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Abstract: - There are various numerical methods for solving integral equations. Among the new numerical 
methods, methods based on splines and spline wavelets should be noted. Local interpolation splines of a low 
order of approximation have proved themselves well in solving differential and integral equations. In this 
paper, we consider the construction of a numerical solution to the Fredholm integral equation of the second 
kind using spline approximations of the seventh order of approximation. The support of the basis spline of the 
seventh order of approximation occupies seven grid intervals. We apply various modifications of the basis 
splines of the seventh order of approximation at the beginning, the middle, and at the end of the integration 
interval. It is assumed that the solution of the integral equation is sufficiently smooth. The advantages of using 
splines of the seventh order of approximation include the use of a small number of grid nodes to achieve the 
required error of approximation. Numerical examples of the application of spline approximations of the seventh 
order for solving integral equations are given. 
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1 Introduction 
Integral equations often arise in various 
applications. Many problems of astrophysics, 
mechanics, viscoelasticity, elasticity, vibrations, 
plasticity, hydrodynamics, electrodynamics, nuclear 
physics, biomechanics, geology, medicine problems, 
and many other problems are formulated in terms of 
integral equations. The mathematical model for 
many problems is arising in different industries of 
natural science, basically formulated using 
differential and integral equations. The investigation 
of these equations is conducted with the help of the 
numerical integration theory, [1]. Mathematical and 
physics problems are often reduced to solving 
integral or integro-differential equations. 
    The (2+1) dimensional Konopelchenko–
Dubrovsky equation (2D-KDE) is an integro- 
differential equation which describes two-layer fluid 
in shallow water near ocean shores and stratified 
atmosphere, [2].  
    In paper [3], the two-dimensional Volterra 
integro-differential equations for viscoelastic rods 
and membranes in a bounded smooth domain are 
studied.  
    Hypoxy induced angiogenesis processes can be 
described by coupling an integro-differential kinetic 
equation of Fokker-Planck type with a diffusion 

equation for the angiogenic factor, [4].  
    The development of two numerical techniques for 
solving the convection-diffusion type partial 
integro-differential equation (PIDE) with a weakly 
singular kernel is studied in the paper, [5].  
    The charged particle motion for certain 
configurations of oscillating magnetic fields can be 
simulated by a Volterra integro-differential equation 
of the second order with time-periodic coefficients, 
[6]. 
     As it is known, equations of the second and first 
kinds are distinguished among the integral and 
integro-differential equations. Usually, the solution 
of an integral equation is reduced to the solution of a 
system of algebraic equations. 
    The compound trapezoidal scheme is often used 
to solve the first-order linear Fredholm integro-
differential equation and the second-order linear 
Fredholm integro-differential equation, [7], [8].  
    In paper [9] the trapezoidal rule is used to 
approximate the integral in linear and nonlinear 
fractional Fredholm integrodifferential equations.  
   The B-spline collocation method is used to solve 
the system of singular integro-differential equations, 
[10].  
   On the B-spline basis, the Hartree–Fock integro-
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differential equations are reduced to a 
computationally eigenvalue problem, [11]. 
   In paper, [12], the approximation of the solution 
of Fredholm integro-differential equations of the 
second kind using an exponential spline function 
was applied.  
    In paper, [13], the cubic B-spline collocation 
method is used to solve the stochastic integro-
differential equation of fractional order. 
    In the paper, [14], the advanced multistep and 
hybrid methods have been used to solve Volterra 
integral equation. 
     In paper, [15], the kernel as well as the right part 
of the equation are initially approximated through 
Legendre wavelet functions. 
In the paper, [16], the forward-jumping methods of 
hybrid type are used for the construction of the 
methods with a high order of accuracy. 
In the paper, [17], the Fourier integral transform 
has been employed to reduce the problem of 
determining the stress component under the contact 
region of a punch in solving dual integral equations. 
In the paper, [18], the method of integral equations 
is proposed for some problems of electrical 
engineering (current density, radiative heat transfer, 
heat conduction). Presented models lead to a system 
of Fredholm integral equations, integro-differential 
equations, or Volterra-Fredholm integral equations, 
respectively. 
    This paper discusses the solution methods based 
on the use of local splines of the seventh order of 
approximation. We use these splines if the kernel 
and the right side are sufficiently smooth functions 
and we want to use a small number of grid nodes. 
To construct an approximate solution at points 
between grid nodes, we use the interpolation of the 
same local splines. 
 
 

2 Problem Formulation 
Let  ሼݔ௜ሽ be a grid of nodes on the interval ሾܽ, ܾሿ. 
Note that the approximations with the splines are 
constructed separately for each grid 
interval	ሾݔ௞,	ݔ௞ାଵሿ. 
     In this paper, we consider the application of 
splines of the seventh order of approximation to 
solve integral Fredholm equations of the second 
kind. Different modifications of the splines of the 
seventh order of approximation are used at the 
beginning, in the middle, and at the end of the 
interpolation interval ሾܽ, ܾሿ. The support of the basis 
spline occupies seven grid intervals.  
     First, consider the approximation properties of 
polynomial splines of the seventh order of 

approximation. Let ሼݔ௜ሽ be a uniform grid of nodes 
on the interval ሾܽ, ܾሿ: ܽ ൌ ଴ݔ ൏…<ݔ௡ ൌ ܾ with step 
݄. Let us assume that the values of the function 
 ሻ are given at the grid nodes. The approximationݔሺݑ
using basis splines is built separately on each grid 
interval as the sum of the products of the values of 
the function ݑ at the grid nodes and the basis splines 
௝߱.  

