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Abstract: - Numerical evaluation of the average run length (ARL) when detecting changes in the mean of an 
autocorrelated process running on an exponentially weighted moving average (EWMA) control chart has 
received considerable attention. However, accurate computation of the ARL of changes in the mean of a long-
memory model with an exogenous (X) variable, which often occurs in practice, is challenging. Herein, we 
provide an accurate determination of the ARL for long-memory models such as the fractionally integrated 
MAX processes (FIMAX) with exponential white noise running on an EWMA control chart by using an 
analytical formula based on an integral equation. From a computational perspective, the analytical formula 
approach is accomplished by solving the solution for the integral equation obtained via the Fredholm integral 
equation of the second kind. Moreover, the existence and uniqueness of the solution for the analytical formula 
were confirmed via Banach’s fixed-point theorem. Its efficacy was compared with that of the ARL derived by 
using the well-known numerical integral equation (NIE) technique under the same circumstances in terms of 
the ARL percentage accuracy and computational processing time. The percentage accuracy was 100%, which 
indicates excellent agreement between the two methods, and the analytical formula also required much less 
computational processing time. An example to illustrate the effectiveness of the proposed approach with a 
process involving real data running on an EWMA control chart is also provided herein. The explicit formula 
method offers an accurate determination of the ARL and a new approach for validating its computation, 
especially for long-memory scenarios running on EWMA control charts. 
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1 Introduction 
Control charts are critical for monitoring processes 
in the production and manufacturing sectors. They 
are divided into two categories: memory-less and 
memory-type charts. The first and most well-known 
memory-less control chart is the Shewhart control 
chart introduced in the 1920s, [1], which relies 
entirely on the present observations without 
consideration of past ones. This is why the Shewhart 
control chart is only sensitive to detecting large 
shifts in a process parameter. On the other hand, 
both the current and past data are used in the 
plotting statistic of memory-type charts, of which 
the exponentially weighted moving average 
(EWMA) control chart, [2], and the cumulative sum 
(CUSUM) control chart, [3], are the most well-
known. This feature helps them to be sensitive for 
detecting small-to-moderate shifts in a process 

parameter. The CUSUM control chart is used to 
monitor process dispersion while the EWMA 
control chart is used to monitor changes in the 
process mean. The EWMA control chart has been 
widely utilized in a wide range of fields and 
operations, including healthcare, manufacturing, 
credit card fraud detection, weather monitoring, and 
stock exchange trading where the small process 
shifts may inflict significant financial penalties. For 
more related works on an EWMA chart, we refer to 
[4], [5], [6], and therein cited references. 

Monitoring the performance of a process is based 
on a control chart and the distribution of the 
observations from both simple and complex 
processes. However, phenomena such as 
autocorrelation, which often occur in real situations, 
violate the assumption that the observations are 
independently and normally distributed. Thus, 
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normal and non-normal distributions must be 
considered for effective process monitoring. 

Autocorrelation in processes can be captured 
using time series models. An important category of 
these is the stationary process model, in which it is 
assumed that the process is stable around a constant 
mean. This type of model provides a foundation for 
monitoring processes involving autocorrelation. In 
the present research, we considered the following 
fundamental time series models. The conventional 
Box-Jenkins autoregressive (AR) integrated moving-
average (MA) (ARIMA) model can be generalized as 
the AR fractionally integrated MA (ARFIMA) model, 
which enables non-integer (fractional) differencing 
parameter values. The ARFIMA processes contain a 
fractional differencing parameter (d) that is used to 
determine whether the model is stationary and 
invertible, [7], [8], [9], [10], [11]. A complete 
explanation of long-memory processes is provided in 
[12]. 

Numerous applications in fields such as 
economics, finance, environmental research, and 
engineering involve long-memory processes.  
In [13],  the study used ARFIMAX models for 
estimating the realized volatilities in a Dow Jones 
Industrial Average portfolio. Although there is a 
relationship between econometric models and 
economic indicators (variables affecting economic 
forecasting), the exogenous variable is not affected 
by other variables in the system, only by external 
influences such as exchange, interest, and inflation 
rates, among others. Exogenous variables affect an 
econometric model when forecasting economic 
situations. If the forecasting model includes an 
exogenous variable for economic forecasting and 
other fields, the model is usually more accurate than 
the one without it. The EWMA control chart has 
often been used with long-memory processes 
involving time series, [14], [15]. 

The error in a time series model (also called 
white noise) is defined as the difference between the 
actual and estimated values. This should be 
minimized to maximize the accuracy of the model. 
It is not always the case that the white noise (also 
called Gaussian white noise) created by 
autocorrelated data follows a normal distribution. 
Considering non-Gaussian white noise has been 
effective in studying many phenomena, such as 
wind speed, oxygen concentration, and water flow 
rate. Numerous academicians have concentrated on 
time series models using non-Gaussian white noise, 
with exponentially distributed white noise being 
especially interesting, [16], [17]. 

Evaluating the performance of the EWMA 
control chart can be made based on the average run 

length (ARL), which is the average number of 
consecutive points in a process that falls within the 
control limits before an out-of-control signal is 
given. ARL0 denotes the in-control ARL value, 
whereas ARL1 denotes the out-of-control ARL 
value. ARL0 should be the largest value, while 
ARL1 should be the smallest value for measuring 
the performance of charts. The ARL can be 
computed via Monte Carlo simulation, the Markov 
Chain approach, or the integral equation technique. 
There are two types of integral equation techniques: 
using an analytical formula and the numerical 
integral equation (NIE) technique. Many researchers 
have calculated the ARL through the solution of an 
integral equation. In [18], the authors derived 
analytical formulas for the ARL for MA(q) 
processes with exponential white noise running on 
EWMA and CUSUM control charts. Recently, [19], 
the authors used the integral equation technique to 
provide an analytical formula for the ARL of a 
stationary MAX process running on an EWMA 
control chart. Finally, in [20], the author derived the 
ARL for a long-memory seasonality SFIMAX 
model with exponential white noise running on a 
CUSUM control chart using analytical formulas. 
The existence and uniqueness of a solution for the 
analytical formula of the ARL can be proved by 
using Banach’s fixed-point theorem, [21], [22]. As 
mentioned above, the research has applied the NIE 
technique to verify the accuracy of an analytical 
formula, which is an accepted method for evaluating 
the performance of control charts. 

The main aim of the present study is to derive an 
analytical formula to accurately compute the ARL 
for a long-memory FIMA model focusing on an 
exogenous (X) variable with exponential white noise 
running on an EWMA control chart and compare its 
efficacy with that using the well-established NIE 
method. In addition, the analytical formula for 
detecting changes in the mean is applied to 
processes involving real data. 

