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Abstract: -  Due to the widespread use of digital images of real-world objects as mathematical models, this 

research examines the freezing sets invariant-base properties of digital images. In contrast to earlier studies that 

only covered a discrete or limited collection of points, fixed points of digitally continuous functions are 

approved to deal with a variety of characteristics of digital images. 
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1 Introduction 
Mathematical models commonly use illustrations of 

the world’s objects. A digital representation of the 

notion of a continuous function, which was drawn 

from topology, is usually useful for the analysis of 

digital images. However, the digital picture is 

frequently a distinct, limited collection of points. As 

a result, methods other than topology-based 

methods for digital picture analysis are usually 

needed. In this work, we examine a number of 

digital picture features that are connected to the 

fixed points of digitally continuous functions. 

     

    These characteristics include discrete 

measurements that do not naturally correspond to 

the characteristics of ℝ𝑛 subsets. (𝑈, 𝜅) is a digital 

image where for some integer n, 𝑈 ⊂ ℤⁿ and 𝜅 is an 

adjacency on 𝑈 which is considered to be finite, [6]. 

If 𝑈 is a vertex set and 𝜅 is an edge set, then the pair 

(𝑈, 𝜅) is a graph. Adjacency is a measure of how 

"closedness" two points are to one another in ℤⁿ. 

When these conditions (finiteness of 𝑋) and 

(closedness of adjacency points) are satisfied, the 

digital image may be viewed as a model of a white-

and-black "real world" image, where white points in 

the background are declared by elements of ℤⁿ −
{𝑈} and the black points in the foreground by 

members of U, [1]. 

     

    𝛼𝛽 indicates that 𝛼 and 𝛽 are 𝜅 −adjacent and  

𝛼 ⇆ 𝛽 are 𝜅 −adjacent or equal.  

If 𝑧 is an integer such that 1 ≤ 𝑧 ≤ 𝑛 and 

    𝛼 = (𝛼₁, 𝛼₂, . . . , 𝛼𝑛}) ≠ (𝛽₁, 𝛽₂, . . . , 𝛽𝑛) = 𝛽, then 

    𝛼 ↔𝑐𝑧
𝛽 iff 

    (i) For at most indices i, |𝛼𝑖 − 𝛽𝑖 |. 

    (ii) For all indices j, |𝛼𝑖 − 𝛽𝑖 | implies 𝛼𝑗 = 𝛽𝑗. 

 

The number of adjacent points is frequently used to 

indicate the 𝑐𝑧 −adjacencies. 

     

Examples: 

    (i) The 2 −adjacency in ℤ is 𝑐₁ −adjacency. 

 (ii) The 4 −adjacency is 𝑐₁ −adjacency is and the 

8 −adjacency in ℤ² is 𝑐₂ −adjacency. 

    

 (iii) The 8 −adjacency is 𝑐₁ −adjacency, 

18 −adjacency is 𝑐₂ −adjacency, and 

26 −adjacency in ℤ³ is 𝑐₃ −adjacency. 

 

    If (𝑈, 𝜅) and (𝑉, 𝜆) are two digital images, then 

𝑁𝑃(𝜅, 𝜆) denotes the strong product adjacency or 

normal adjacency, [2], on 𝑈 × 𝑉 iff 

    ∀𝛼₀, 𝛼₁ ∈ 𝑈 and 𝛽₀, 𝛽₁ ∈ 𝑉 where  

𝑝₀ = (𝛼₀, 𝛽₀) ≠ 𝑝₁ = (𝛼₁, 𝛽₁), 

𝑝₀ ↔𝑁𝑃(𝜅,𝜆) 𝑝₁ if one of the following conditions is 

valid: 

(i) α₀ ↔𝜅α₁  and 𝛽₀ = 𝛽₁. 
(ii)𝛽₀ ↔𝜅 𝛽₁ and 𝛼₀ = 𝛼₁. 

