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Abstract: In this paper, we introduced the lightlike hypersurfaces of a statistical manifold. It is shown that a
lightlike hypersurface of a statistical manifold is not a statistical manifold with respect to the induced connections,
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presented. Induced Ricci tensors for lightlike hypersurface of a statistical manifold are computed.
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1 Introduction
A statistical manifold, the Riemannian connection
used to model the information, the fields of informa-
tion geometry, as such a generalization of the Rieman-
nian manifold equipped with a relatively new math-
ematics branch, uses the differential geometry tool
to examine the statistical inference, information loss
and prediction, [6]. In 1975, the role of differential
geometry in statistics was first emphasized by [12].
Later, Amari used differential geometric tools to de-
velop this idea, [1], [2].

A Riemannian manifold (M̃, g̃) with a Rieman-
nian metric g̃ and the Levi-Civita connection D̃0 is
called a statistical manifold if there exists a pair of
torsion-free connection (D̃, D̃∗) such that the fol-
lowing relation satisfies for any tangent vector fields
X,Y and Z on M̃

g̃(X, D̃∗
ZY ) = Zg̃(X,Y )− g̃(D̃ZX,Y ), (1)

where
D̃0 =

1

2
(D̃ + D̃∗). (2)

In 1989, [28], initiated the study of geometry
of submanifolds of statistical manifolds. He ob-
tained Gauss-Weingarten formulas, Gauss and Co-
dazzi equations, etc.. Later, in 2009, [14], studied
hypersurfaces of a statistical manifold. Also, studied
submanifolds of statistical manifolds of constant cur-
vature, [3]. In addition to, many authors have studied

on different types of statistical manifolds, [15], [26],
[27].

On the other hand, lightlike geometry is one of the
important research areas in differential geometry and
has many applications in physics and mathematics.
The geometry of lightlike submanifolds of a semi-
Riemannian manifold was presented by [9], (see also,
[10], [11]). Lightlike hypersurfaces in various spaces
have been studied by many authors including those of
[4], [5], [7] [8], [10], [13], [17], [18], [19], [21], [22],
[23], [24], [25].

Motivated by these circumstances, in this paper,
we initiate the study of lightlike geometry of statisti-
cal manifolds. In section 2, we present basic defini-
tions and results about statistical manifolds and light-
like hypersurfaces. In Section 3, we show that in-
duced connections on a lightlike hypersurface of a sta-
tistical manifold are not dual connections and a light-
like hypersurface is not statistical manifold. More-
over, we show that the second fundamental forms
are not degenerate. Later, we characterize the par-
allelness and integrability of the screen distribution.
Equivalent conditions are also obtained between the
induced objects. This section concludes with an ex-
ample. In section 4, we obtain formula for curvature
tensors of a lightlike hypersurface of a statistical man-
ifold. In general, in lightlike geometry, Ricci tensor is
not symmetric, so we also obtain new conditions for
Ricci tensor to be symmetric.
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2 Preliminaries
Let (M̄, ḡ) be an (m + 2)-dimensional semi-
Riemannian manifold with index(ḡ) = q ≥ 1. Let
(M, g) be a hypersurface of (M̄, ḡ) with g = ḡ|M .
If the induced metric g on M is degenerate, then M
is called a lightlike (null or degenerate) hypersurface
([9], [10], [11]). In this case, there exists a null vector
field ξ ̸= 0 onM such that

g (ξ,X) = 0, ∀ X ∈ Γ (TM) . (3)

The radical or the null space of TxM , at each point
x ∈ M , is a subspace Rad TxM defined by

Rad TxM={ξ∈TxM :gx(ξ,X)=0, X∈Γ(TM)}. (4)

The dimension of Rad TxM is called the nullity de-
gree of g. We recall that the nullity degree of g for a
lightlike hypersurface of (M̄, ḡ) is 1. Since g is de-
generate and any null vector being orthogonal to it-
self, TxM

⊥ is also null and

Rad TxM = TxM ∩ TxM
⊥. (5)