The rest of the article is as follows. In Section 2, 
we provide brief outlines of the FIMAX( ), ,d q r  
model with exponential white noise and the EWMA 
control chart. The ARLs obtained by using the 
analytical formula and NIE techniques are also 
provided. In Section 3, a performance comparison 
of the proposed analytical formula with the NIE 
technique is provided. An example of a process 
involving real data is also presented to illustrate the 
effectiveness of the proposed technique. Section 4 
offers conclusions on the study. Finally, the 
existence and uniqueness of the ARL computation 
were confirmed via Banach’s fixed-point theorem, 
the details of which are shown in Appendix A. 
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2 Materials and Methods 
Here, brief outlines of the FIMAX( ), ,d q r  model with 
exponential white noise and the EWMA control 
chart along with ARL computations derived by 
using the analytical formula and NIE techniques are 
provided. 
 

2.1 Preliminaries 
The long memory fractional integration 
MAX( ), (or FIMAX( )), , , ,d q r d q r  model was 
chosen for this study because it is stationary (as most 
processes are in practice) and contains both 
fractionally integrated and MA components with an 
exogenous (X) variable. Hence, the effect of each 
parameter can be examined. In addition, we 
consider white noise with an exponential 
distribution. 
 
2.1.1 The Long-Memory FIMAX( ), ,d q r  Model 

with Exponential White Noise  

Let tY  be a sequence of a long-memory 
FIMAX( ), ,d q r  model where d  is the fractional 
integration parameter, q  is the order of the MA 
process, and r  is the explanatory variable order in 
the model, [13]. The latter can be written as 

           
1

(1 ) ( ) ( ) ,
r

d

t t j jt
j

B Y B X  


      (1) 

where   is the mean of tY  
2

1 2( ) 1 ...B B B      q

qB  comprising MA 
polynomials on backward-shift operator B (

1 2, ,..., q    are the coefficients for the MA 
polynomials), jtX are explanatory variables, j  are 
unknown parameters, and t  is a white noise 
process assumed to be exponentially distributed as

~ ( )t Exp v  when shift parameter 0.v   To 
determine whether the process is long-memory, the 
fractional ( )d  can take on non-integer values in the 
range (0,0.5);  this fractional order of integration 
gives rise to the long-memory FIMAX model, [11]. 

Since the fractional difference operator (1 )dB  
is defined by the expansion 

0
(1 ) ( )d k

k

d
B B

k





 
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 
  

2 3(1 ) (1 )(2 )1 ...,
2 6

d d d d d
dB B B

  
      (2) 

for any real value of d , the fractionally integrated 
white noise process can be defined as 

(1 ) ,d

t tB Y    

1 2 3
(1 ) (1 )(2 ) ... ,

2 6t t t t t

d d d d d
Y dY Y Y   

  
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(3) 
 

Note that 
k

t t kB Y Y  for order k. 
Therefore, equations (1) and (3) can be 

rearranged to satisfy the generalized form of the 
FIMAX model as follows: 

1 1 2 2

1 1 2 2

1 2 3

...

...
(1 ) (1 )(2 ) ... ,

2 6

t t t t q t q

t t r rt

t t t

Y

X X X

d d d d d
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  

  

     

   

  
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or 

1 1


 

    
q r

t t i t j j jt
i j

Y X       

1 2 3
(1 ) (1 )(2 ) ... ,

2 6t t t

d d d d d
dY Y Y  

  
     (4) 

where 1; 1,2,...,i i q    are MA coefficients and 
; 1,2,...,j j r   are coefficients depending on 

variable .r  The initial value of a long-memory 
FIMAX( ), ,d q r  model must satisfy 

1 2 3, , ,...,t t tY Y Y    and 1 2, ,...,t t rtX X X  = 1. For 
exponential white noise, the initial value of t  is 1. 
By using this fact, we can apply the generalized 
form of the FIMAX( ), ,d q r  model in equation (4) to 
the EWMA control chart. 
 
2.1.2 The EWMA Control Charts for Long-

Memory d q rF AX( ,M ,I )  Model with 

Exponential White Noise 

The EWMA control chart is exceptional at rapidly 
detecting small-to-moderate shifts in a process 
parameter it suitably assigns weights to both the 
current and the past observations. The EWMA 
control statistic ( )tZ  for monitoring a shift in the 
process mean is given by 

0

1

, 0
(1 ) , 1,2,... ,t

t t

Z t
Z

Z Y t 


 

  
      (5) 

 
where the initial value 0 0Z Y  (the target process 
mean), tY  is the sequence of the FIMAX( ), ,d q r  
process with exponential white noise and   is the 
smoothing parameter (or weighting parameter) 
satisfying (0,1].  In general, a large value (close 
to one) of the smoothing constant is suitable for 
detecting a large shift while a small value (

[0.05,0.25] ) is recommended for detect a small 
shift, [23]. 
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Note that, when   is large (close to one), a 
relatively lower weight is given to older data, 
leading to a short-memory process on the EWMA 
control chart. Indeed, 1   is equivalent to the 
Shewhart control chart. Meanwhile, as the value of 
  approaches zero, more weight is given to the 
older observations than the most recent ones. Thus, 
for very small values of  , the EWMA control 
chart becomes more like the CUSUM control chart, 
in which observations are weighted equally, [24]. 

The value of   and the control limits of the 
EWMA control chart have a strong impact on its 
performance. Thus, their values should be carefully 
chosen by the user to bestow the chart with 
desirable properties for both in-control and out-of-
control situations. 

The upper control limit (UCL), control limit 
(CL), and lower control limit (LCL) of the EWMA 
control chart are respectively defined as 

 
2

0

0

1 (1 ) ,
2

,

tUCL L

CL


  





     



 

            2
0 1 (1 ) ,

2
tLCL L


  


     

 (6) 

where 0  and   are the process mean and standard 
deviation, respectively, and L is the design 
parameter for the EWMA control chart, the value of 
which depends on the choice of the smoothing 
constant λ and the desired value of the in-control 
ARL. For the EWMA control chart statistic tZ , an 
out-of-control signal occurs whenever > UCLtZ or 

LCL.tZ   
 

2.2 Computation of the ARL for a Long-

Memory FIMAX(d, q, r) Model with 

Exponential White Noise on a One-Sided 

EWMA Control Chart 
To evaluate the performance of the EWMA control 
chart in terms of the ARL of a long-memory 
FIMAX( ), ,d q r  model running on it, we derived it 
using both the analytical formula and NIE 
techniques based on integral equations while 
focusing on the upper-sided EWMA. The successive 
values of the EWMA statistic generated by the long-
memory FIMAX( ), ,d q r  process in equation (4) 
can be expressed as 

1
1 1

(1 )
q r

t t t i t j j jt
i j

Z Z X        
 
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2 6t t t
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d Y Y Y    

  
   

(7) 
 
where the initial value for monitoring with the 
EWMA statistic is 0 ; 0 .Z H     

Let 
H  be the stopping time for detecting when 

the out-of-control process on an upper-sided 
EWMA control chart exceeds the given 
predetermined threshold for the first time; i.e., 

 inf 0; ,H tt Z H      (8) 
 
where H  is the predetermined UCL of the EWMA 
control chart. If 

tZ  is in the range 0 tZ H  , then 
the process is in control, which can be defined as 
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or .tl u    
 

2.2.1 Derivation of the ARL as an Analytical 

Formula based on an Integral Equation 

Here, the analytical formula is derived as the 
solution to an integral equation. 

