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1 Introduction

Prime numbers are numbers that have remained a
mystery throughout human history. Since prime
numbers are generator numbers, people find the
formula for these numbers. The most well-known of
these are Pierre de Fermat and Marin Mersenne.
Fermat numbers included pseudoprimes. Firstly,
Fermat conjectured that all numbers which are
produced by 2% +1 (k is a non-negative integer)
are prime numbers (k must be the power of 2). One
can see easily that the first 5 numbers are prime but
when it comes to the 6th number there is a problem.
Later Euler proved that this number has factors. So,
it was a composite number. Fermat made a
computational mistake. Now it is an open question
that are there any other numbers like this?

Mersenne numbers have the form 2¥ —1 ( kis a
positive integer). These numbers were studied in
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ancient times because of their connection to perfect
numbers. Euclid-Euler theorem asserts this
connection.

Later Francois Proth studied Fermat numbers.
He found, [1], the numbers which are a generalized
form of Fermat numbers. They are of form k2™ +
1, k,n€Z". Proth numbers are known as k-
Fermat numbers. There are restrictions on these
numbers as 2" > k , where n,k € N and k is odd
numbers. Here it can be easily seen that the general
forms of Proth numbers without any restrictions are
k -Fermat numbers. The first terms of these
numbers are as follows:
3,5,13, 17, 41, 97, 113, 193, 241, 257, 353, 449,
577, 641, 673, 769, 929, 1153, 1217, 1409, 1601,
2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993,
6529, 7297, 7681, 7937, 9473, 9601, 9857 (Proth
numbers are referenced in the On-Line
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Encyclopedia of Integer in OEIS
as A080076, [2].)

In our study we examine k-Fermat numbers and

Sequences

k-Mersenne numbers, [3]. k-Fermat number
sequence, denoted by {Rk,n}, is defined by
Ryn=k2"+1, kneZ*

k-Mersenne number sequence denoted by {Mk,n} is
defined by

My, =k2" -1, kneZ*
Recurrence relations of these numbers respectively,

Ryn = 3kRin—1 — 2Ry n_s with Ry =
2, R =3 (1.1)
Myn = 3kMyn_1 — 2Mj with Mo =
0, My, =1

The first terms of these numbers are shown in Table
1.

Table 1. Some values for Ry, ;, and My, ,,.
n 0 1 2 3

Ry, 2 3 9k? 27k3
-4  —12k
-6
My, O 1 3k 9k? -2

Now we introduce circulant and r-cirulant
matrices. Among the subjects of algebra, especially
in linear algebra, these matrices draw attention.
These matrices are used in a number of operations
such as signaling, coding, etc. They are also used in
the field of chemistry, [4]. The study, [5], presented
the visualization of breathing tense while reflecting
atomic velocities on eigenvectors of the circulant
matrix. In, [6], the author's circulant matrices are
used in Hadamard transform spectroscopy and in the
construction of the optimal chemical design. In [7],
the authors presented the quantum optics effects in
quasi-one-dimensional and two-dimensional carbon
materials by the circulant matrix method. In [8], [9],
the authors gave the lower and upper bounds for the
spectral norms of r -circulant matrices and obtained
some bounds related to the spectral norms of
Hadamard and Kronecker products of these matrices
with the Fibonacci and Lucas numbers. Also, they
presented the spectral norms with k- Fibonacci and
k-Lucas numbers. Circulant matrices are of great
interest among the subjects of algebra, especially in
the field of linear algebra as Algebraic Geometry,
Number Theory, Topleitz operator, etc. r —
circulant matrices are shown by Circ(n) or C,
where n represents the size of matrix. Their inverse,
conjugate transposes, sums, and multiplications can
be malleable. For any r complex number without
zero, we can define those matrices. We can examine
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its eigenvalues, Euclidean norm, spectral norm,
determinants, and inverse. C, is determined by its
first-row element and r. Givenr = +1 and r = —1
in recurrence relation we obtain its eigenvalues and
determinant.