Since dimTxM
⊥ = 1 and dimRad TxM = 1, we

have Rad TxM = TxM
⊥. We call Rad TM a rad-

ical distribution and it is spanned by the null vector
field ξ. The complementary vector bundle S(TM) of
RadTM inTM is called the screen bundle ofM . We
note that any screen bundle is non-degenerate. This
means that

TM = Rad TM ⊥ S(TM), (6)

with⊥ denoting the orthogonal-direct sum. The com-
plementary vector bundle S(TM)⊥ of S(TM) in
TM̄ is called screen transversal bundle and it has
rank 2. Since Rad TM is a lightlike subbundle of
S(TM)⊥ there exists a unique local section N of
S(TM)⊥ such that

ḡ(N,N) = 0, ḡ(ξ,N) = 1. (7)

Note that N is transversal toM and {ξ,N} is a local
frame field of S(TM)⊥ and there exists a line sub-
bundle ltr(TM) of TM̄ , and it is called the lightlike
transversal bundle, locally spanned by N . Hence we
have the following decomposition:

TM̄ = TM ⊕ ltr(TM)

= S(TM)⊥Rad TM ⊕ ltr(TM), (8)

where ⊕ is the direct sum but not orthogonal ([9],
[10]). From the above decomposition of a semi-
Riemannian manifold M̄ along a lightlike hypersur-
faceM , we can consider the local quasi-orthonormal
field of frames of M̄ alongM given by

{E1, . . . , Em, ξ,N},

where {E1, . . . , Em} is an orthonormal basis of
Γ(S(TM)). Let ∇̄ is the Levi-Civita connection of
(M̄, ḡ). In view of the splitting (8), we have the fol-
lowing Gauss and Weingarten formulas, respectively,

∇̄XY = ∇XY + h(X,Y ), (9)

∇̄XN = −ANX +∇t
XN (10)

for any X,Y ∈ Γ(TM), where ∇XY, ANX ∈
Γ(TM) and h(X,Y ), ∇t

XN ∈ Γ(ltr(TM)). If we
set

B(X,Y ) = ḡ(h(X,Y ), ξ) , τ(X) = ḡ(∇t
XN, ξ),

then (9) and (10) become

∇XY = ∇XY +B(X,Y )N, (11)

∇XN = −ANX + τ(X)N, (12)
respectively. Here, B and A are called the second
fundamental form and the shape operator of the light-
like hypersurface M , respectively, [9]. Let P be the
projection of T (M) on S(T (M)). Then, for any
X ∈ Γ(TM), we can write

X = PX + η(X)ξ, (13)

where η is a 1-form given by

η(X) = ḡ(X,N). (14)

From (11), we have

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),
(15)

for allX,Y, Z ∈ Γ(TM), where the induced connec-
tion ∇ is a non-metric connection on M . From (6),
we have

∇XW = ∇∗
XW+h∗(X,W ) = ∇∗

XW+C(X,W )ξ,
(16)

∇Xξ = −A∗
ξX − τ(X)ξ (17)

for allX ∈ Γ(TM),W ∈ Γ(S(TM)), where∇∗
XW

and A∗
ξX belong to Γ(S(TM)). Here C, A∗

ξ and
∇∗ are called the local second fundamental form, the
local shape operator and the induced connection on
S(TM), respectively. We also have

g(A∗
ξX,W ) = B(X,W ), g(A∗

ξX,N) = 0

B(X, ξ) = 0, g(ANX,N) = 0. (18)

Moreover, from the first and third equations of (18),
we have

A∗
ξξ = 0. (19)

The mean curvature H of M with respect to an
{Ei}, i = 1, . . .m, orthonormal basis of Γ(S(TM))
is defined by

H =
1

m

m∑
i=1

εiB(Ei, Ei), εi = g(Ei, Ei). (20)
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3 Lightlike hypersurfaces of a
statistical manifold

Let (M̃ , g̃) be a semi-Riemannain manifold. If there
exists a torsion free connection D̃ subject to the fol-
lowing identity

(D̃X g̃)(Y, Z) = (D̃Y g̃)(X,Z) (21)

for allX,Y, Z ∈ Γ(TM̃) then M̃ is called statistical,
[14]. For a statistical manifold (M̃, g̃), the g̃− dual of
D̃, denoted by D̃∗, is defined by the following iden-
tity:

g̃(X, D̃∗
ZY ) = Zg̃(X,Y )− g̃(D̃ZX,Y ). (22)

It is easy to check that D̃∗ is torsion free. If D̃0 is the
Levi-Civita connection of g̃, then we can write

D̃0 =
1

2
(D̃ + D̃∗). (23)

Note that a statistical manifold is represented by
(M̃, g̃, D̃, D̃∗).