(iii) 𝛼₀ ↔𝜅 𝛼₁  and 𝛽₀ ↔𝜅 𝛽₁.  
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      Typically if 𝑧 and 𝜐 are two natural numbers 

such that 1 ≤ 𝑧 ≤ 𝜐, (𝑈𝑖,𝜅𝑖) ∀ 1 ≤ 𝑖 ≤ 𝜐 and  

𝑈 = ∏ 𝑈𝑖
𝜐
𝑖=1 , then the adjacency 

𝑁𝑃𝑧(𝜅₁, 𝜅₂, . . . , 𝜅𝜐), [3], is defined as: For some 𝛼𝑖 

and 𝛼𝑖′  in 𝑈𝑖, if 

𝑝 = (𝛼₁, 𝛼₂, . . . , 𝛼𝜐) ≠ 𝑞 = (𝛼₁′, 𝛼₂′, . . . , 𝛼𝜐′), then: 

𝑝 ↔𝑁𝑃𝑧(κ₁,κ₂,...,𝜅𝜐)q if for at least 1 and at most 

𝑧 indices 𝑖, 𝑥𝑖 ⟷𝜅𝑖
𝑥𝑖′ and ∀ 𝑗 indices, 𝛼𝑗 = 𝛼𝑗′.  

In this paper, "digital images" is referred to as D.I. 

     

 

2 (𝜿, 𝝀) −Digitally Continuous 

Function 
 

    Definition 1.1: 

i. [4], If (𝑈, 𝜅) and (𝑉, 𝜆) are two D.I, 

then 𝑓: 𝑈 → 𝑉 is a (𝜅, 𝜆) −digitally 

continuous function, if (𝑈, 𝜅) = (𝑉, 𝜆), 

then 𝑓 is (𝜅, 𝜅) −continuous. 

 

ii. The path from 𝛼 to 𝛽 is the set {𝛼𝑖}𝑚
𝑖=0

 

such that 𝛼₀ = 𝛼, 𝛼𝑚 = 𝛽 and 

𝛼𝑖⇄𝛼𝑖+1 ∀ 𝑖 = 1,2, . . . , 𝑚 − 1  

∀ 𝛼, 𝛽 ∈ 𝑈.  

Now, if 𝛼𝑖≠𝛼𝑗 ∀ 𝑖 ≠ 𝑗, then the length 

of the path is 𝑚.  

 

iii. The path from 𝛼 to 𝛽 is a (2, 𝜅) − 𝑃, 

where 𝑃: [0, 𝑚]ℤ → 𝑈 is a continuous 

function ∀ 𝑚 ∈ ℤ and 𝑃(0) = 𝛼 and 

𝑃(𝑚) = 𝛽. 
 

 

    Theorem 1.2: [5], If (𝑈, 𝜅) and (𝑉, 𝜆) are two 

D.Is', then: 

    i. 𝑓: 𝑈 → 𝑉 is a (𝜅, 𝜆) −digitally continuous 

function iff ∀ 𝛼, 𝛽 ∈ 𝑈, if 𝛼 ↔𝜅 𝛽, then 

𝑓(𝛼) ⇄𝜆 𝑓(𝛽). 
 

    ii. If (𝑍, 𝛾) is a D.I and 𝑔: (𝑉, 𝜆) → (𝑍, 𝛾) is 

(𝜆, 𝛾) −continuous, then 𝑔 ∘ 𝑓: (𝑈, 𝜅) → (𝑍, 𝛾) is 

(𝜅, 𝛾) −continuous. 

 

    Definition 1.3: 

i. [1], [6], Let (𝑈, 𝜅) and (𝑉, 𝜆) be two D.I 

and, 𝑓, 𝑔: (𝑈, 𝜅) → (𝑉, 𝜆) are two 

(𝜅, 𝜆) −continuous functions and 

ℎ: [𝑈 ×, 𝑚]ℤ → 𝑉 is defined as ℎ(𝛼, 0) =
𝑓(𝛼) and ℎ(𝛼, 𝑚) = 𝑔(𝛼) ∀ 𝑚 ∈ ℤ and 

𝛼 ∈ 𝑈. 

 

ii. A function h is a digital 

(𝜅, 𝜆) −homotopy, and 𝑓, 𝑔 are (𝜅, 𝜆) 

digitally homotopic in 𝑉 (denoted by 𝑓 ∼
𝑔.  

 

 

iii. If ℎ(𝛼, 𝑡) = 𝛼 ∀ 𝑡 ∈ [0, 𝑚]ℤ, then ℎ holds 

𝛼 fixed. 

 

iv. [1], If 𝐴 is a subset of 𝑈 and 𝑟: 𝑈 → 𝐴 is a 

𝜅 −continuous function, then 𝑟 is a 

retraction. If 𝑟(𝑎) = 𝑎 ∀ 𝑎 ∈ 𝐴, then 𝐴 is 

a retract. 