Let ( )L  denote the ARL of a long-memory 
FIMAX( ), ,d q r  model with initial value 0Z   
running on an EWMA control chart; i.e., 
ARL ( ) ( ).HE  L  Function ( )L  can be 
written in the form 
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used to change the integral variable. Thereby, we 
can obtain the integral equation as 
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Accordingly, the integral equation is derived from 
the Fredholm integral equation of the second kind as 
follows: 
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(10) 
Equation  10  corresponds to the analytical formula, 
which is defined as 
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This existence and uniqueness of the ARL 
computation were confirmed via Banach’s fixed-

point theorem, the details of which are shown in 
Appendix A. 
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According to equation (14), when the process is 
in control, the parameter v  can be replaced with 0v . 
Subsequently, the analytical formula for the in-
control ARL becomes 
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On the contrary, for the out-of-control process, 

the parameter v  can be replaced with 1.v  Therefore, 
the analytical formula for the out-of-control ARL 
can be written as 
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This ARL derived from the analytical formula 
shows that the calculation scheme can be easily 
performed. 

 
2.2.1 The Approximate ARL by using the NIE 

Technique based on an Integral Equation 

The NIE technique is usually used to verify the 
accuracy of an analytical formula. It is based on the 
solution for the integral equation, [26], in equation (9). 
The composite midpoint Rule is applied to divide 
domain interval [0, ]H  into m  sub-grids of equal 
length; i.e., 
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We can then substitute equation (17) into equation 
(9) to obtain a linear system of equations. Thereby, 
the approximate ARL calculated by using the NIE 
technique can be written in the form 
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2.3 Algorithms to establish the in-control and 

out-of-control ARL values 
 

Algorithms were constructed to determine the 
control limits and obtain results for the out-of-
control ARL. 
 

2.3.1 Construction of the control limits 

Algorithm 1: The analytical formula derived by 
using the Mathematica program to establish the in-
control ARL value 
Step-1: Solve the generalized form of the long-

 memory FIMAX(0.05, 1, 1) model with 
 exponential white noise defined as

tY : 
 (1.1) MA coefficients 1 0.8, 0.4, 0.2.       
(1.2) Exogenous variable coefficient 1 1.   
(1.3) The mean of the exponential parameter 

values ( ( ))t Exp   for the in-control 
process 0( = )   = 1.  

Step-2:  Compute the EWMA statistic: 
(2.1) Smoothing parameter   = 0.01. 
(2.2) Compute the proposed EWMA statistic 

( )tZ  for the long-memory FIMAX  
mode given in equation (5). 

Step-3: Compute decision interval H in conjunction 
with   by utilizing equation (15) so that the 
attained in-control ARL is close to or equal to 
500 corresponding to the specific shift size 
( ) 0.   

Step-4: Repeat Steps 2 and 3 for   = 0.05 and 0.10  
Step-5: Repeat Steps 1–4 for long-memory 

FIMAX(0.2, 1, 1) and FIMAX(0.40, 1, 1). 

2.3.2 Computation of the out-of-control ARL 

Algorithm 2: Analytical formula derived from 
Mathematica program for a shift in the process 
mean from 0  to 1 , where 1 0(1 )     
Step-1:  Repeat Algorithm 1, Steps 1 and 2 to solve 

the generalized form of a long-memory 
FIMAX(0.05, 1, 1) process running on an 
EWMA control chart. 

Step-2: Compute the out-of-control ARL for 
changes in the process mean: 
(2.1) Take the value of the control 

coefficient ( , )H   from the output of 
Algorithm 1. 

(2.2) Computation of the out-of-control ARL 
corresponding to ( , )H   a shift size of 
0.01 by utilizing equation (16). 

Step-3: Record the computational time for the first 
out-of-control ARL signal from the control 
limits. 

Step-4: Repeat Steps 2 and 3 for   = 0.05, 0.25, 
0.50, 0.75, or 1.00. 

Step-5: Repeat Steps 1-4 for long-memory 
FIMAX(0.2, 1, 1) and FIMAX(0.40, 1, 1). 

 

 
 
3 Results and Discussion 

The details and results of a comparative study of the 
performances of the proposed analytical formula with 
the NIE  technique are provided in this section. An 
example of a process involving real data to illustrate the 
effectiveness of the proposed technique is also offered. 
 

 
Table 1. The values of H for various FIMAX( ), ,q rd  models and values 1  for in-control ARL = 500. 

Coefficient parameters   λ 

d 1  1   0.01 0.05 0.10 
0.05 0.80 0.10  2.50211521E-13 2.57482300E-07 1.12643400E-02 

 0.40 0.10  1.67720900E-13 1.72595400E-07 7.41667000E-03 

 0.20 0.10  1.37319000E-13 1.41309200E-07 6.03307000E-03 

 -0.20 0.10  9.20490000E-14 9.47223000E-08 4.00579000E-03 

 -0.40 0.10  7.53640000E-14 7.75521000E-08 3.26830000E-03 
 -0.80 0.10  5.05179300E-14 5.19847000E-08 2.17959000E-03 

0.20 0.80 0.10  1.97060000E-13 2.02783300E-07 8.76905000E-03 
 0.40 0.10  1.32090000E-13 1.35929700E-07 5.79698000E-03 

 0.20 0.10  1.08148495E-13 1.11289800E-07 4.72230000E-03 

 -0.20 0.10  7.24938000E-14 7.45998000E-08 3.14201000E-03 

 -0.40 0.10  5.93510000E-14 6.10771000E-08 2.56548000E-03 

 -0.80 0.10  3.97871000E-14 4.09412000E-08 1.71278400E-03 

0.40 0.80 0.10  1.52550000E-13 1.56983000E-07 6.72397000E-03 

 0.40 0.10  1.02258000E-13 1.05228900E-07 4.45961000E-03 

 0.20 0.10  8.37213700E-14 8.61542000E-08 3.63712200E-03 

 -0.20 0.10  5.61205000E-14 5.77508000E-08 2.42414100E-03 

 -0.40 0.10  4.59500000E-14 4.72823000E-08 1.98057000E-03 

 -0.80 0.10  3.08010000E-14 3.16943000E-08 1.32350000E-03 
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The performance metric for the comparison is 
( ) ( )

%Accuracy 100 100%,
( )

 




  

p N

p

L L
Lp

 (19) 

where ( )pL  and ( )NL  are the ARL  values 
obtained by using the analytical formula and NIE  
techniques, respectively. A value greater than 95% 
means that the proposed formula provided an out-of-
control ARL value close to that for the NIE  
technique, which indicates good agreement between 
them. 