Let (M, g) be a lightlike hypersurface of a statisti-
cal manifold (M̃, g̃, D̃, D̃∗). Then, Gauss and Wein-
garten formulas with respect to dual connections are
given by [14]

D̃XY = DXY +B(X,Y )N, (24)

D̃XN = −A∗
NX + τ∗(X)N, (25)

D̃∗
XY = D∗

XY +B∗(X,Y )N, (26)

D̃∗
XN = −ANX + τ(X)N (27)

for all X,Y ∈ Γ(TM), N ∈ Γ(ltrTM), where
DXY , D∗

XY , ANX , A∗
NX ∈ Γ(TM) and

B(X,Y ) = g̃(D̃XY, ξ), τ∗(X) = g̃(D̃XN, ξ),

B∗(X,Y ) = g̃(D̃∗
XY, ξ), τ(X) = g̃(D̃∗

XN, ξ).

Here, D, D∗, B, B∗, AN and A∗
N are called the

induced connections on M , the second fundamental
forms and the Weingarten mappings with respect to
D̃ and D̃∗, respectively. Using Gauss formulas, we
obtain

Xg(Y,Z) = g(D̃XY,Z)+g(Y,D̃∗
XZ),

= g(DXY,Z)+g(Y,D∗
XZ)

+ B(X,Y )η(Z)+B∗(X,Z)η(Y ). (28)

From the equation (28), we have the following re-
sult.
Theorem. Let (M, g) be a lightlike hypersurface of a
statistical manifold (M̃, g̃, D̃, D̃∗). Then:

(i) Induced connectionsD andD∗ are not dual con-
nections.

(ii) A lightlike hypersurface of a statistical manifold
need not to be a statistical manifold with respect
to the dual connections.

Using Gauss and Weingarten formulas in (28), we
get

(DXg)(Y, Z) + (D∗
Xg)(Y, Z) = B(X,Y )η(Z)

+B(X,Z)η(Y ) +B∗(X,Y )η(Z).

+B∗(X,Z)η(Y ) (29)

Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the fol-
lowing assertions are true:

(i) Induced connections D and D∗ are symmetric
connections.

(ii) The second fundamental forms B and B∗ are
symmetric.

Proof. We know that T D̃ = 0. Moreover,

T D̃(X,Y ) = D̃XY−D̃Y X−[X,Y ]

= DXY−DY X−[X,Y ]

+ B(X,Y )N−B(Y,X)N=0. (30)

Comparing the tangent and transversal components of
(30), we obtain

B(X,Y ) = B(Y,X), TD = 0,

where TD is the torsion tensor field of D. Thus, sec-
ond fundamental form B is symmetric and induced
connection D is symmetric connection.

Similarly, it can be shown that the second funda-
mental form B∗ is symmetric and the induced con-
nection D∗ is a symmetric connection.

Let P denote the projection morphism of Γ(TM)
on Γ(S(TM)) with respect to the decomposition (6).
Then, we have

DXPY = ∇XPY + h(X,PY ), (31)

DXξ = −AξX +∇t
Xξ (32)

for all X,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where
∇XPY andAξX belong toΓ(S(TM)),∇ and∇t are
linear connections on Γ(S(TM)) and Γ(RadTM)
respectively. Here, h and A are called screen sec-
ond fundamental form and screen shape operator of
S(TM), respectively. If we define

C(X,PY ) = g(h(X,PY ), N), (33)
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ε(X) = g(∇t
Xξ,N), ∀X,Y ∈ Γ(TM). (34)

One can show that

ε(X) = −τ(X).

