type dual model 

(WDP) and Mond-Weir type dual model (MWD) 

related to (MPPEC) and derived the weak, strong, as 

well as strict converse duality relations that relate 

(MPPEC) and the dual models under generalized 

geodesic convexity restrictions. Several non-trivial 

numerical examples have been provided to 

demonstrate the importance of the derived results. 

 

The various results derived in this article extend 

and generalize several notable results present in the 

literature. For instance, the results that are 

established in this article generalize the 

corresponding results deduced in [24], on the 

framework of an even wider space, which is, 

Hadamard manifolds, as well as for an even more 

class of convex functions. Further, the results 

deduced in this article extend the duality results 

deduced in [23], to Hadamard manifolds. Moreover, 

the results established in the paper also extend the 

results derived in [6], to a more general class of 

programming problems, namely, (MPPEC), and 

generalize them in the context of a wider space, 

namely, Hadamard manifolds. 

 

For future work, we would like to extend the 

duality results derived in this article for nonsmooth 

optimization problems with equilibrium constraints 

in the setting of Hadamard manifolds. Moreover, it 

would be an exciting challenge to study duality 
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results for mathematical programming problems 

with vanishing constraints on Hadamard manifolds. 
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