The first task was to compute the value of 
decision interval H in conjunction with the selection 
of   so that the in-control ARL is close to the target 
value (500 in this case, which is commonly used in 
the statistical process monitoring) The values for H 
for various models and values of the coefficient 
parameter using Algorithm 1 are reported in Table 
1. 
 

3.1 Performance Comparison 
Using the models and parameter values in Table 1, 
we computed the out-of-control ARL obtained by 
using the analytical formula and NIE techniques for  
FIMAX(0.05, 1, 1), FIMAX(0.20, 1, 1), and 
FIMAX(0.40, 1, 1) models running on an EWMA 
control chart, the results for which are reported in 
Table 2, Table 3, and Table 4. The first row of each 
cell in the tables shows the out-of-control ARL 
values using the analytical formula and NIE 
techniques corresponding to shift magnitudes of 
0.01, 0.05, 0.25, 0.50, 0.75, or 1.00 (in that order) 
and the second row shows the computational time 
(seconds). For each value of the smoothing 
parameter ( )  (see first column) and MA 
coefficient (see second column), the best-
performing technique is indicated in bold. 
Moreover, similar performances of the two 
techniques are indicated in the percentage accuracy 
(Acc%) column by gray shading. 

The results suggest that the out-of-control ARL 
values calculated by using the analytical formula are 
close to those approximated by using the NIE 
technique. As expected, as the shift size was 
increased, the sensitivity (i.e., the out-of-control ARL 
values) of both techniques also increased. In 
particular, both techniques showed great sensitivity 
by quickly detecting small-to-moderate shifts in the 
process mean (0< 0.5)   but not moderate-to-
large and large shifts (0.50 1.00).   

The precision values of the proposed analytical 
formula compared to the NIE technique in terms of 

percentage accuracy are reported in Table 2, Table 3, 
and Table 4.  

It can be seen that the percentage accuracy 
results were 100% in all cases, implying good 
agreement between the two methods and that the 
proposed analytical formula is very accurate. 

The computational times for calculating the out-
of-control ARL values only took a fraction of a 
second with the analytical formula compared to 3–
120 seconds with the NIE technique. As   was 
decreased, the computational time increased 
inversely with the out-of-control ARL value.  

It can be seen that the lowest out-of-control ARL 
values occurred with the following long-memory 
models: FIMAX(0.40, 2, 1), FIMAX (0.20, 1, 1), and 
FIMAX(0.05, 1, 1). 

The out-of-control ARL values for FIMAX(0.4, 1, 1) 
with different values of coefficient parameter 1  
are shown in Figure 1. The results reveal that out-
of-control ARL values tended to decrease rapidly 
when the magnitude of the shift was small 
( 0.25)  , followed by small-to-moderate shifts 
(0.25 0.50)   for all cases. The green line for  
  = 0.01 indicates the lowest out-of-control ARL 
value. Meanwhile, the out-of-control ARL values 
were for all shift sizes and levels of .  

In summary, the analytical formula performed 
exceptionally well in detecting small-to-moderate 
changes in the mean of a long-memory FIMAX 
model running on the EWMA control chart. Its 
accuracy was confirmed by comparison with the 
well-established NIE technique. Moreover, it could 
compute out-of-control ARL values much more 
quickly than with the NIE technique. 

 
3.2 Application of the Proposed Technique to 

Processes Involving Real Data 
For this demonstration, we used movements in the 
gold futures price, [27], with the UDS/THB 
exchange rate, [28], as the exogenous variable.  As 
the USD/THB exchange rate increased (i.e., the 
Thai baht depreciates), the price of gold decreased, 
and vice versa. The dataset covers the period from 
September 1 , 2 0 0 1 , to January 1 , 2 0 2 3 , and 
comprises 2 5 7  daily observations. We tested 
whether the dataset can fit a long-memory process 
and the distribution of the white noise by utilizing 
the statistical software packages Eviews and SPSS, 
respectively. 
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Table 2. Out-of-control ARL values are computed by using the analytical formula and NIE technique for 
FIMAX( 0 ),.05 1, 1d  running on an EWMA control chart when the in-control ARL is 500. 



 
1

 

δ 
0.01 Acc

% 
0.05 Acc

% 
0.25 Acc

% 
0.50 Acc

% 
0.75 Acc

% 
1.00 

Acc
% 

( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
0.01 0.8 361.892 361.892 100% 105.922 105.922 100% 1.701 1.701 100% 1.009 1.009 100% 1.000 1.000 100% 1.000 1.000 100% 

  (0.001) (3.95)  (0.001) (4.25)  (0.001) (5.96)  (0.001) (7.22)  (0.001) (9.10)  (0.001) (11.53)  
 0.4 360.462 360.462 100% 103.943 103.943 100% 1.647 1.647 100% 1.007 1.007 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (14.02)  (0.001) (15.58 )  (0.001) (17.42 )  (0.001) (19.12)  (0.001) (21.45)  (0.001) (22.88)  
 0.2 359.749 359.749 100% 102.966 102.966 100% 1.622 1.622 100% 1.007 1.007 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (24.11)  (0.001) (25.69 )  (0.001) (27.45 )  (0.001) 30.05 )  (0.001) (31.11)  (0.001) (32.98)  
 -0.2 358.338 358.338 100% 101.046 101.046 100% 1.574 1.574 100% 1.006 (1.006 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (34.05)  (0.001) (36.48)  (0.001) (39.81)  (0.001) 41.5)  (0.001) (43.14)  (0.001) (44.80)  
 -0.4 357.632 357.632 100% 100.098 100.098 100% 1.551 1.551 100% 1.005 (1.005 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (46.85)  (0.001) (49.13)  (0.001) (52.1)  (0.001) (53.98)  (0.001) (54.22)  (0.001) (57.68)  
 -0.8 356.218 356.218 100% 98.225 98.225 100% 1.509 1.509 100% 1.004 1.004 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (58.46)  (0.001) (60.22)  (0.001) (63.59)  (0.001) (65.87)  (0.001) (67.23)  (0.001) (69.98)  