Therefore, we have

DXPY = ∇XPY + C(X,PY )ξ, (35)

DXξ = −AξX − τ(X)ξ, ∀X,Y ∈ Γ(TM). (36)
Here C(X,PY ) is called the local screen fundamen-
tal form of S(TM).

Similarly, the relations of induced dual objects on
S(TM) are given by

D∗
XPY = ∇∗

XPY + C∗(X,PY )ξ, (37)

D∗
Xξ = −A

∗
ξX − τ∗(X)ξ, ∀X,Y ∈ Γ(TM). (38)

Using (28), (35), (37) and Gauss-Weingarten formu-
las, the relationship between induced geometric ob-
jects are given by

B(X, ξ)+B∗(X, ξ) = 0, g(ANX+A∗
NX,N) = 0,

(39)

C(X,PY ) = g(ANX,PY ),

C∗(X,PY ) = g(A∗
NX,PY ). (40)

Now, using the equation (39) we can state the fol-
lowing result.
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then second
fundamental forms B and B∗ are not degenerate.

Additionally, due to D̃ and D̃∗ are dual connec-
tions we obtain

B(X,Y ) = g(A
∗
ξX,Y ) +B∗(X, ξ), (41)

B∗(X,Y ) = g(AξX,Y ) +B(X, ξ). (42)
Using (41) and (42) we get

A
∗
ξξ +Aξξ = 0.

Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the
screen distribution (S(TM), g,∇,∇∗) has a statisti-
cal structure.
Proof. From (28), for any X,Y ∈ Γ(S(TM)) we
obtain

Xg(Y, Z) = g(DXY, Z) + g(Y,D∗
XZ).

Using (35) and (37) in the last equation, we get

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ).

Thus ∇ and ∇∗ are dual connections. Moreover, the
torsion tensor of S(TM) with respect to ∇ is given

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ].

Using (35) in the last equation we obtain T∇ = 0.
Similarly, the torsion tensor of S(TM) with respect
to ∇∗ is equal to zero. Also, using (35) we have
(∇Xg)(Y, Z) = (∇Y g)(X,Z).
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the fol-
lowing assertions are equivalent:

(i) The screen distribution S(TM) is parallel.

(ii) C(X,Y ) = 0 for all X,Y ∈ Γ(S(TM)).

(iii) C∗(X,Y ) = 0 for all X,Y ∈ Γ(S(TM)).

Proof. For any X,Y ∈ Γ(S(TM)), from Gauss-
Weingarten formulas and (40), we obtain

g(D∗
XY,N) = C∗(X,Y ), (43)

g(DXY,N) = C(X,Y ), (44)
Then, the proof is completed.
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the fol-
lowing assertions are equivalent:

(i) The screen distribution S(TM) is integrable.

(ii) C(Y,X) = C(X,Y ) for allX,Y ∈ Γ(S(TM)).

(iii) C∗(X,Y ) = C∗(Y,X) for all X,Y ∈
Γ(S(TM)).

Proof. For any X,Y ∈ Γ(S(TM)), from Gauss-
Weingarten formulas and (40), we obtain

g([X,Y ], N) = C(X,Y )− C(Y,X). (45)

g([X,Y ], N) = C∗(X,Y )− C∗(Y,X). (46)
These equations prove our assertions.

Considering ([11], [16], [20]), we can give the fol-
lowing definition
Definition. Let (M, g) be a hypersurface of a statis-
tical manifold (M̃, g̃, D̃, D̃∗).

(i) M is called totally geodesic with respect to D̃ if
B = 0.

(ii) M is called totally geodesic with respect to D̃∗ if
B∗ = 0.

(iii) M is called totally tangentially umbilical with
respect to D̃ if B(X,Y ) = kg(X,Y ) for all
X,Y ∈ Γ(TM), where k is smooth function.
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(iv) M is called totally tangentially umbilical with re-
spect to D̃∗ if B∗(X,Y ) = k∗g(X,Y ), for any
X,Y ∈ Γ(TM), where k∗ is smooth function.