   Let ݎ, ݎ ,ଵbe integersݎ ൅ ଵݎ ൌ ݎ ,7 ൒ 1, ଵݎ ൒ 1,	and 
the spline 	߱௞ be such that supp	߱௞ ൌ
ሾݔ௞ା௥,  ௞ା௥భሿ. Following the methodologyݔ
developed by Professor S. G. Mikhlin, we find the 
basis functions 	߱௞ by solving the system of 
approximation relations 
 

෍ ௝ݔ
௦

௝߱ሺݔሻ
௞ା௥

௝ୀ௞ି௥భ

ൌ ,௦ݔ ݔ ∈ ሾݔ௞,ݔ௞ାଵሿ,

ݏ ൌ 0,1, … ,6.																													ሺ1ሻ	 
 
   With different values of the parameters ݎ,  ଵ, weݎ
get basis splines suitable for approximation at the 
beginning of the interpolation interval (the right 
basis splines), in the middle of the interpolation 
interval (the middle basis splines), or at the end of 
the interpolation interval (the left basis splines). 
 
2.1 Approximation with the Middle Basis 
Splines  
With ݎଵ ൌ 3  and ݎ ൌ 3 we get the middle splines. 
When constructing an approximation on a finite 
interpolation interval, we use the middle splines, 
departing 3 grid intervals from the points ܽ and ܾ 
that are the ends of the interval of integration. At the 
beginning and the end of the interval ሾܽ, ܾሿ, we 
apply, respectively, the left and the right splines. For 
example, on the interval ݔ ∈ ሾݔ௞,  ௞ାଵሿ, weݔ
construct the approximation with the middle splines 
at a distance of three grid intervals from the ends of 
the interval ሾܽ, ܾሿ in the form: 

ሻݔ෤ሺݑ ൌ ෍ ௝൯ݔ൫ݑ ௝߱
ெሺݔሻ	, ݔ ∈ ሾݔ௞,ݔ௞ାଵሿ.

௞ାଷ

௝ୀ௞ିଷ

		ሺ2ሻ 

where the middle basis splines ௝߱
ெሺݔሻ  have the 

form: 
߱௞ିଷ
ெ ሺݔሻ ൌ ܿ௞ିଷሺݔሻ/݀௞ିଷ	, 

where 
ܿ௞ିଷሺݔሻ ൌ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ െ ݔ௞ሻሺݔ െ ݔ௞ିଵሻሺݔ െ  ,௞ିଶሻݔ
݀௞ିଷ ൌ ሺݔ௞ିଷ െ ௞ିଷݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ିଷ െ ௞ିଷݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଷ െ ௞ିଷݔ௞ିଵሻሺݔ െ  ;௞ିଶሻݔ
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߱௞ିଶ
ெ ሺݔሻ ൌ

ܿ௞ିଶሺݔሻ
݀௞ିଶ

, 

ܿ௞ିଶሺݔሻ ൌ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ െ ݔ௞ሻሺݔ െ ݔ௞ିଵሻሺݔ െ  ,௞ିଷሻݔ
݀௞ିଶ ൌ ሺݔ௞ିଶ െ ௞ିଶݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ିଶ െ ௞ିଶݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଶ െ ௞ିଶݔ௞ିଵሻሺݔ െ  ;௞ିଷሻݔ
 

߱௞ିଵ
ெ ሺݔሻ ൌ

ܿ௞ିଵሺݔሻ
݀௞ିଵ

, 

ܿ௞ିଵ ൌ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ െ ݔ௞ሻሺݔ െ ݔ௞ିଶሻሺݔ െ  ,௞ିଷሻݔ
݀௞ିଵ ൌ ሺݔ௞ିଵ െ ௞ିଵݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ିଵ െ ௞ିଵݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଵ െ ௞ିଵݔ௞ିଶሻሺݔ െ  ;௞ିଷሻݔ
 

߱௞
ெሺݔሻ ൌ

ܿ௞ ሺݔሻ
݀௞

, 

ܿ௞ሺݔሻ ൌ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ െ ݔ௞ିଵሻሺݔ െ ݔ௞ିଶሻሺݔ െ  ,௞ିଷሻݔ
݀௞ ൌ ሺݔ௞ െ ௞ݔ௞ାଷሻሺݔ െ ௞ݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ௞ െ ௞ݔ௞ିଵሻሺݔ െ ௞ݔ௞ିଶሻሺݔ െ  ;௞ିଷሻݔ
 