0.05 0.8 412.819 412.819 100% 198.975 198.975 100% 11.0908 11.0908 100% 1.7243 1.7243 100% 1.108 1.108 100% 1.025 1.03 100% 
  (0.001) )4.11)  (0.001) (5.782)  (0.001) (7.42)  (0.001) (9.094)  (0.001) (10.79)  (0.001) (12.55)  
 0.4 411.191 411.191 100% 195.239 195.239 100% 10.3149 10.3149 100% 1.6339 1.6339 100% 1.091 1.091 100% 1.021 1.021 100% 
  (0.001) (14.23)  (0.001) (15.89)  (0.001) (17.61)  (0.001) (19.42)  (0.001) (21.11)  (0.001) (22.87)  
 0.2 410.379 410.379 100% 193.398 193.398 100% 9.9598 9.9598 100% 1.593 1.593 100% 1.083 1.083 100% 1.019 1.019 100% 
  (0.001) (24.68)  (0.001) (26.36)  (0.001) (27.98)  (0.001) (29.65)  (0.001) (31.45)  (0.001) (33.15)  
 -0.2 408.762 408.762 100% 193.398 189.768 100% 9.262 9.262 100% 1.519 1.519 100% 1.070 1.070 100% 1.015 1.015 100% 
  (0.001) (34.81)  (0.001) (36.48)  (0.001) (39.81)  (0.001) (41.5)  (0.001) (43.14)  (0.001) (44.8)  
 -0.4 407.955 407.955 100% 187.979 187.979 100% 8.938 8.938 100% 1.486 1.486 100% 1.064 1.064 100% 1.014 1.014 100% 
  (0.001) (48.23)  (0.001) (49.93)  (0.001) (51.56)  (0.001) (53.2)  (0.001) (54.87)  (0.001) (56.56)  
 -0.8 406.347 406.347 100% 184.451 184.451 100% 8.327 8.327 100% 1.425 1.425 100% 1.054 1.054 100% 1.011 1.011 100% 
  (0.001) (58.39)  (0.001) (60.05)  (0.001) (65.01)  (0.001) (66.67)  (0.001) (68.36)  (0.001) (70.00)  

0.10 0.8 455.816 455.816 100% 320.169 320.169 100% 75.9308 75.9308 100% 21.441 21.441 100% 8.885 8.885 100% 4.789 4.789 100% 
  (0.001) (71.74)  (0.001) (73.45)  (0.001) (75.11)  (0.001) (78.47)  (0.001) (80.12)  (0.001) (81.87)  
 0.4 453.823 453.823 100% 313.505 313.505 100% 69.6153 69.615 100% 18.668 18.668 100% 7.543 7.543 100% 4.051 4.051 100% 
  (0.001) (83.53)  (0.001) (85.25)  (0.001) (86.9)  (0.001) (88.56)  (0.001) (90.19)  (0.001) (91.89)  
 0.2 452.842 452.842 100% 310.269 310.269 100% 66.7045 66.7045 100% 17.445 17.445 100% 6.970 6.970 100% 3.743 3.743 100% 
  (0.001) (93.64)  (0.001) (95.30)  (0.001) (96.97)  (0.001) (98.8)  (0.001) (100.47)  (0.001) (102.11)  
 -0.2 450.903 450.903 100% 303.957 303.957 100% 61.3078 61.3078 100% 15.274 15.274 100% 5.982 5.982 100% 3.223 3.223 100% 
  (0.001) (103.75)  (0.001) (105.50)  (0.001) (107.14)  (0.001) (110.45)  (0.001) (112.28)  (0.001) (113.97)  
 -0.4 449.944 449.944 100% 300.872 300.872 100% 58.8005 58.8005 100% 14.307 14.307 100% 5.555 5.555 100% 3.003 3.003 100% 
  (0.001) (115.69)  (0.001) (119.11)  (0.001) (120.83)  (0.001) (122.5)  (0.001) (124.15)  (0.001) (125.84)  
 -0.8 448.033 448.033 100% 294.827 294.827 100% 54.1259 54.1259 100% 12.579 12.579 100% 4.813 4.813 100% 2.629 2.629 100% 
  (0.001) (127.62)  (0.001) (129.26)  (0.001) (130.9)  (0.001) (132.59)  (0.001) (134.41)  (0.001) (136.11)  
Note: The numerical results in parentheses are computational times in seconds 
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Table 3. Out-of-control ARL values are computed by using the analytical formula and NIE technique for 
FIMAX( 0 ),.2 1, 1d  running on an EWMA control chart when the in-control ARL is 500. 



 
1

 

δ 
0.01 Acc

% 
0.05 Acc

% 
0.25 Acc

% 
0.50 Acc

% 
0.75 Acc

% 
1.00 

Acc
% 

( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
0.01 0.8 361.039 361.039 100% 104.738 104.738 100% 1.668 1.668 100% 1.007 1.007 100% 1.000 1.000 100% 1.000 1.000 100% 

  (0.001) (5.44)  (0.001) (7.15)  (0.001) (9.25)  (0.001) (11.25)  (0.001) (12.15)  (0.001) (13.25)  
 0.4 359.611 359.611 100% 102.777 102.777 100% 1.617 1.617 100% 1.006 1.006 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (15.22)  (0.001) (16.25)  (0.001) (19.56)  (0.001) (20.15)  (0.001) (21.55)  (0.001) (24.12)  
 0.2 358.909 358.909 100% 101.814 101.814 100% 1.592 1.592 100% 1.006 1.006 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (25.2)  (0.001) (27.55)  (0.001) (29.1)  (0.001) (30.56)  (0.001) (31.22)  (0.001) (32.96)  
 -0.2 357.493 357.493 100% 99.912 99.912 100% 1.547 1.547 100% 1.005 1.005 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (34.96)  (0.001) (37.15)  (0.001) (38.2)  (0.001) (39.68)  (0.001) (41.24)  (0.001) (42.56)  
 -0.4 356.775 356.775 100% 98.972 98.972 100% 1.525 1.525 100% 1.005 1.005 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (44.15)  (0.001) (45.89)  (0.001) (48.05)  (0.001) (49.78)  (0.001) (51.13)  (0.001) (52.98)  
 -0.8 355.385 355.385 100% 97.132 97.132 100% 1.485 1.485 100% 1.004 1.004 100% 1.000 1.000 100% 1.000 1.000 100% 

  (0.001) (54.15)  (0.001) (55.39)  (0.001) (57.15)  (0.001) (59.45)  (0.001) (62.78)  (0.001) (63.85)  
0.05 0.8 411.846 411.846 100% 196.736 196.736 100% 10.620 10.620 100% 1.669 1.669 100% 1.097 1.097 100% 1.023 1.023 100% 