(v) M is called totally normally umbilical with re-
spect to D̃ if A∗

NX = kX for any X,Y ∈
Γ(TM), where k is smooth function.

(vi) M is called totally normally umbilical with re-
spect to D̃∗ if ANX = k∗X for all X,Y ∈
Γ(TM), where k∗ is smooth function.

In view of (36), (38), (41) and (42), we have the
following proposition.
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the fol-
lowing assertions are equivalent:

(i) M is totally geodesic with respect to D̃ (resp. M
is totally geodesic with respect to D̃∗).

(ii) A
∗
ξ vanishes onM (resp. Aξ vanishes onM ).

(iii) RadTM is a parallel distribution with respect to
D̃ (resp. RadTM is a parallel distribution with
respect to D̃∗).

(iv) B∗(X,Y ) = g(AξX,Y ) (resp. B(X,Y ) =

g(A
∗
ξX,Y )), for all X,Y ∈ Γ(TM).

Next, we have the following
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then the fol-
lowing assertions are equivalent:

(i) M is totally geodesic with respect to D̃ and D̃∗.

(ii) AξX = A
∗
ξX = 0 for all X ∈ Γ(TM).

(iii) DXg +D∗
Xg = 0 for all X ∈ Γ(TM).

(iv) DXξ+D∗
Xξ ∈ Γ(RadTM) for allX ∈ Γ(TM).

Proof. From (39), (41) and (42) we get the equiv-
alence of (i) and (ii). The equation (29) implies the
equivalence of (i) and (iii). Next, by using (36) and
(38) we have the equivalence of (ii) and (iv).
Theorem. Let (M, g) be a lightlike hypersurface of
a statistical manifold (M̃, g̃, D̃, D̃∗). Then, M is to-
tally tangentially umbilical with respect to D̃ and D̃∗

if and only if

A
∗
ξX +AξX = ρX, ∀X ∈ Γ(TM),

where ρ is smooth function.
Proof. Using (41) and (42) we obtain

kg(X,Y ) = g(A
∗
ξX,Y ) +B∗(X, ξ), (47)

and

k∗g(X,Y ) = g(AξX,Y ) +B(X, ξ). (48)

If we add the equations (47) and (48) side by side and
using (39) we complete the proof.
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). IfM is totally
normally umbilical with respect to D̃ and D̃∗. Then

C(X,PY ) + C∗(X,PY ) = 0, ∀X ∈ Γ(TM).

Proof. Let k and k∗ be smooth functions and let
A∗

NX = kX and ANX = k∗X , then using (39) we
get k+ k∗ = 0. Thus, from (40) proof is completed.

It is known that M is screen locally conformal
lightlike hypersurface of a statistical manifold M̃ if

AN = φA
∗
ξ , A

∗
N = φ∗Aξ, (49)

where φ and φ∗ are non-vanishing smooth functions
on M . Using (40) and (49) we get the following
proposition.
Proposition. Let (M, g) be a lightlike hypersurface
of a statistical manifold (M̃, g̃, D̃, D̃∗). Then, M is
screen locally conformal if and only if

C(X,Y ) + C∗(X,Y ) = σ(B(X,Y ) +B∗(X,Y )),

,for allX,Y ∈ Γ(S(TM)) ,where σ is non-vanishing
smooth functions onM .

Now, we give an example.
Example. Let (R4

2, g̃) be a 4-dimensional semi-
Euclidean space with signature (−,−,+,+) of the
canonical basis (∂0, . . . , ∂3). Consider a hypersurface
M of R4

2 given by

x0 = x1 +
√
2
√
x22 + x23.

For simplicity, we set f =
√
x22 + x23. It is easy to

check thatM is a lightlike hypersurface whose radical
distribution RadTM is spanned by

ξ = f(∂0 − ∂1) +
√
2(x2∂2 + x3∂3).

Then the lightlike transversal vector bundle is given
by

ltr(TM) = Span{N =
1

4f2
{f(−∂0 + ∂1)

+
√
2(x2∂2 + x3∂3)}}.