Circulant matrices and r-circulant matrices
including Fibonacci, Pell, Pell-Lucas, etc. numbers
have been of great interest. In several studies,
eigenvalues, determinants, norms, bounds, and
inverses for these matrices are found. For instance,
[10], presented eigenvalues and the determinant of
the right circulant matrices with Pell numbers and
Pell-Lucas numbers. The study, [11], presented
norms for circulant matrices including Fermat and
Mersenne numbers. In, [12], the authors presented
the exact inverse of circulant matrices with Fermat
and Mersenne numbers. In, [13], the author solved
the determinants of these matrices using matrix
decomposition. In, [14], the authors studied the
properties of the r-circulant matices involving
Mersene and Fermat numbers. In this study, we
present r —circulant matrices by using k —Fermat
and k —Mersenne numbers. This study is
constructed of three sections. In the first section, we
introduce the Euclidean norm, Hadamard product,
eigenvalues, and determinants of r —circulant
matices. In second section we define the
r —circulant matrices involving k- Fermat numbers.
We find the -eigenvalues, determinants, sum
identities, norms, and the bound for the spectral
norm for the k-Fermat r-circulant matrices. In the
last section we study r-circulant matrices involving
k-Mersenne numbers.

Lemma 1.1, [15], [16]. Let X = (x;;) be a matrix.
The Frobenius or Euclidean norm of X is defined as

”X”E:F =

The column norm of X is defined as

n
max
Xl =1 2 < n 2l
j=1

The row norm of X is defined as

max -
Wl = 1 < 1 % m D |l
j=1
The spectral norm of a matrix X defined as

I1X1l, = VV(X*X = tmax (X)-
where y(X*X) denote the eigenvalues of (X*X)
and X™ is the conjugate transpose of X.
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Matrix X has the relationship between the norm
values given below:

1
7= Xl < IX1lz < Xl (1.2)

Lemma 1.2, [13]. Let 4 = [a;;] € M, ,(C),B =
[bij] € M,,,(C) ,C is the Hadamard product of A

and B, then we get
ICll2 < m(A)n(B) (1.3)

where m(A) = max,<j<m /Z;‘:l|aij|2 and
f 2
n(B) = MmaXi<j<n Z;n:1|bij|

Definition 1.3, [17]. For r € C — {0}, a matrix C, is
said to be r-circulant matrix if is of the form

and it is denoted by C, = Circ(r;c), where ¢ =
(co,C1y ) Cp_q) is the first-row vector. For r =
land r = —1, the right and skew-right circulant
matrices are desired, respectively.

Co €1 (2 Cn-2 Cn—l'l

|T¢h-1 Co €1 Cn-3 Cn—2|

C:| : : : : : |
rc, TC3 TC4 Co C1

l rc,  rey T3 rcpr  Co J

Lemma 1.4, [17]. Let C, be r-circulant matrices
then its eigenvalues

W=t (pw™), i=012...,n—1
where w is the nth root of unity and p is the nth root
of r.

Lemma 1.5, [16]. The Euclidean norm of r-
circulant matrix C, is given by

Gl = (B=G 1 = ja =] (1.4)

Lemma 1.6, [10]. For any a and b , we get
Mg(a—bpw_) = a” —rb"  (15)
Lemma 1.7, [18]. Determinant of the circulant
matrix C, is
n-1 /n-1

el =] [{ 2wt

i=0 \ j=0
where the entry {i, j} is equal to the entry {i + [,j +

2ml
[}forl=1,2,..and t; = e n are the n®

roots of unity. where p; are n' root of r.
Using the above lemmas we can calculate the
eigenvalues, the determinant, Euclidean norms, and
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bounds for spectral norms of r-circulant matrices
involving k-Fermat and k-Mersenne numbers with
arithmetic indices. We present many new identities
for k-Fermat and k-Mersenne numbers.