  (0.001) (5.79)  (0.001) (7.48)  (0.001) (9.07)  (0.001) (10.68)  (0.001) (12.34)  (0.001) (13.95)  
 0.4 410.223 410.223 100% 193.043 193.043 100% 9.881 9.881 100% 1.585 1.585 100% 1.082 1.082 100% 1.018 1.018 100% 
  (0.001) (15.54)  (0.001) (17.15)  (0.001) (18.79)  (0.001) (20.43)  (0.001) (22.04)  (0.001) (23.65)  
 0.2 409.413 409.413 100% 191.223 191.223 100% 9.532 9.532 100% 1.548 1.548 100% 1.075 1.075 100% 1.017 1.017 100% 
  (0.001) (25.23)  (0.001) (26.84)  (0.001) (28.45)  (0.001) (30.15)  (0.001) (31.79)  (0.001) (33.54)  
 -0.2 407.799 407.799 100% 187.634 187.634 100% 8.876 8.876 100% 1.479 1.479 100% 1.063 1.063 100% 1.014 1.014 100% 
  (0.001) (35.2)  (0.001) (36.79)  (0.001) (38.39)  (0.001) (40.11)  (0.001) (41.75)  (0.001) (43.55)  
 -0.4 406.994 406.994 100% 185.865 185.865 100% 8.568 8.568 100% 1.448 1.448 100% 1.058 1.058 100% 1.012 1.012 100% 
  (0.001) (44.96)  (0.001) (46.56)  (0.001) (48.26)  (0.001) (49.85)  (0.001) (51.45)  (0.001) (53.14)  
 -0.8 405.389 405.389 100% 182.377 182.377 100% 7.986 7.986 100% 1.392 1.392 100% 1.049 1.049 100% 1.010 1.010 100% 
  (0.001) (54.74)  (0.001) (56.34)  (0.001) (57.95)  (0.001) (59.57)  (0.001) (61.18)  (0.001) (62.84)  

0.10 0.8 454.619 454.619 100% 316.157 316.157 100% 72.076 72.076 100% 19.729 19.729 100% 8.050 8.050 100% 4.327 4.327 100% 
  (0.001) (64.43)  (0.001) (66.02)  (0.001) (67.63)  (0.001) (69.34)  (0.001) (70.92)  (0.001) (72.52)  
 0.4 452.652 452.652 100% 309.648 309.648 100% 66.157 66.157 100% 17.219 17.219 100% 6.865 6.865 100% 3.687 3.687 100% 
  (0.001) (74.12)  (0.001) (75.71)  (0.001) (77.31)  (0.001) (78.88)  (0.001) (80.56)  (0.001) (82.15)  
 0.2 451.681 451.681 100% 306.477 306.477 100% 63.418 63.418 100% 16.108 16.108 100% 6.357 6.357 100% 3.418 3.418 100% 
  (0.001) (83.76)  (0.001) (85.35)  (0.001) (86.96)  (0.001) (88.56)  (0.001) (90.23)  (0.001) (91.82)  
 -0.2 449.758 449.758 100% 300.278 300.278 100% 58.328 58.328 100% 14.128 14.128 100% 5.477 5.477 100% 2.963 2.963 100% 
  (0.001) (93.45)  (0.001) (95.05)  (0.001) (96.65)  (0.001) (98.24)  (0.001) (99.85)  (0.001) (101.48)  
 -0.4 448.805 448.805 100% 297.244 297.244 100% 55.958 55.958 100% 13.245 13.245 100% 5.095 5.095 100% 2.770 2.770 100% 
  (0.001) (103.09)  (0.001) (104.66)  (0.001) (106.37)  (0.001) (108.09)  (0.001) (109.84)  (0.001) (111.41)  
 -0.8 446.910 446.910 100% 291.291 291.291 100% 51.533 51.533 100% 11.662 11.662 100% 4.431 4.431 100% 2.441 2.441 100% 
  (0.001) (113.02)  (0.001) (114.63)  (0.001) (116.29)  (0.001) (118.02)  (0.001) (119.63)  (0.001) (121.23)  

Note: The numerical results in parentheses are computational times in seconds 
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Table 4. Out-of-control ARL values are computed by using the analytical formula and NIE technique for 
FIMAX( 0 ),.4 1, 1d   running on an EWMA control chart when the in-control ARL is 500. 



 
1

 

δ 
0.01 Acc

% 
0.05 Acc

% 
0.25 Acc

% 
0.50 Acc

% 
0.75 Acc

% 
1.00 

Acc
% 

( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
( )p uL

 

( )N uL

 
0.01 0.8 360.125 360.125 100% 103.479 103.479 100% 1.635 1.635 100% 1.007 1.007 100% 1.000 1.000 100% 1.000 1.000 100% 

  (0.001) (4.05)   (0.001) (5.11)   (0.001) (7.56)   (0.001) (9.15)   (0.001) (11.23)   (0.001) (13.25)   
 0.4 358.709 358.709 100% 101.546 101.546 100% 1.586 1.586 100% 1.006 1.006 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (14.53)   (0.001) (16.32)   (0.001) (18.23)   (0.001) (20.54)   (0.001) (21.31)   (0.001) (24.90)   
 0.2 358.005 358.005 100% 100.595 100.595 100% 1.563 1.563 100% 1.005 1.005 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (25.65)   (0.001) (28.78)   (0.001) (29.15)   (0.001) (32.56)   (0.001) (33.25)   (0.001) (34.25)   
 -0.2 356.595 356.595 100% 98.712 98.712 100% 1.519 1.519 100% 1.005 1.005 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (36.44)   (0.001) (37.56)   (0.001) (38.98)   (0.001) (40.25)   (0.001) (42.56)   (0.001) (43.98)   
 -0.4 355.895 355.895 100% 97.792 97.792 100% 1.499 1.499 100% 1.004 1.004 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (45.35)   (0.001) (46.89)   (0.001) (48.63)   (0.001) (50.09)   (0.001) (53.13)   (0.001) (55.36)   
 -0.8 354.496 354.496 100% 95.962 95.962 100% 1.461 1.461 100% 1.004 1.004 100% 1.000 1.000 100% 1.000 1.000 100% 
  (0.001) (57.46)   (0.001) (59.15)   (0.001) (61.34)   (0.001) (62.78)   (0.001) (64.01)   (0.001) (66.95)   

0.05 0.8 410.806 410.806 100% 194.364 194.364 100% 10.139 10.139 100% 1.614 1.614 100% 1.087 1.087 100% 1.020 1.020 100% 
  (0.001) (4.12)   (0.001) (5.76)   (0.001) (10.48)   (0.001) (12.12)   (0.001) (13.72)   (0.001) (15.26)   
 0.4 409.187 409.187 100% 190.716 190.716 100% 9.437 9.437 100% 1.538 1.508 100% 1.073 1.073 100% 1.016 1.016 100% 
  (0.001) (16.22)   (0.001) (18.45)   (0.001) (20.07)   (0.001) (21.67)   (0.001) (23.31)   (0.001) (24.90)   
 0.2 408.379 408.379 100% 188.920 188.920 100% 9.1065 9.1065 100% 1.5028 1.5028 100% 1.0674 1.0674 100% 1.0147 1.0147 100% 
  (0.001) (26.50)   (0.001) (28.11)   (0.001) (29.69)   (0.001) (31.40)   (0.001) (33.08)   (0.001) (34.76)   
 -0.2 406.769 406.769 100% 185.372 185.372 100% 8.483 8.483 100% 1.440 1.440 100% 1.057 1.057 100% 1.012 1.012 100% 
  (0.001) (36.78)   (0.001) (38.01)   (0.001) (39.61)   (0.001) (41.29)   (0.001) (42.98)   (0.001) (44.62)   
 -0.4 405.966 405.966 100% 183.625 183.625 100% 8.190 8.190 100% 1.412 1.412 100% 1.052 1.052 100% 1.011 1.011 100% 
  (0.001) (45.12)   (0.001) (47.8)   (0.001) (49.47)   (0.001) (51.09)   (0.001) (52.78)   (0.001) (54.37)   
 -0.8 404.366 404.366 100% 180.179 180.179 100% 7.637 7.637 100% 1.360 1.360 100% 1.044 1.044 100% 1.009 1.009 100% 
  (0.001) (57.63)   (0.001) (59.38)   (0.001) (60.97)   (0.001) (62.55)   (0.001) (64.21)   (0.001) (65.88)   