It follows that the corresponding screen distribution
S(TM) is spanned by

{W1 = ∂0 + ∂1, W2 = −x3∂2 + x2∂3}.
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Then, by direct calculations we obtain

∇̃XW1 = ∇̃W1
X = 0,

∇̃W2
W2 = −x2∂2 − x3∂3,

∇̃ξξ =
√
2ξ, ∇̃W2

ξ = ∇̃ξW2 =
√
2W2,

for any X ∈ Γ(TM), [11].
We define an affine connection D̃ as follows

D̃XW1 = D̃W1
X = 0, D̃W2

W2 = −2x2∂2

D̃ξξ =
√
2ξ −

√
2N, (50)

D̃W2
ξ = D̃ξW2 =

√
2W2 −

√
2W1.

Then using (23) we obtain

D̃∗
XW1 = D̃∗

W1
X = 0, D̃∗

W2
W2 = −2x3∂3

D̃∗
ξξ =

√
2ξ +

√
2N, (51)

D̃∗
W2

ξ = D̃∗
ξW2 =

√
2W2 +

√
2W1.

Then (R4
2, g̃, D̃, D̃∗) is a statistical manifold. Thus,

by using Gauss formulas (24) and (26) we obtain
B(X,W1) = B(W1, X) = 0,

B(W2,W2) = −2
√
2x22, B(ξ, ξ) = −

√
2

B(X,W2) = B(W2, X) = 0, (52)
and

B∗(X,W1) = B∗(W1, X) = 0,

B∗(W2,W2) = −2
√
2x23, B

∗(ξ, ξ) =
√
2

B∗(X,W2) = B∗(W2, X) = 0. (53)
The equations (50), (51), (52) and (53) imply that in-
duced connections D and D∗ are symmetric connec-
tions and the second fundamental formsB andB∗ are
symmetric. This verifies Proposition 3. Moreover,
the equations B(ξ, ξ) = −

√
2 and B∗(ξ, ξ) =

√
2

show the accuracy of the Proposition 3.
Using (50), (51), (52) and (53) we get

DXW1 = DW1
X = 0, Dξξ =

√
2ξ,

DW2
W2 =

√
2x22
2f

(−∂0 + ∂1)

+
1

4f2
{(4x32 − 2x2)∂2 + 4x3x

2
2∂3)},

DW2
ξ = DξW2 =

√
2W2 −

√
2W1, (54)

and
D∗

XW1 = D∗
W1

X = 0, D∗
ξξ =

√
2ξ,

D∗
W2

W2 =

√
2x23
2f

(−∂0 + ∂1)

+
1

4f2
{4x23x2∂2 + (4x33 − 2x3)∂3)},

D∗
W2

ξ = D∗
ξW2 =

√
2W2 +

√
2W1.

(55)

If we chooseX = W2, Y = W2 and Z = ξ, (54) and
(55) indicate that induced connections D∗ and D are
not dual connections. This verifies Theorem 3.

From (35) and (37), we have

C(X,W1) = C(W1, X) = 0,

C(W2,W2) = −
√
2

2
(
x2
f
)2,

C(ξ,W2) = 0 (56)

and

C∗(X,W1) = C∗(W1, X) = 0,

C∗(W2,W2) = −
√
2

2
(
x3
f
)2,

C∗(ξ,W2) = 0. (57)

From (56) and (57), we say that C and C∗ are sym-
metric. Thus we have Proposition 3.

Using (54) and (55) in (35) and (37) we obtain

∇XW1 = ∇W1
X = 0,

∇W2
W2 =

1

f2
{(2x32 −

x2
2
)∂2 + 2x3x

2
2∂3},

∇ξW2 =
√
2W2 −

√
2W1, (58)

and

∇∗
XW1 = ∇∗

W1
X = 0,

∇∗
W2

W2 =
1

f2
{2x23x2∂2 + (2x33 −

x3
2
)∂3},

∇∗
ξW2 =

√
2W2 +

√
2W1. (59)

From (58) and (59), the torsion tensors vanish with
respect to∇ and∇∗. Furthermore,∇ and∇∗ are dual
connections. This situation verifies Proposition 3.