2 k-Fermat r-circulant Matrix

uand v be non-negative integers and r € C — {0}.
The r-circulant matrices k-Fermat numbers are
denoted by Ry, ;- and defined as follows:

Definition 2.1 The k-Fermat r-circulant matrix is
defined as Ry, = Circ(k,r;¢) where first row
vector is € = (R Riu+v Rius2vs -
1.€., matrix of the form

’ Ru+(n—1)v)
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Rk,u Rk,u+v Rk,u+2v Rk,u+(n—2)v Rk,u+(n—1)v
rRk,u+(n—1)v Rk,u Rk,u+v Rk,u+(n—3)v Rk,u+(n—2)v
Rir = s : = : s 2.1
[ rRk,u+2v rRk,u+3v TRk,u+4v Rk,u Rk,u+v J
TRk,u+v rRk,u+2v TRk,u+3v TRk,u+(n—1)v Rk,u

Theorem 2.2 The eigenvalues of k-Fermat r-
circulant matrices Ry, are

_T(Rk,vn+u) + rpW_izv(Rk,v(n—1)+u) + Rk,u - zva_i(Rk,u—v)'
Ai(Rk,r) = _T(Rk,u(n+1)) + rpw_lzu(Rk,un) + Ry — 2u+1pw_l;

u>v

u=v

_r(Rk,vn+u) + TPW_iZV(Rk,v(n—1)+u) + Rk,u - Zupw_i(Rk,v—u)! v>u

where i =0,1,2,...,n — 1.
Proof.

n-1
Ai(Ryr) = Z Rk,u+jv(pW_i)J
=0

n-1

= ) 2+ Dpw

j=0
n—

1 o on-1 .
= k24 Z(Z”pw_i)] + Z(pw_i)j
j=0

j=0

1—2vpwt

1—pwt

e (1—<2"pw“'>”)+<1—<pw-i>”>

_ poou 1-2""r +( 1—r)
- 1—2vpwt 1—pwt

k2% — k2¥pw ™ — 2V Uy + 2V rpw Tt + 1 — 2Vpw Tt — 1 + 2V rpw

1—pw=t —2pw=i + 2¥(pw )2

= —r(1 + k2% + rpw =2V (k2P Y + 1) + 1 4 k2% — 2Vpw Tt — k2¥pw

foru>v

Ai(Rk,r) = _T(Rk,vn+u) + TpW_izu(Rk,v(n—1)+u) + Rk,u - zva_i(Rk,u—v)

foru<wv

Ai(Rk,r) = _T(Rk,vn+u) + rpW_iZU(Rk,v(n—l)HA) + Rk,u - Zupw_i(Rk,v—u)'

and for u =v

Ai(Rk,r) = _T(Rk,u(n+1)) + pr_izu(Rk,un) + Rk,u - 2u+1pW—i

as desired.

Corollary 2.3 For r=1and r =-1, we get
eigenvalues for the k-Fermat right and skew-right

circulant matrices as follows:
u>v

Ai(Rk,l) = - (Rk,vn+u) + pW_l:zv(Rk,v(n—lﬂu)
+ Rk,u - vaw_l(Rk,u—v)
v

- (Rk,vn+u) + pW_iZ'U(Rk,v(n—lﬂu) + Rk,u
- ZupW_l(Rk,v—u)
u=v

= - (Rk,u(n+1)) + pW_izu(Rk,un) + Rk,u
_ 2u+1pw—i

3 A

and

E-ISSN: 2224-2880

u>v
Ai(Rk,—l) = (Rk,vn+u) - Ew_lzv(Rk,v(n—1)+u)
+ Rk.u - vaw_l(Rk,u—v)
u<v

2 (Rk,vn+u) - fw_izv(.Rk,v(n—l)Ht) + Rk,u
— 2% EWTH(Ry, -
u= f ( kv u)

v
2 (Rk,u(n+1)) - fW_lzu(Rk,un) + Rk.u
_ 2u+1€W—i
where £ is the nth. the root of -1.
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Theorem 2.4 For a positive integer n, we have

n-1

z _T(Rk,vn+u) + TPW_iZU(Rk,v(n—1)+u) + Rk,u
i=0

—2"pw (R y—p) = n(k2% + 1)