0.10 0.8 453.357 453.357 100% 311.964 311.964 100% 68.217 68.217 100% 18.076 18.076 100% 7.264 7.264 100% 3.900 3.900 100% 
  (0.001) (4.34)   (0.001) (6.03)   (0.001) (7.68)   (0.001) (9.31)   (0.001) (10.95)   (0.001) (12.76)   
 0.4 451.410 451.410 100% 305.598 305.598 100% 62.676 62.676 100% 15.812 15.812 100% 6.223 6.223 100% 3.348 3.348 100% 
  (0.001) (14.40)   (0.001) (16.04)   (0.001) (17.68)   (0.001) (19.32)   (0.001) (21.01)   (0.001) (22.68)   
 0.2 450.447 450.447 100% 302.489 302.489 100% 60.104 60.104 100% 14.807 14.807 100% 5.774 5.774 100% 3.115 3.115 100% 
  (0.001) (26.11)   (0.001) (27.73)   (0.001) (29.7)   (0.001) (31.14)   (0.001) (32.82)   (0.001) (34.50)   
 -0.2 448.538 448.538 100% 296.401 296.401 100% 55.314 55.314 100% 13.009 13.009 100% 4.995 4.995 100% 2.720 2.720 100% 
  (0.001) (36.15)   (0.001) (37.82)   (0.001) (39.43)   (0.001) (41.07)   (0.001) (42.71)   (0.001) (44.34)   
 -0.4 447.589 447.589 100% 293.417 293.417 100% 53.080 53.080 100% 12.205 12.205 100% 4.656 4.656 100% 2.552 2.552 100% 
  (0.001) (46.03)   (0.001) (47.65)   (0.001) (49.34)   (0.001) (50.96)   (0.001) (52.62)   (0.001) (54.29)   
 -0.8 445.705 445.705 100% 287.558 287.558 100% 48.903 48.903 100% 10.763 10.763 100% 4.066 4.066 100% 2.265 2.265 100% 
  (0.001) (56.06)   (0.001) (57.76)   (0.001) (59.48)   (0.001) (61.21)   (0.001) (63.04)   (0.001) (64.78)   

Note: The numerical results in parentheses are computational times in seconds 
  

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.58 Wilasinee Peerajit

E-ISSN: 2224-2880 524 Volume 22, 2023



 
1( ) 0.8a    

 
1( ) 0.4b    

 
1( ) 0.2c    

 
1( ) 0.2d      

 
1( ) 0.4e     

 
1( ) 0.8f     

Fig. 1: Shifts in the mean of the FIMAX(0.4, 1, 1) model with various values of coefficient parameter 1  
running on an EWMA control chart calculated using the analytical formula. 

 

Table 5. The statistical results for the gold futures 
price dataset with the UDS/THB exchange rate as 

the exogenous variable. 
Parameters: Coefficient t-Statistic Prob.   
MA(1) -47.2713 -9.15545 0.00* 
d  0.499999 722.704 0.00* 
UDS/THB 0.495184 9.055184 0.00* 
R-squared 0.981843 
Adjusted R-squared 0.981700 
Testing whether the white noise is exponentially distributed. 
Exponential Parameter (v) 39.577325 
Kolmogorov-Smirnov  0.692 
Asymptotic Significance (2-Sided) 0.725 
*A significance level of 0.05.  

As reported in Table 5, the dataset is a valid fit 
for a long-memory FIMAX model since all of the 
parameters had p-values less than 0.05. The 
exponential parameter ( )v  of the dataset provided a 
Kolmogorov-Smirnov value of 0.692. The 
corresponding p-values based on asymptotic 
significance (2-sided) were 0.725, suggesting that 
the long-memory FIMAX(0.499999, 1, 1) model 
was a suitable fit. Testing whether the white noise 
fits an exponential distribution also yielded a p-
value less than 0.05. Thus, the process running on 
an EWMA control chart was long-memory 
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FIMAX(0.499999, 1, 1) with coefficients 1̂ = -
47.2713 and 1̂ = 0.495184.  

The model is given by 
1 1 147.2713 0.495184 0.499999t t t t tY X Y        

2 3,0.124999999 0.062500042t tY Y    (20) 
where )39.577325(t Exp v   

To apply the analytical formula, we fitted the 
dataset based on Equation (20). The EWMA control 
limit ( )H  was computed equal when in-control ARL 
= 500 using Algorithm 1 for smoothing parameter   = 
0.50, 0.51, 0.53, or 0.55. Thereby, we used 

(1 )( )  1 1 exp .expp

H

v v

 
 

 

      
        

     

L  

11 exp expH

v v


   
     

  

1 1

1 2

3

47.2713 0.495184
0.499999 0.124999
0.062500042

t t

t t

t

X

Y Y

Y




 



 
 
  
  

1

.






 

(21) 
and 

1

(1 )1( )  1 + ( )
m

N j N

j

j

j f
a

w a
 


 


  




L L  

1 1

1 2

3

47.2713 0.495184
0.499999 0.124999
0.062500042

t t

t t

t

X

Y Y

Y




 



 
 
  
  

,


          (22) 

to compute the out-of-control ARL on an EWMA 
control chart using the analytical formula and NIE 
techniques, respectively. The results are reported in 
Table 6 and Figure 2. 
 

Table 6. The out-of-control ARL results using the 
analytical formula and NIE  techniques for the 
FIMAX(0.499999,1,1) model with exponential 
white noise for real data running on an EWMA 
control chart when the in-control ARL is 500. 