4 Curvature tensors of a lightlike
hypersurface of a statistical
manifold

We denote by R̃ and R̃∗ the curvature tensor of D̃ and
D̃∗, respectively. The curvature tensors satisfy

g̃(R̃∗(X,Y )Z,W )=−g̃(R̃(X,Y )W,Z). (60)

Using Gauss-Weingarten formulas, the curvature ten-
sors R̃ and R̃∗ of the connection D̃ and D̃∗ are given
by

R̃(X,Y )Z = R(X,Y )Z −B(Y, Z)A∗
NX

+ (B(Y, Z)τ∗(X)−B(X,Z)τ∗(Y ))N

+ ((DXB)(Y, Z)− (DY B)(X,Z))N,

+ B(X,Z)A∗
NY (61)
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and

R̃∗(X,Y )Z = R∗(X,Y )Z−B∗(Y,Z)ANX

+ (B∗(Y,Z)τ(X)−B∗(X,Z)τ(Y ))N

+ ((D∗
XB∗)(Y,Z)−(D∗

Y B∗)(X,Z))N

+ B∗(X,Z)ANY, (62)

where R and R∗ are the curvature tensor with respect
toD andD∗, respectively. Consider curvature tensors
R̃ and R̃∗ of type (0, 4). From the above equation and
the Gauss-Weingarten equations for M and S(TM)
we obtain

g(R̃(X,Y )Z,PW ) = g(R(X,Y )Z,PW )

− B(Y,Z)C∗(X,PW )

+ B(X,Z)C∗(Y,PW ), (63)

g(R̃∗(X,Y )Z,PW ) = g(R∗(X,Y )Z,PW )

− B∗(Y,Z)C(X,PW )

+ B∗(X,Z)C(Y,PW ), (64)

g(R̃(X,Y )Z,ξ) = B(Y,Z)τ∗(X)

+ (DXB)(Y,Z)−(DY B)(X,Z)

− B(X,Z)τ∗(Y ) (65)

g(R̃∗(X,Y )Z,ξ) = B∗(Y,Z)τ(X)

− B∗(X,Z)τ(Y )

+ (D∗
XB∗)(Y,Z)

− (D∗
Y B∗)(X,Z), (66)

g(R̃(X,Y )Z,N) = g(R(X,Y )Z,N)

− B(Y,Z)g(A∗
NX,N)

+ B(X,Z)g(A∗
NY,N), (67)

g(R̃∗(X,Y )Z,N) = g(R∗(X,Y )Z,N)

− B∗(Y,Z)g(ANX,N)

+ B∗(X,Z)g(ANY,N), (68)

g(R̃(X,Y )ξ,N) = g(R(X,Y )ξ,N)

− B(Y,ξ)g(A∗
NX,N)

+ B(X,ξ)g(A∗
NY,N), (69)

g(R̃∗(X,Y )ξ,N) = g(R∗(X,Y )ξ,N)

− B∗(Y,ξ)g(ANX,N)

+ B∗(X,ξ)g(ANY,N), (70)

where

g(R(X,Y )ξ,N) = C(Y,AξX)− C(X,AξY )

−2dτ(X,Y ),

g(R∗(X,Y )ξ,N) = C∗(Y,A
∗
ξX)

−C∗(X,A
∗
ξY )− 2dτ(X,Y ).

Now, letM be a lightlike hypersurface of a (m+

2)-dimensional statistical manifold M̃ . We consider
the local quasi-orthonormal basis {Ei, ξ,N}, i =

1, . . .m, of M̃ along M , where {E1, . . . , Em} is an
orthonormal basis of Γ(S(TM)). Then, we obtain

RD(0,2)(X,Y ) =
m∑
i=1

εig(R(X,Ei)Y,Ei)

+ g̃(R(X, ξ)Y,N), (71)

where εi denotes the causal character (∓1) of respec-
tive vector field Ei. Using Gauss-Weingarten equa-
tions we have

g(R(X,Ei)Y,Ei) = g(R̃(X,Ei)Y,Ei)