 

v. If 𝑖: 𝐴 → 𝑈 is an inclusion function, and 

𝑖 ∘ 𝑟 ∼𝜅 𝑖𝑑𝑈 , then 𝐴 is a 𝜅 −deformation 

retract of 𝑈. 

 

iv. The function 𝑓: (𝑈, 𝜅) → (𝑉, 𝜆) is an 

isomorphisim (homeomorphisim) if 𝑓 is 

a bijective continuous function and 𝑓⁻¹ 

is continuous. 

 

v. If (𝑈, 𝜅) is a digital image, then 

𝐶(𝑈, 𝜅) = {𝑓: 𝑈 → 𝑈: 𝑓 is continuous}. 

 

vi. If 𝑓(𝛼) = 𝛼 ∀ 𝛼 ∈ 𝑈 and 𝑓 ∈ 𝐶(𝑈, 𝜅), 

then 𝛼 is a fixed point. 

 

vii. 𝐹𝑖𝑥(𝑓) is the set of all fixed points of 

𝑈. 

     

Theorem 1.4: [3], If (𝑈𝑖,𝜅𝑖) and (𝑉𝑖, 𝜆𝑖) are D.I 

∀ 1 ≤ 𝑖 ≤ 𝜈 , 𝑓𝑖: (𝑈𝑖,𝜅𝑖) →(𝑉𝑖, 𝜆𝑖) and 

    𝑓:∏ 𝑈𝑖
𝜈
𝑖=1  →∏ 𝑉𝑖

𝜈
𝑖=1  given by 

𝑓(𝛼1, 𝛼2, … , 𝛼𝜈) = (𝑓1(𝛼1), 𝑓2(𝛼2), … , 𝑓𝜈(𝛼𝜈)) 

which is   (𝑁𝑃𝜈(𝜅₁, 𝜅₂, … , 𝜅𝜈), 𝑁𝑃𝜈(𝜆₁, 𝜆₂, … , 𝜆𝜈)) − 

continuous iff 𝑓𝑖 is (𝜅𝑖,𝜆𝑖) −ψontinuous ∀ 𝛼𝑖 ∈ 𝑈𝑖 . 
     

    Definition 1.5, [1]:  

i. A continuous function 𝑓: (𝑈, 𝜅) →
(𝑉, 𝜆) is rigid if there is no continuous 

map homotopic to f except itself. 

 

ii. 𝑈 is rigid if 𝑖𝑑: (𝑈, 𝜅) → (𝑈, 𝜅) is rigid. 

 

iii. [7], If a finite image 𝑈 is homotopy 

equivalent to an image with fewer 

points, it is said to be reducible. 

Otherwise, U is irreducible. 

 

iv. [1], If (𝑈, 𝜅) is irreducible, then for 

some point 𝛼 ∈ 𝑈 ∃𝑓 ∈ 𝐶(𝑈, 𝜅) such 

that id≃𝜅 𝑓 and 𝛼 ∉ 𝑓, 𝛼 is a reduction 

point. 
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    Remark 1.6: [7], A finite image (𝑈, 𝜅) is 

reducible if 𝑖𝑑: (𝑈, 𝜅) → (𝑈, 𝜅) is homotopic to a 

non-surjective function. 

     

    Definition 1.7: [8], For the D.I (𝑈, 𝜅) and  

𝑓 ∈ 𝐶(𝑈, 𝜅): 

i. The set 𝑆(𝑓) = {𝑛𝑜. 𝐹𝑖𝑥(ℎ): ℎ ∼𝜅 𝑓} is 

the homotopy fixed point spectrum of the 

function  . 

 

ii. The set  

𝑆(𝑓, 𝛼0) = {𝑛𝑜. 𝐹𝑖𝑥(ℎ): ℎ ∼𝜅 𝑓  holding 

𝛼0 fixed} is the pointed homotopy fixed 

point spectrum of the function f for some 

𝛼0 ∈ 𝐹𝑖𝑥(𝑓). 

 

iii. The set 𝐹(𝑈, 𝜅) = {𝑛𝑜. 𝐹𝑖𝑥(𝑓): 𝑓 ∈
𝐶(𝑈, 𝜅)} is the fixed point spectrum of 

(𝑈, 𝜅). 