  
  0.50 0.51 0.53 0.55 
H 46.07293 49.1854 55.64264 62.64577 

0.01 ( )
p

uL  474.049 475.216 478.525 483.826 
  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  474.049 475.216 478.525 483.826 

  (29.54) (30.54) (31.01) (30.23) 
0.05 ( )

p
uL  384.181 388.151 399.714 419.384 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  384.181 388.151 399.714 419.384 

  (30.74) (30.89) (31.34) (31.56) 
0.25 ( )

p
uL  148.991 152.218 161.907 180.098 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  148.991 152.218 161.907 180.098 

  (33.98) (34.62) (34.68) (35.18) 
0.50 ( )

p
uL  59.627 60.697 63.769 69.366 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  59.627 60.697 63.769 69.366 

  (39.28) (40.04) (41.34) (42.58) 
0.75 ( )

p
uL  30.222 30.671 31.874 33.5921 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  30.222 30.671 31.874 33.5921 

  (40.56) (42.35) (42.72) (42.94) 
1.00 ( )

p
uL  18.045 18.292 18.907 19.901 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  18.045 18.292 18.907 19.901 

  (41.58) (42.01) (42.14) (42.98) 
5.00 ( )

p
uL  1.916 1.943 1.996 2.054 

  (0.001) (0.001) (0.001) (0.001) 
 ( )

N
uL  1.916 1.943 1.996 2.054 

  (52.91) (53.24) (53.77) (54.56) 
Note: The numerical results in parentheses are 

computational times in seconds 
 
For the real data, results suggest that the out-of-control 
ARL values calculated using the analytical formula 
equal those approximated using the NIE technique, 
indicating good agreement between the two methods 
and that the proposed analytical formula was very 
accurate. We compared the out-of-control ARL 
results versus   for  = 0.01, 0.05, 0.25, 0.50, 0.75, 
1.00, or 5.00 in the long-memory FIMAX model. 
The findings indicate that the out-of-control ARL 
values tended to decline rapidly when detecting 
small-to-moderate shifts in the process mean and 
monotonically as   was increased for all smoothing 
parameter values.  

 

 
 

Fig. 2: Graphical representation of the out-of-
control ARL results for the FIMAX(0.499999,1,1) 
model with exponential white noise for real data 
running on an EWMA control chart when the in-
control ARL is 500. 
 

Moreover, when the smoothing parameter value 
was increased, detection became slower and the out-
of-control ARL was larger. The smallest smoothing 
parameter value (  = 0.50) provided the best 
detection performance for all values of   considered. 
The computational times for calculating the out-of-
control ARL values took a fraction of a second with 
the analytical formula compared to 30–55 seconds 
with the NIE technique. The result corresponds to the 
computational in Table 2, Table 3, and Table 4. 
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The EWMA control chart running the in the 
FIMAX model with real data is graphically displayed 
in Figure 3. It can be seen that in all cases of the 
smoothing parameter value tested, the process 
remained under statistical control for the first five 
observations. The total number of out-of-control 
signals for  = 0.50, 0.51,0.53, or 0.55 were 20, 18, 
16, and 14 points, respectively. Hence, the model 
with the smallest value of   performed the best. 

 
 
 
 
 

 
 
 

 
 

 
( ) 0.50a    

 

 

 
( ) 0.51b    

 

 
( ) 0.53c    

 

 

 
( ) 0.55d    

Fig. 3: Graphical representation of the out-of-control ARL results for the FIMAX(0.499999,1,1) model with 
exponential white noise for real data running on an EWMA control chart when the in-control ARL is 500 for 

various smoothing parameter values: ( ) 0.50, ( ) 0.51,( ) 0.53a b c     , and ( ) 0.55d   . 
 
4 Conclusions 

We provided a new technique to accurately compute 
the ARL  for a long-memory FIMAX( ), ,d q r  model 
with exponential white noise running on the EWMA 
control chart using an analytical formula based on 
an integral equation. Its performance was measured 
against that of the well-established NIE  technique. 
For all the control chart smoothing parameter values 
of the chart and FIMAX scenarios tested, the 
proposed analytical formula provided out-of-control 
ARL values close to those with the NIE technique. 
For clarity, we have verified the accuracy of the 
analytical formula with the NIE method as the 
percentage accuracy. The percentage accuracy 
results were 100% in all cases, implying good 
agreement between the two techniques and that the 
proposed analytical formula is very accurate and 
quick. Therefore, using the analytical formula as an 

alternative approach for deriving the ARL for a shift 
in the mean of this scenario is plausible. 
 To demonstrate the practicability of the 
proposed analytical formula, we applied it to a 
process involving the gold futures price and 
exchange rates over a specific time period. The out-
of-control ARL values show that the analytical 
formula approached performed very well in all of 
the scenarios tested and that it is a good alternative 
to using the analytical formula for this endeavor. In 
addition, this analytical formula can be extended to 
develop commercial packages to evaluate ARL to 
analyze and control the manufacturing process or 
other aspects. Future work of this study could be 
extended to other control charts that have been 
developed, such as modified EWMA, modified 
CUSUM, and enhanced EWMA. 
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Appendix A 
Theorem 2: ( )p L , the ARL  obtained from the 
analytical formula based on an integral equation for a 
long-memory FIMAX model on an EWMA control 
chart, exists and is unique. 
Proof: To prove the existence of the integral 
equation applied to derive the ARL. Let T  be a 
contraction in complete metric space  , ,M .  

[0, ]HC  be a set of all continuous functions on 
interval [0, ]H , and the in-control ARL be an 
arbitrary but fixed element in .M  Define a sequence 
of iterates   0n n

L in M  that satisfies 1 ( ),n nT L L  
for all 1.n   Consider  

      
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Continuing inductively, we obtain 
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 
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1 0
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By repeatedly applying the triangle inequality to this 
formula when n m we arrive at 

  1 1, ( , ) ... ( , ),n m n n m m     L L L L L L  
Thus, it follows that 

  1 2
1 0, ( ... ) ( , ).n n m

n m     L L L L  
Taking the property of the sum of a geometric series 
in ,  we obtain 

  1 0, ( , ).
1

n

n m 


L L L L  

where 
1

n


 as .n  So,   0n n

L  is a Cauchy 

sequence and  lim .n
n

T


L L   
Hence, the existing continuous function 

,:[0 ]H L  satisfies the integral equation. 
 
Proof: To prove the uniqueness of the integral 
equation applied to derive the ARL. Let 1L  and 2L  

be two arbitrary functions for [0, ].HC  The common 
term for the complete metric space is 
 .[0, ], .H


C  That is to say, a set of continuous 

functions of the ARL  defined on [0, ],H and 
[0, ]HC  becomes norm space if 

[0, ]
0

sup ( , ) ,
b

bL k g dg 
   
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The kernel function of the integral equation used to 
define the ARL is 

 1 2 [0, ] 1 2
0

( ) ( ) sup ( , ) ( ) ( )
H

HT T k g g g dg 
  L L L L

Hence, we obtain 1 2 1 2( ) ( )T T
 

  L L L L  

where [0, ]
0

sup ( , ) 1. 
H

H k g dg   

Applying Banach’s fixed point theorem leads to 
contraction mapping. Therefore, T  is a unique 
continuous function that satisfies the integral 
equation in equation (12) 
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