߱௞ାଵ
ெ ሺݔሻ ൌ

ܿ௞ାଵሺݔሻ
݀௞ାଵ

, 

ܿ௞ାଵሺݔሻ ൌ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ െ ݔ௞ିଵሻሺݔ െ ݔ௞ିଶሻሺݔ െ  ,௞ିଷሻݔ
݀௞ାଵ ൌ ሺݔ௞ାଵ െ ௞ାଵݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ିଶሻሺݔ െ  ;௞ିଷሻݔ
 

߱௞ାଶ
ெ ሺݔሻ ൌ

ܿ௞ାଶሺݔሻ
݀௞ାଶ

, 

ܿ௞ାଶሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ െ ݔ௞ିଶሻሺݔ െ ݔ௞ିଷሻሺݔ െ  ,௞ାଷሻݔ
݀௞ାଶ ൌ ሺݔ௞ାଶ െ ௞ାଶݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ାଶ െ ௞ାଶݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ௞ାଶ െ ௞ାଶݔ௞ିଷሻሺݔ െ  ;௞ାଷሻݔ
 

߱௞ାଷ
ெ ሺݔሻ ൌ

ܿ௞ାଷሺݔሻ
݀௞ାଷ

, 

ܿ௞ାଷሺݔሻ ൌ ሺݔ െ ݔ௞ାଶሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ െ ݔ௞ିଵሻሺݔ െ ݔ௞ିଶሻሺݔ െ  ,௞ିଷሻݔ
݀௞ାଷ ൌ ሺݔ௞ାଷ െ ௞ାଷݔ௞ାଶሻሺݔ െ  ௞ାଵሻݔ
ൈ ሺݔ௞ାଷ െ ௞ାଷݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ௞ାଷ െ ௞ାଷݔ௞ିଶሻሺݔ െ  .௞ିଷሻݔ

 
The plots of the basis splines ௝߱

ெሺݔሻ, ݆ ൌ
݇ െ 3,…݇ ൅ 3, are given in Fig. 1,  Fig. 2, 
Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7. 

 

 
Fig. 1: The plot of the basis spline ߱௞ିଷ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
 

 
Fig. 2: The plot of the basis spline ߱௞ିଶ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
 

 
Fig. 3: The plot of the basis spline ߱௞ିଵ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
 

 
Fig. 4: The plot of the basis spline ߱௞

ெሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 

 

 
Fig. 5: The plot of the basis spline ߱௞ାଵ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
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Fig. 6: The plot of the basis spline ߱௞ାଶ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
 

 
Fig. 7: The plot of the basis spline ߱௞ାଷ

ெ ሺݔሻ when 
௞ାଵݔ ൌ 1, ௞ݔ ൌ 0. 
 
2.2 Approximation with the Left Basis 
Splines 
Let us consider the approximation with the left basis 
splines. We get the left basis splines when 	ݎଵ ൌ 5,
ݎ ൌ 1. In this case, formula (1) on the interval 
ሾݔ௞,  :௞ାଵሿ takes the formݔ

 

ሻݔ෤ሺݑ ൌ ෍ ௝൯ݔ൫ݑ ௝߱
௅ሺݔሻ	, ݔ ∈ ሾݔ௞,ݔ௞ାଵሿ.

௞ାଵ

௝ୀ௞ିହ

		ሺ3ሻ 

 
where the basis splines ߱௞

௅ሺݔሻ have the form 
 

߱௞ିହ
௅ ሺݔሻ ൌ ܿ௞ିହሺݔሻ/݀௞ିହ, 

ܿ௞ିହሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ െ ݔ௞ିଶሻሺݔ െ ݔ௞ିଷሻሺݔ െ  ,௞ିସሻݔ
݀௞ିହ ൌ ሺݔ௞ିହ െ ௞ିହݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିହ െ ௞ିହݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ௞ିହ െ ௞ିହݔ௞ିଷሻሺݔ െ  ;௞ିସሻݔ
 

߱௞ିସ
௅ ሺݔሻ ൌ

ܿ௞ିସሺݔሻ

݀௞ିସ
, 

ܿ௞ିସሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ െ ݔ௞ିଶሻሺݔ െ ݔ௞ିଷሻሺݔ െ  ,௞ିହሻݔ
݀௞ିସ ൌ ሺݔ௞ିସ െ ௞ିସݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିସ െ ௞ିସݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ௞ିସ െ ௞ିସݔ௞ିଷሻሺݔ െ  ;௞ିହሻݔ
 

߱௞ିଷ
௅ ሺݔሻ ൌ

ܿ௞ିଷሺݔሻ

݀௞ିଷ
, 

ܿ௞ିଷሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ െ ݔ௞ିଶሻሺݔ െ ݔ௞ିସሻሺݔ െ  ,௞ିହሻݔ

݀௞ିଷ ൌ ሺݔ௞ିଷ െ ௞ିଷݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଷ െ ௞ିଷݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ௞ିଷ െ ௞ିଷݔ௞ିସሻሺݔ െ  ;௞ିହሻݔ
 