Proof. To get the desired result, we need to know
that the trace of any given square matrix is equal to
the sum of the eigenvalues of that matrix. In that
case

n—-1 n—-1
Z Ai(Rk,r) = Z _T(Rk,vn+u)
i=0 i=0

+ TPW_LZ.V(Rk,v(n—l)+u) + Rk,u
- vaw_l(Rk,u—v)
according to the expression given above, this sum is
equal to nRy ,,. In that case
n-1
Z _T(Rk,vn+u) + rpw_lzv(Rk,v(n—l)HL) + Rk,u
i=0 _
- vaw_l(Rk,u—v) =nRyy
=n(k2" +1)
as desired.
Theorem 2.5 Determinant of Ry ,- is given by

det(Rk,r) = (_r)n(Rk,mHu + Rk,u)n
+r2vn (r(Rk,v(n—1)+u)

- (Rk,u—v))n

Proof. From Lemma 1.7, we get

n-1 /n-1
Rerl = [ [{ D 25(Rer) )
i=0 \ j=0
Foru > v,
n-1

(_r(Rk,vn+u) + rpW_iZV(Rk,v(n—l)Ht)

o

i=

+ Ry — ZVPW_i(Rk.u—v))

n—-1
= 1_[ ((_T(Rk,vn+u) + Rk,u) + pw_i (Tzv(Rk,v(n—1)+u) - Zv(Rk,u—v)))-
From l=0Lemma 1.6

n
|Rk,r| = (_T)n(Rk,wHu + Rk,u)n + r2vn (T(Rk,v(n—1)+u) - (Rk,u—v)) .
Corollary 2.6 The determinants of the k-Fermat

right circulant and skew-right circulant matrices are

given as, respectively

n
det(Rk,l) = (_1)n(Rk,vn+u + Rk,u)n + 2" ((Rk,v(n—1)+u) - (Rk,u—v)) ’

n
det(Rk,—l) = (Rk,vn+u + Rk,u)n — 2 (_(Rk,v(n—1)+u) - (Rk,u—v)) .

On setting i =0,r =1,and p = 1 in Theorem 2.2,
the following sum identities are verified for the k-
Fermat numbers.
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n-1
Z Rk.u+jv
j=0

Rk,vn+u + Zv(Rk,v(n—1)+u) + Rk,u - Zka,u—vr u> U)

={ —Rpum+1) + 2%(Ryun) + Ry — 2411, u=v.

_Rk,vn+u + 2V(Rk,v(n—l)+u) + Rk,u - ZuRk,v—w u<v

3 Norm of k-Fermat r-circulant

Matrices
When we take u = 0 and v = 1, we get
Rk,O Rk,l Rk,z Rk,n—z Rk,n—l
[TRk,n—1 Rko Rrk1 - Rin-3 Rk,n—z]
Ry, =| : P : s
TR, TRk3 TRps .. Ry o Ry 4
TRy TRk, TRis .. TRyn_1  Rypo

From Lemma 3.1, the sum of the squares of the k-
Fermat numbers will be used to obtain the norms of
different matrices.

Lemma 3.1 The finite sum of squares of the k-
Fermat numbers is given by

n—-1
> Rey)?
=0

" K24 — 1) + 3n + 6k(2" — 1)

- (3.1)
Proof.
n-1 n-1 n-1
Z(Rk,j)2 = Z(sz +1)2 = Z k222 + 1+ 20k
j=0 j=0 j=0
4" —1
=k2< 3 )+n+2k(2”—1)
_ k24" —1) +3n+ 6k(2" — 1)
- 3
as desired.