 

    iv. The set 𝐹(𝑈, 𝜅, 𝛼0) = {𝑛𝑜. 𝐹𝑖𝑥(𝑓): 𝑓 ∈
𝐶(𝑈, 𝜅), 𝛼0 ∈ 𝐹𝑖𝑥(𝑓)} is the pointed fixed point 

spectrum of (U,κ, 𝛼0). 

     

    Theorem 1.8: i. [8], If 𝑉 is a retract of the D.I 

(𝐴, 𝜅), then 𝐹(𝐴) ⊂ 𝐹(𝑈). 

 

    ii. If (𝐴, 𝜅, 𝛼0) is a retract of (𝑈, 𝜅, 𝛼0), then 

𝐹(𝐴, 𝜅, 𝛼0) ⊂ 𝐹(𝑈, 𝜅, 𝛼0) 

 

     

3 Freezing Sets 
Definition 2.1: [1], If (𝑈, 𝜅) is a D.I, then 𝐴 is a 

freezing subset for 𝑈 if 𝐴 ⊂ 𝐹𝑖𝑥(𝑔)  ⇒ 𝑔 = 𝑖𝑑𝑈 for 

some 𝑔 ∈ 𝐶(𝑈, 𝜅) 

     

    Theorem 2.2: If (𝑈, 𝜅) is a D.I and 𝐴 is a freezing 

subset for 𝑈, then: 

 

i. 𝑖𝑑𝐴 has a unique extension of 𝑖𝑑𝑈 to a 

member of 𝐶(𝑈, 𝜅). 

 

ii. If ℎ; (𝑈, 𝜅) → (𝑉, 𝜆) is an isomorphisim, 

𝑔: (𝑈, 𝜅) → (𝑉, 𝜆) is continuous and 

h|𝐴=𝑔|𝐴 then 𝑔 = ℎ. 

 

iii. A continuous function 𝑓: (𝐴, 𝜅) → (𝑉, 𝜆) 

has one extension to an isomorphism 

𝐹: (𝑈, 𝜅) → (𝑉, 𝜆). 

     

    Lemma 2.3: Freezing sets are topological 

invariants. 

 

    Theorem 2.4: If (𝑈, 𝜅) is a D.I and 𝑉 is a freezing 

subset for 𝑈 and 𝑓: (𝑈, 𝜅) → (𝑉, 𝜆) is an 

isomorphism, then 𝑓(𝐴) is a freezing set for (𝑉, 𝜆). 

 

    Proof: Suppose that 𝑓 ∈ 𝐶(𝑈, 𝜅) and 

𝑓|𝐹(𝐴)=𝑖𝑑𝑉||𝐹(𝐴). Now, 𝑓 ∘ 𝐹(𝐴) = 𝑓|𝐹(𝐴) ∘

𝐹|𝐹(𝐴) = 𝑖𝑑𝑉|𝐹(𝐴) ∘ 𝐹|𝐹(𝐴) = 𝐹|𝐹(𝐴) and by theorem 

3.2, 

    𝑓 ∘ 𝐹 = 𝐹, then  

𝑓 = (𝑓 ∘ 𝐹) ∘ 𝐹⁻¹ = 𝐹 ∘ 𝐹⁻¹ = 𝑖𝑑𝑉 

    Thus 𝐹(𝐴) is a freezing set for 𝑉. 

     

    Theorem 2.5: If (𝑈, 𝐶𝑍) ⊂ ℤⁿ is a D.I for 𝑧 ∈
[1, 𝑛], 𝑓 ∈ 𝐶(𝑈, 𝑐𝑧}) , 𝛼 , 𝛼′ ∈ 𝑈: 𝛼 ↔𝑐𝑧

𝛼′ and 

    𝑝𝑖(𝑓(𝛼)) ≤ 𝑝𝑖(𝛼) ≤ 𝑝𝑖(𝛼′), then  

𝑝𝑖 (𝑓(𝛼)) ≤ 𝑝𝑖(𝛼′). 
     

Proof: If 𝑝𝑖  (𝑓(𝛼)) ≤ 𝑝𝑖(𝛼) ≤ 𝑝𝑖(𝛼′) and  

𝑝𝑖(𝛼) = 𝑚 then 𝑝𝑖(𝑞′) = 𝑚 − 1. 

    Hence 𝑝𝑖 (𝑓(𝛼)) > 𝑚, but 𝑓 ∈ 𝐶(𝑈, 𝑐𝑧), so 

𝑓(𝛼) ↔𝑐𝑧
 𝑓(𝛼′).  