߱௞ିଶ
௅ ሺݔሻ ൌ

ܿ௞ିଶሺݔሻ

݀௞ିଶ
, 

ܿ௞ିଶሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ െ ݔ௞ିଷሻሺݔ െ ݔ௞ିସሻሺݔ െ  ,௞ିହሻݔ
݀௞ିଶ ൌ ሺݔ௞ିଶ െ ௞ିଶݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଶ െ ௞ିଶݔ௞ିଵሻሺݔ െ  ௞ିଷሻݔ
ൈ ሺݔ௞ିଶ െ ௞ିଶݔ௞ିସሻሺݔ െ  ;௞ିହሻݔ
 

߱௞ିଵ
௅ ሺݔሻ ൌ

ܿ௞ିଵሺݔሻ

݀௞ିଵ
, 

ܿ௞ିଵሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ െ ݔ௞ିଷሻሺݔ െ ݔ௞ିସሻሺݔ െ  ,௞ିହሻݔ
݀௞ିଵ ൌ ሺݔ௞ିଵ െ ௞ିଵݔ௞ାଵሻሺݔ െ  ௞ሻݔ
ൈ ሺݔ௞ିଵ െ ௞ିଵݔ௞ିଶሻሺݔ െ  ௞ିଷሻݔ
ൈ ሺݔ௞ିଵ െ ௞ିଵݔ௞ିସሻሺݔ െ  ;௞ିହሻݔ
 

߱௞
௅ሺݔሻ ൌ

ܿ௞ሺݔሻ

݀௞
, 

ܿ௞ሺݔሻ ൌ ሺݔ െ ݔ௞ାଵሻሺݔ െ ݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ሺݔ െ ݔ௞ିଷሻሺݔ െ ݔ௞ିସሻሺݔ െ  ,௞ିହሻݔ
݀௞ ൌ ሺݔ௞ െ ௞ݔ௞ାଵሻሺݔ െ ௞ݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ሺݔ௞ െ ௞ݔ௞ିଷሻሺݔ െ ௞ݔ௞ିସሻሺݔ െ  ;௞ିହሻݔ
 

߱௞ାଵ
௅ ሺݔሻ ൌ

ܿ௞ାଵሺݔሻ

݀௞ାଵ
, 

ܿ௞ାଵሺݔሻ ൌ ሺݔ െ ݔ௞ሻሺݔ െ ݔ௞ିଵሻሺݔ െ  ௞ିଶሻݔ
ൈ ሺݔ െ ݔ௞ିଷሻሺݔ െ ݔ௞ିସሻሺݔ െ  ,௞ିହሻݔ
݀௞ାଵ ൌ ሺݔ௞ାଵ െ ௞ାଵݔ௞ሻሺݔ െ  ௞ିଵሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ିଶሻሺݔ െ  ௞ିଷሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ିସሻሺݔ െ  .௞ିହሻݔ
 
2.3 Approximation with the Right Basis 
Splines 
Consider the approximation with the right basis 
splines. Let ݎଵ ൌ 0, ݎ ൌ 6, in this case, on the 
interval ሾݔ௞,  :௞ାଵሿ formula (1) takes the formݔ
 

ሻݔ෤ሺݑ ൌ ෍ݑ൫ݔ௝൯ ௝߱
ோሺݔሻ, ݔ ∈ ሾݔ௞, ௞ାଵሿݔ

௞ା଺

௝ୀ௞

	, ሺ4ሻ 

where the right basis splines ݆߱
ܴሺݔሻ have the 

form: 

߱௞
ோሺݔሻ ൌ

ܿ௞ሺݔሻ

݀௞
, 

ܿ௞ሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ,௞ାଵሻݔ

݀௞ ൌ ሺݔ௞ െ ௞ݔ௞ା଺ሻሺݔ െ ௞ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ௞ െ ௞ݔ௞ାଷሻሺݔ െ ௞ݔ௞ାଶሻሺݔ െ  ;௞ାଵሻݔ
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߱௞ାଵ
ோ ሺݔሻ ൌ

ܿ௞ାଵሺݔሻ

݀௞ାଵ
, 

ܿ௞ାଵሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଶሻሺݔ െ  ,௞ሻݔ
݀௞ାଵ ൌ ሺݔ௞ାଵ െ ௞ାଵݔ௞ା଺ሻሺݔ െ  ௞ାହሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ାସሻሺݔ െ  ௞ାଷሻݔ
ൈ ሺݔ௞ାଵ െ ௞ାଵݔ௞ାଶሻሺݔ െ  ;௞ሻݔ
 

߱௞ାଶ
ோ ሺݔሻ ൌ

ܿ௞ାଶሺݔሻ

݀௞ାଶ
, 

ܿ௞ାଶሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ െ ݔ௞ାଷሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ,௞ሻݔ
݀௞ାଶ ൌ ሺݔ௞ାଶ െ ௞ାଶݔ௞ା଺ሻሺݔ െ  ௞ାହሻݔ
ൈ ሺݔ௞ାଶ െ ௞ାଶݔ௞ାସሻሺݔ െ  ௞ାଷሻݔ
ൈ ሺݔ௞ାଶ െ ௞ାଶݔ௞ାଵሻሺݔ െ  ;௞ሻݔ
 