+ B(Ei, Y )C∗(X,Ei)

− B(X,Y )C∗(Ei, Ei)(72)

Substituting this in (71), using (40) and (41) we obtain

RD(0,2)(X,Y ) = R̃ic(X,Y )−B(X,Y )trA∗
N

+ g(A∗
NX,A

∗
ξY )

+ g(R(X, ξ)Y,N) (73)

where R̃ic(X,Y ) is the Ricci tensor of M̃ with re-
spect to D̃. Similarly, dual tensor of M with respect
to D∗ as follows:

RD∗(0,2)(X,Y ) = R̃ic
∗
(X,Y )−B∗(X,Y )trAN

+ g(ANX,AξY )

+ g(R∗(X, ξ)Y,N) (74)

From First Bianchi identities and (73) we get

RD(0,2)(X,Y )−RD(0,2)(Y,X)

=
m∑
i=1

εi((B(Ei, Y )C∗(X,Ei)

−B(Ei, X)C∗(Y,Ei) + g(R̃(X,Y )Ei, Ei))

+g(R̃(X,Y )ξ,N). (75)

Therefore, RD(0,2) is not symmetric.
The statistical manifold (M̃, g̃) is called of con-

stant curvature c if

R̃(X,Y )Z = c(Y, Z)X − g(X,Z)Y. (76)

Moreover, if (D̃, g̃) is a statistical structure of con-
stant c, then using (60) we can easily see that (D̃∗, g̃)
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is also a statistical structure of constant c . Then, us-
ing (40), (41), (69) and (76) in (75) we have

RD(0,2)(X,Y )−RD(0,2)(Y,X)

= C∗(X,A
∗
ξY )− C∗(Y,A

∗
ξX),

and similarly

RD∗(0,2)(X,Y )−RD∗(0,2)(Y,X)

= C(X,AξY )− C(Y,AξX).

Then we have the following theorem
Theorem. Let (M, g) be a lightlike hypersurface of
a statistical manifold (M̃n+2(c), g̃) of constant sec-
tional curvature c. Then the following assertions are
true:

(i) The tensor RD(0,2)(X,Y ) is symmetric if and
only if

C∗(X,A
∗
ξY ) = C∗(Y,A

∗
ξX).

(ii) The tensor RD∗(0,2)(X,Y ) is symmetric if and
only if

C(X,AξY ) = C(Y,AξX).

Thus, in view of Propositon 3, we have the follow-
ing:
Corollary. Let (M, g) be a lightlike hypersurface of
a statistical manifold (M̃n+2(c), g̃) of constant sec-
tional curvature c. If S(TM) is parallel then the ten-
sors RD(0,2) and RD∗(0,2) are symmetric with respect
to connections D and D∗, respectively.

5 Conclusion
Neural networks are useful for solving many com-
plex optimization problems in electromagnetic the-
ory. In 2019, the Event Horizon Telescope (EHT) col-
laboration released the first image of a black hole’s
shadow with the help of deep learning algorithms.
This image provides direct evidence for the existence
of black holes and the general theory of relativity, and
indirectly for the existence of lightlike geometry in
the universe. A statistical manifold is the emerging
branch of mathematics that generalizes the Rieman-
nian manifold and is used to model information; and
also uses differential geometry tools to study statisti-
cal inference, loss of information, and prediction. It
can be applied to many fields such as statistical man-
ifolds, neural networks, machine learning, and artifi-
cial intelligence. On the other hand, the study of light-
like manifolds is one of the most important research
areas in differential geometry, with many applications
in physics and mathematics, such as general relativ-
ity, electromagnetism, and black hole theory.

In this paper, we introduced a new structure on sta-
tistical manifolds. This is called lightlike hypersur-
face of a statistical manifold. We have characterized
some tensors of lightlike hypersurfaces on statistical
manifolds.

This study, which is made with a new perspective,
will open the way for scientists working in the field
of differential geometry and physics. Differential ge-
ometers and physicists can produce many studies by
applying the different types of this structure we de-
veloped on any kind of complex manifold.
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