Therefore, 𝑝𝑖 (𝑓(𝛼)) ≤ 𝑝𝑖(𝛼) ≤ 𝑝𝑖(𝛼′). 
     

    Theorem 2.6:  

i. If (𝑈, 𝜅) is a D.I and 𝐴 ⊂ 𝑈 is a retract 

of 𝑈, then (𝐴, 𝜅) has no freezing sets for 

(𝑈, 𝜅). 

 

ii. If (𝑈, 𝜅) is a reducible digital image and 

𝐴 is a freezing subset for 𝑈, then if 𝑎 ∈
𝑈 is a reduction point of 𝑈, 𝛼 ∈ 𝐴. 

 

    Proof: i. If 𝑖: (𝐴, 𝜅) → (𝑈, 𝜅) is an inclusion 

function, then 𝑟: (𝑈, 𝜅) → (𝐴, 𝜅) is a retraction and 

𝑓 = 𝑖 ∘ 𝑟 is (𝜅, 𝜅) −continuous. 

    Now, 𝑓|𝐴=𝑖𝑑𝐴, but f is not the identity function. 

 

    ii. If 𝑎 ∈ 𝑈 is a reduction point of 𝑈, 

    then ∃𝑟: 𝑈 → 𝑈 − {𝑎} where 𝑈 − {𝑎} has no 

freezing sets for (𝑈, 𝜅). 

 

 

4 Boundaries of Freezing Sets 
Definition 3.1:  

i. [1], If (𝑈, 𝜅) is a D.I and 𝐴 ⊂ 𝑈 is a 

freezing set for 𝑈, then 𝐴 is minimal if 

no proper subset of 𝐴 is a freezing set 

for 𝑈. 

 

ii. [9], If 𝑈 ⊂ ℤⁿ, then the boundary of 𝑈 

is 𝐵𝑑(𝑈) = {𝛼: 𝛼 ↔𝑐1
𝛽 for some 𝛽 ∈

ℤⁿ − 𝑈}. 
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iii. [1], The interior of 𝑈 is 𝑖𝑛𝑡(𝑈) = 𝑈 −
𝐵𝑑(𝑈). 

     

    Theorem 3.2: Let 𝑈 ⊂ ℤⁿ be finite, 𝐴 is a subset 

of 𝑈, 𝑓 ∈ 𝐶(𝑈, 𝑐𝑧)∀𝑧 ∈ [1, 𝑛]. If 𝐵𝑑(𝐴) ⊂ 𝐹𝑖𝑥(𝑓) 

and 𝐵𝑑(𝐴) is a freezing set for (𝑈, 𝑐𝑧), then 𝐴 ⊂
𝐹𝑖𝑥(𝑓). 
 

    Proof: Let 𝛼 = (𝛼₁, 𝛼₂, . . . , 𝛼𝑛) ∉ 𝐹𝑖𝑥(𝑓) but 𝛼 is 

an interior point of 𝐴. 

    Now,∃𝑗 ∈ [1, 𝑛] such that 𝑝𝑗(𝑓(𝛼)) ≠ 𝛼𝑗, and 

because of the finiteness, there exists a path 𝑃 =
{(𝛼₁, 𝛼₂, . . . , 𝛼𝑗−1, 𝑎𝑖, 𝛼𝑗+1, . . . , 𝛼𝑛} ∀ 𝑖 ∈ [1, 𝑚] . 

    For 𝑖 = 1 and 𝑚, the path belongs to 𝐵𝑑(𝐴), and 

for 𝑖 = 2, . . . , 𝑚 − 1, the path belongs to 𝑖𝑛𝑡(𝐴). 

    By theorem 3.5, the path does not belong to 

𝐹𝑖𝑥(𝑓) for 𝑖 = 1 and m which contradicts the 

assumption. 

    Thus, 𝛼 = (𝛼₁, 𝛼₂, . . . , 𝛼𝑛) ∉ 𝐹𝑖𝑥(𝑓). 
     

    Theorem 3.3: [10], If ∏ [0, 𝑚𝑗]𝑛
𝑗=1 ℤ

⊂ℤ ⁿ such that 

𝑚𝑗>1 ∀ 𝑗, then 𝐵𝑑(𝑈) is a minimal freezing set for 

(𝑈, 𝑐𝑛). 

 

    Proof: Let 𝛽 = (𝛽₁, 𝛽₂, . . . , 𝛽𝑛) ∈ 𝐵𝑑(𝑈) − 𝐴 for 

some proper set 𝐴 of 𝐵𝑑(𝑈). 