߱௞ାଷ
ோ ሺݔሻ ൌ

ܿ௞ାଷሺݔሻ

݀௞ାଷ
, 

ܿ௞ାଷ	ሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ െ ݔ௞ାଶሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ,௞ሻݔ
݀௞ାଷ ൌ ሺݔ௞ାଷ െ ௞ାଷݔ௞ା଺ሻሺݔ െ  ௞ାହሻݔ
ൈ ሺݔ௞ାଷ െ ௞ାଷݔ௞ାସሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ାଷ െ ௞ାଷݔ௞ାଵሻሺݔ െ  ;௞ሻݔ
 

߱௞ାସ
ோ ሺݔሻ ൌ

ܿ௞ାସሺݔሻ

݀௞ାସ
, 

ܿ௞ାସሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାହሻሺݔ െ  ௞ାଷሻݔ
ൈ ሺݔ െ ݔ௞ାଶሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ,௞ሻݔ
݀௞ାସ ൌ ሺݔ௞ାସ െ ௞ାସݔ௞ା଺ሻሺݔ െ  ௞ାହሻݔ
ൈ ሺݔ௞ାସ െ ௞ାସݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ାସ െ ௞ାସݔ௞ାଵሻሺݔ െ  ;௞ሻݔ
 

߱௞ାହ
ோ ሺݔሻ ൌ

ܿ௞ାହሺݔሻ

݀௞ାହ
, 

ܿ௞ାହሺݔሻ ൌ ሺݔ െ ݔ௞ା଺ሻሺݔ െ ݔ௞ାସሻሺݔ െ  ௞ାଷሻݔ
ൈ ሺݔ െ ݔ௞ାଶሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ,௞ሻݔ
݀௞ାହ ൌ ሺݔ௞ାହ െ ௞ାହݔ௞ା଺ሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ௞ାହ െ ௞ାହݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ

ൈ ሺݔ௞ାହ െ ௞ାହݔ௞ାଵሻሺݔ െ  ;௞ሻݔ
 

߱௞ା଺
ோ ሺݔሻ ൌ

ܿ௞ା଺ሺݔሻ

݀௞ା଺
, 

ܿ௞ା଺ሺݔሻ ൌ ሺݔ െ ݔ௞ାହሻሺݔ െ ݔ௞ାସሻሺݔ െ  ௞ାଷሻݔ
ൈ ሺݔ െ ݔ௞ାଶሻሺݔ െ ݔ௞ାଵሻሺݔ െ  ,௞ሻݔ
݀௞ା଺ ൌ ሺݔ௞ା଺ െ ௞ା଺ݔ௞ାହሻሺݔ െ  ௞ାସሻݔ
ൈ ሺݔ௞ା଺ െ ௞ା଺ݔ௞ାଷሻሺݔ െ  ௞ାଶሻݔ
ൈ ሺݔ௞ା଺ െ ௞ା଺ݔ௞ାଵሻሺݔ െ  .௞ሻݔ
 
2.4 Approximation Theorem 
Further, we will use the norm of the vector of 
the form: 

∥ ݑ ∥ሾܽ,ܾሿൌ max
ሾܽ,ܾሿ∋ݔ

 |ሻݔሺݑ	|

   When approximating a function with the 
splines of the 7th order of approximation, the 
next Theorem is valid.  
 
Theorem. If supp߱௞ ൌ ሾݔ௞ିଵ,  then the	௞ା଺ሿ,ݔ
following inequalities are valid: 
 
ሻݔሺݑ| െ ሻ|௫∈ሾ௫ೖ,௫ೖశభሿݔ෤ሺݑ

൑ 95.842 ∙ ݄଻
∥ ሺ଻ሻݑ ∥ሾ௫ೖషఱ,௫ೖశభሿ

7!
. 

 If supp߱௞ ൌ ሾݔ௞ିଷ,  ௞ାସሿ, then the followingݔ
approximation estimate is valid: 
 
ሻݔሺݑ| െ ሻ|௫∈ሾ௫ೖ,௫ೖశభሿݔ෤ሺݑ

൑ 12.359 ∙ ݄଻
∥ ሺ଻ሻݑ ∥ሾ௫ೖషయ,௫ೖశయሿ

7!
. 

If supp߱௞ ൌ ሾݔ௞ି଺,  ௞ାଵሿ, then the followingݔ
approximation estimate is valid: 
 
ሻݔሺݑ| െ ሻ|௫∈ሾ௫ೖ,௫ೖశభሿݔ෤ሺݑ

൑ 95.842	 ∙ ݄଻
∥ ሺ଻ሻݑ ∥ሾ௫ೖ,௫ೖశలሿ

7!
. 