    For some index 𝑗, we have 𝛽𝑗 ∈ {0, 𝑚𝑗}. If 𝛽𝑗=0, 

then for the function 𝑓: 𝑈 → 𝑈 given by 

    𝑓(𝛼) = 𝛼 ∀ 𝛼 ≠ 𝛽 and 𝑓(𝛽) =
𝑓(𝛽₁, . . . , 𝛽𝑗−1, 𝛽𝑗+1, . . . , 𝛽𝑛) we have 𝑓 ∈ 𝐶(𝑈, 𝑐𝑛}) 

where 𝑓|𝐴=𝑖𝑑𝐴 and 𝑓 ≠ 𝑖𝑑𝑈. 

    Now, if 𝛽𝑗 = 𝑚𝑗, then 𝑓(𝛼) = 𝛼 ∀ 𝛼 ≠ 𝛽 and 

    𝑓(𝛽) = (𝛽₁, . . . , 𝛽𝑗−1, 𝑚𝑗 − 1, 𝛽𝑗+1, . . . , 𝛽𝑛) where 

𝑓 ∈ 𝐶(𝑈, 𝑐𝑛) where 𝑓|𝐴=𝑖𝑑𝐴 and 𝑓 ≠ 𝑖𝑑𝑈. 
     

        Theorem 3.4: If (𝑈𝑖 , 𝜅𝑖) is a set of D.I ∀𝑖 ∈
[1, 𝜈]ℤ, U= ∏ 𝑈𝜈

𝑖=1 𝑖
 and a subset 𝐴 of 𝑈 is a freezing 

set for (𝑈, 𝑁𝑃𝜈(𝜅1, 𝜅2, … , 𝜅𝜈)), then for the 

projection function  
𝑝𝑗: ∏ 𝑈𝜈

𝑖=1 𝑖
→𝑈𝑗 given by 𝑝(𝛼₁, 𝛼₂, . . . , 𝛼𝜈) = 𝛼𝑗  

we have 𝑝𝑖(𝐴) is a freezing set for (𝑈𝑖 , 𝜅𝑖)∀ 𝑖 ∈
[1, 𝜈]ℤ. 

     

Proof: Suppose 𝑓𝑖 ∈ 𝐶(𝑈𝑖 , 𝜅𝑖) and 𝑔: 𝑈 → 𝑈 is 

defined as  

𝑔(𝛼₁, 𝛼₂, . . . , 𝛼𝜈) = (𝑓₁(𝛼₁), 𝑓₂(𝛼₂), . . . , 𝑓𝜈(𝛼𝜈)), 
    then 𝑔 ∈ 𝐶(𝑈, 𝑁𝑃𝜈(𝜅₁, 𝜅₂, . . . , 𝜅𝜈)).  

Now, 𝑓𝑖(𝛼𝑖)= 𝛼𝑖 ∀ 𝑖 ∈ 𝑝𝑖(𝐴), but 𝐴 is a freezing set 

for 𝑈, hence 𝑔 = 𝑖𝑑𝑈, 

    Therefore, 𝑓𝑖=𝑖𝑑𝑈𝑖
. 

5 Conclusion 
Freezing sets are topological invariants. So, If (𝑈, 𝜅) 

is a D.I, 𝑉 is a freezing subset for 𝑈 and 𝑓: (𝑈, 𝜅) →
(𝑉, 𝜆) is an isomorphism, then 𝑓(𝐴) is a freezing set 

for (𝑉, 𝜆). 𝑖: (𝐴, 𝜅) → (𝑈, 𝜅) is an inclusion 

function, then 𝑟: (𝑈, 𝜅) → (𝐴, 𝜅) is a retraction and 

𝑓 = 𝑖 ∘ 𝑟 is (𝜅, 𝜅) −continuous. Moreover, if 𝑈 ⊂
ℤⁿ is finite, 𝐴 is a subset of 𝑈, 𝑓 ∈ 𝐶(𝑈, 𝑐𝑧)∀𝑧 ∈
[1, 𝑛]. If 𝐵𝑑(𝐴) ⊂ 𝐹𝑖𝑥(𝑓) and 𝐵𝑑(𝐴) is a freezing 

set for (𝑈, 𝑐𝑧), then 𝐴 ⊂ 𝐹𝑖𝑥(𝑓).   
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