 
Proof. In the case of approximating the function ݑ 
on the interval [ݔ௞,  ௞ାଵ] near the left end of theݔ
interval ሾܽ, ܾሿ, we use the right basis splines:  
 

ሻݔ෤ሺݑ ൌ ෍ݑ൫ݔ௝൯ ௝߱
ோ

௞ା଺

௝ୀ௞

ሺݔሻ݀ݔ	, ݔ ∈ ሾݔ௞,  .	௞ାଵሿݔ

Let us estimate the approximation error on the 
interval [ݔ௞,  ௞ାଵ]  when the right basis splines wereݔ
used. Using the formula of the remainder term of the 
interpolation polynomial that solves the Lagrange 
interpolation problem, we obtain the relation 

ሻݔሺݑ െ ሻݔ෤ሺݑ ൌ
ሻߦሺ଻ሻሺݑ

7!
ሺݔ െ …௞ሻݔ ሺݔ െ  ,	௞ା଺ሻݔ

	ߦ ∈ 	 ሾݔ௞ିହ,  .௞ାଵሿݔ
There is a product ሺݔ െ …௞ሻݔ ሺݔ െ  in the	௞ା଺ሻݔ
error estimate. Let the ordered grid of nodes ሼݔ௞ሽ be 
uniform with step ݄. Let us estimate the product of 
factors ሺݔ െ …௞ሻݔ ሺݔ െ  .௞ା଺ሻݔ
Thus, estimating the maximum of the expression 
௨ሺళሻሺకሻ

଻!
ሺݔ െ …௞ሻݔ ሺݔ െ ߦ ௞ା଺ሻ, whereݔ ∈ ሾݔ௞,   ,௞ା଺ሿݔ

we obtain 
 
∥ ሻݔሺݑ െ ሻݔ෤ሺݑ ∥ሾ௫ೖ,௫ೖశభሿ		൑ ଻݄	ܭ 	 ∥ ሺ଻ሻݑ ∥ሾ௫ೖ,	௫ೖశలሿ		, 
 
Similarly, we obtain an approximation estimate on 
the grid interval [ݔ௞,  ௞ାଵሿ  with the left and middleݔ
splines.  
This completes the proof of the theorem. 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.48 I. G. Burova, G. O. Alcybeev

E-ISSN: 2224-2880 413 Volume 22, 2023



3  The Application of the Local Splines 
of the Seventh Order of 
Approximation to Calculate Integrals 
First of all, we note how to apply local splines of the 
seventh order of approximation to calculate integrals 
over the interval ሾܽ, ܾሿ. As already noted, the spline 
approximation of the function is applied separately 
for each grid interval. Applying the estimates given 
in the theorem, we should calculate the integral 

׬ ݂ሺݏሻ݀ݏ
௕
௔  as followed.  

Let ݏ௝ be the nodes of the set on the interval ሾܽ, ܾሿ: 
ܽ ൌ ଴ݏ ൏ ଵݏ ൏ ⋯ ൏ ௡ݏ ൌ ܾ. 

We represent the integral in the form: 

න݂ሺݏሻ݀ݏ ൌ ෍න ݂ሺݏሻ݀ݏ
௦ೖశభ

௦ೖ

௡ିଵ

௞ୀ଴

௕

௔

	. 

The function ݂ሺݏሻ ൌ ,ݔሺܭ ,ሻݏሺݑሻݏ ݏ ∈ ሾݏ௞,  ,௞ାଵሿݏ
can be approximated with the expression: ݂ሺݏሻ ൎ
ሚ݂ሺݏሻ ൌ ,ݔሺܭ ሻ. Let us denote  ௝ܿݏ෤ሺݑሻݏ ൌ  ௝൯, andݏ൫ݑ

let ߙ௠ and ߚ௠,݉ ൌ 1,2,3, determine the type of 
spline: the left, the right, or the middle spline. On 
the intervals ሾݏ௞, ݇ ,௞ାଵሿݏ ൌ 0,1,2, we put ߙଵ ൌ
݇, ଵߚ ൌ ݇ ൅ 6.	  On the intervals ሾݏ௞,ݏ௞ାଵሿ, ݇ ൌ
3,… , ݊ െ 4, we put ߙଶ ൌ ݇ െ 3, ଶߚ ൌ ݇ ൅ 3. On the 
intervals ሾݏ௞,ݏ௞ାଵሿ, ݇ ൌ ݊ െ 3,… , ݊ െ 1, we put 
ଷߙ ൌ ݇ െ 5, ଷߚ ൌ ݇ ൅ 1.  
Let us denote ௝ܿ ൎ  ௝ሻ. Now we use the followingݔሺݑ
approximations of the function ݑሺݏሻ at the first three 
grid intervals of the interval ሾܽ, ܾሿ: 

ሻݏ෤ோሺݑ ൌ ෍ ௝ܿ

௞ା଺

௝ୀ௞
௝߱
ோሺݏሻ,			ݏ ∈ ሾݏ௞,ݏ௞ାଵሿ, ݇ ൌ 0,1,2, 

We use the following approximations of the 
function ݑሺݏሻ in the middle of the interval ሾܽ, ܾሿ: 

ሻݏ෤ெሺݑ ൌ ෍ ௝ܿ

௞ାଷ

௝ୀ௞ିଷ
௝߱
ெሺݏሻ,			ݏ ∈ ሾݏ௞,ݏ௞ାଵሿ,	 

݇ ൌ 3,… , ݊ െ 4. 
We use the following approximations of the 
function ݑሺݏሻ at the last three grid intervals of the 
interval ሾܽ, ܾሿ: 

ሻݏ෤௅ሺݑ ൌ ෍ ௝ܿ

௞ାଵ

௝ୀ௞ିହ

݆߱
ݏ			,ሻݏሺܮ ∈ ሾݏ௞,ݏ௞ାଵሿ,

݇ ൌ ݊ െ 3,… , ݊ െ 1. 
	We assume that the integral ׬ ,ݔሺܭ ሻݏ ௝߱ሺݏሻ݀ݏ

௦ೖశభ
௦ೖ

 

can be computed exactly. Otherwise, we can use the 
quadrature formulas. In this case, it is necessary to 
take into account the error of the applied quadrature 
formula. We can use, for example, Simpson's 
compound formula. 
 

4  The Application of the Local Splines 
of the Seventh Order of 
Approximation which is used to 
Calculate a Solution of an Integral 
Equation 
First, we discuss the solution of the integral 
equation of the second kind 

ݑܣ ≡ ሻݔሺݑ െ නܭሺݔ, ݏሻ݀ݏሺݑሻݏ ൌ ݃ሺݔሻ

௕

௔

,	 

ݔ ∈ ሾܽ, ܾሿ. 
We assume that the kernel ܭሺݔ,  ሻ and the right sideݏ
of the equation ݃ሺݔሻ are continuous. In addition, we 
assume that the equation is uniquely solvable and 
the estimate for the norm of the inverse operator in 
the space ܥ is known: ∥ ଵିܣ ∥൑  .ܤ
Let us choose an integer ݊ ൒ 10. We build a 

uniform grid with a step ݄ ൌ
௕ି௔

௡
. 

Using the results from the third section, we can 
reduce the integral equation to the solution of a 
system of linear algebraic equations. To do this, we 
put ݔ ൌ ݉ ,௠ݔ ൌ 0, . . . , ݊ െ 1, ሺݔ௠,
takes	the	same	values	as ݏ௝, ݆ ൌ 0, . . . , ݊ െ 1ሻ in 
the equation  

ሻݔሺݑ െ෍෍ ௝ܿ

௞ା଺

௝ୀ௞

න ,ݔሺܭ ሻݏ ௝߱
ோሺݏሻ݀ݏ ൅

௦ೖశభ

௦ೖ

ଶ

௞ୀ଴

	 

෍ ෍ ௝ܿ

௞ାଷ

௝ୀ௞ିଷ

න ,ݔሺܭ ሻݏ ௝߱
ெሺݏሻ݀ݏ ൅

௦ೖశభ

௦ೖ

௡ିସ

௞ୀଷ

 

෍ ෍ ௝ܿ

௡ିଵ

௝ୀ௡ିଷ

න ,ݔሺܭ ሻ݆߱ݏ
	ݏሻ݀ݏሺܮ ൌ ݃ሺݔሻ.

௦ೖశభ

௦ೖ

௡ିଵ

௞ୀ௡ିଷ

	 

 
And now we have to solve the system of linear 
algebraic equations 

௠ሻݔሺݑ െ෍෍ ௝ܿ

௞ା଺

௝ୀ௞

න ,௠ݔሺܭ ሻݏ ௝߱
ோሺݏሻ݀ݏ ൅

௦ೖశభ

௦ೖ

ଶ

௞ୀ଴

	 

෍ ෍ ௝ܿ

௞ାଷ

௝ୀ௞ିଷ

න ,௠ݔሺܭ ሻݏ ௝߱
ெሺݏሻ݀ݏ ൅

௦ೖశభ

௦ೖ

௡ିସ

௞ୀଷ

 

෍ ෍ ௝ܿ

௡ିଵ

௝ୀ௡ିଷ

න ,௠ݔሺܭ ሻ݆߱ݏ
	ݏሻ݀ݏሺܮ ൌ ݃ሺݔ௠ሻ.

௦ೖశభ

௦ೖ

௡ିଵ

௞ୀ௡ିଷ

 

 
݉ ൌ 0, . . . , ݊. 

    First, let us consider some examples of the 
application of splines of the seventh order of 
approximation in the example of solving the 
Fredholm integral equation of the second kind.  
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Example 1. Consider the equation 

ሻݔሺݕ ൅ න sinሺݔ െ ݏሻ݀ݏሺݕሻ݁௫ି௦ݏ ൌ ݃ሺݔሻ,

ଵ

଴

 

ݔ	 ∈ ሾ0,1ሿ. 
Note that the right side of this equation was 
constructed according to the exact solution, which 
has the form ݕሺݔሻ ൌ sinሺ10	ݔሻ. The plot of the 
function ݃ሺݔሻ is given in Fig.8. 
 

 
Fig. 8: The plot of the function  ݃ሺݔሻ. 
 
Using splines of the seventh order of approximation 
we construct the system of equations. 
Solving the system of equations with the number of 
grid nodes ሺ݊ ൌ 16ሻ, we obtain the solution error 
that is shown in Fig. 9.	The nodes are marked along 
the abscissa axis. For comparison, in Fig.10 a plot of 
the absolute values of the solution error when using 
splines of the second order of approximation is 
given (see, [19], [20]). Programs for solving the 
integral equations were developed in the Maple 
system. 
 

 
Fig. 9: The application of the splines of the seventh 
order of approximation 
 

 
Fig. 10: The application of the composite quadrature 
formula of trapezoids 
 

In Fig. 10, Fig. 12, along the abscissa axis, the 
integration interval is marked, and in other figures, 
grid nodes are plotted along the abscissa axis. 

 
Example 2. Consider the equation 

ሻݔሺݕ ൅ න݁௫ି௦ݕሺݏሻ݀ݏ ൌ ݃ሺݔሻ,

ଵ

଴

ݔ	 ∈ ሾ0,1ሿ. 

The exact solution of this equation is ݕሺݔሻ ൌ
݁ଷ௫ sinሺ3	ݔሻ. The right side of the integral equation 
was constructed according to the exact solution.  
Using splines of the seventh order of approximation 
we construct the system of equations. Solving the 
system of equations with the number of grid nodes 
ሺ݊ ൌ 16ሻ, we obtain the solution error that is shown 
in Fig. 11. Fig. 12 shows the error in solving the 
equation using the composite quadrature formula of 
trapezoids (݊ ൌ 16).  
 

 
Fig. 11: The application of the splines of the seventh 
order of approximation 

 

 
Fig. 12: The application of the composite quadrature 
formula of trapezoids 
 
Note that to achieve the order of error of 10ି଺ using 
the trapezoid formula, the number of grid nodes ݊ ൌ
512 was required, and the computation time was 
125 seconds. Using the splines we can construct 
formulas for approximating the derivatives of the 
function with the given error. 
 
Example 3. Consider the equation 

ሻݔሺݕ ൅ නsin	ሺݔ	ݏሻݕሺݏሻ݀ݏ ൌ ݃ሺݔሻ,

ଵ

଴

ݔ	 ∈ ሾ0,1ሿ. 
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The exact solution of this equation is ݕሺݔሻ ൌ
sin	ሺݔଶሻ. The right side of the integral equation was 
constructed according to the exact solution. Solving 
the equation using splines of the seventh order of 
approximation with the number of grid nodes ሺ݊ ൌ
16ሻ, we obtain the solution error that is shown in 
Fig. 13. 

 
Fig. 13: The application of the splines of the seventh 
order of approximation ሺ݊ ൌ 16ሻ. 
 
   Solving the equation using splines of the seventh 
order of approximation with the number of grid 
nodes ሺ݊ ൌ 10ሻ, we obtain the solution error that is 
shown in Fig. 14. 

 
Fig. 14: The application of the splines of the seventh 
order of approximation ሺ݊ ൌ 10ሻ 
 
Example 4. Now consider the integral equation: 

ሻݔሺݑ ൅ නexpሺݔ ൅ ሻݏ ݏሻ݀ݏሺݑ ൌ ݂ሺݔሻ,

ଵ

଴

 

where ݔ ∈ ሾ0,1ሿ. 
The exact solution of the integral equation is the 
next: ݑሺݔሻ ൌ expሺെݔሻ. The right side of the integral 
equation was constructed according to the exact 
solution. Applying spline approximations of the 
fifth order to the solution of the equation, [19], we 
obtain the error which is shown in Fig. 15. When 
applying spline approximations of the seventh order 
to the solution of the equation, we obtain the error 
which is shown in Fig. 16. A program was 
developed in the Maple environment. A uniform 
grid of nodes was built on ሾ0,1ሿ, consisting of 16 
nodes ሺ݊ ൌ 16ሻ. 

 
Fig. 15: The plot of the error obtained using spline 
approximations of the fifth order (Digits=20, 
 ݊ ൌ 16) 
 

 
Fig. 16: The plot of the error obtained using spline 
approximations of the seventh order ሺ݊ ൌ 16ሻ 
 
 

5 Conclusion 
In this paper, we consider the solution of integral 
equations of the second kind using splines of the 
seventh order of approximation. The results of 
solving the same integral equations using splines of 
the order of approximation less than 7 are given 
also. It should be noted that with the same number 
of grid nodes, polynomial splines of the seventh 
order of approximation provide a smaller error 
compared to splines of a lower degree. In the future, 
numerical schemes for integro-differential equations 
will be constructed. It is supposed to develop 
numerical methods for solving integral equations 
with a weak singularity based on the use of splines 
of the seventh order of approximation. 
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