Theorem 3.2 The Euclidean norm for the k-Fermat
r-circulant matrices is given by

*
Rk,r

n-1
= D (Rej = D + Rejua)ln = (1 = I712)]
j=0

Proof. By Eq. (1.4) we get

n-—1
. 2 2 .
IRl = D [Riesl "= 0 = 1r12]
j=0
n-1
= > k2 + D[ — (1= [rf)]
=0
E-ISSN: 2224-2880 536
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n—-1
= Z(kzzzf +1+ k2" )[n—j1 - |r|H)]
j=0
n—-1

= > ((Rij = 1% + Rl = (1 = [71)]
=0

as desired.

Theorem 3.3 The bound for the spectral norm of the
k-Fermat r-circulant matrices is:

for|r| =1

Jk2(4n — 1) +3n+6k@" - 1) _
. <

12 4 |r|2(k2(4" — 1) + 3n+ 6k(2" — 1)) (3 + (k2(4" — 1) + 3n + 6k(2" — 1))
3 ' 3 '
and for |r] < 1

) k2(4" — 1) + 3n + 6k(2" — 1) |
.
2 <

Proof. By Eq (1.4), the Euclidean norm is given as

2|Rk,l n—j =)

Here, we need to examine the proof in 2 stages
according to the state of r.
State 1. If |r| = 1, then from Lemma 3.1 we get

n—-1 n-1
Z(n IR+ 1P an 2 ) =PIyl + ) 1Ryl
j=0 j=0

\/ k2(4™ — 1) + 3n+ 6k(2" - 1)
< |n 3

n—-1

2 k?(4" — 1) + 3n + 6k(2" — 1)
= Z n|Rk_j| =n 3
j=0
which implies [1 Rk1 Rkz2 - Rgn—2 Rk.n—f|
x 1 1 R wo Rpn_z Rpn_
IRirll; _ k24" —1) +3n + 6k(2" — 1) gol|: st s Thenm
vnoo 3 [1 1 1 .. 1 Riq
and from Eq. (1.2) we get 1 1 1 .. 1 1

then clearly Ry, = AoB, where o denotes the

2(4n — n_
k2(4" —1) +3n+ 6k(2" — 1) Hadamard product. Now,

Now to obtain the upper bound for the spectral
norm, we write Ry, in the form of the Hadamard
product of two matrices.

Reo 1 1 . 1 1 —
Ao Rip-1 R 11 ! ] = |(Rio)” +IrI? Z(Rk,j)z
[ TRk,Z TRk’3 rRk,‘l- Rk,O 1 J J=t
TRk’]_ TRk,Z TRR,:; rRk,Tl—l Rk,O \/12 + |r|2(k2(4n — 1) + 3n + 6k(2n — 1))
and =
3
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n-1
1+ Z(R,w.)2

j=1

n
max 2
tB)=1<j<n Z|bi1‘| =
=1

3
Thus, by Lemma 1.2, we get

B J3 + (K2(4™ — 1) + 3n + 6k(2" — 1))

Bahar Kuloglu, Engin Eser, Engin Ozkan

IR+l < s(A)t(B)

3 \/12 + |r|2(k2(4" — 1) + 3n + 6k(2" — 1)) J3 + (k2(4" — 1) + 3n + 6k(2" — 1))

3
Hence, we have

3

\/k2(4n —1) 4+ 3n+ 6k(2" — 1)
3

<

3

3

- J12 + |r|2(k2(4" — 1) 4+ 3n + 6k(2" — 1)) J3 + (k2(4" — 1) + 3n + 6k(2" — 1))

State 2. If |r| < 1, then from Eq. (1.4) and Lemma
3.1 we get

2
IRicx
n-1

n-1
> ) (= DIr[Rey|” + 172 )[Rl
j=0 /=0

]_
k?(4™ — 1) + 3n + 6k(2" — 1)

_ 2
n|r| 3
IRkl | [ =D+ 30+ 6k @M =)
— 2 |Tr
Vn 3

and from Eq. (1.2) we get
k?(4" — 1)+ 3n+ 6k(2" — 1)

[Rirll, = I 3
We calculate the upper bound for the spectral norm
of Ry, ;.
Let
Rko Rki Rk2 - Rgn—2 Rin-1
[Rkln_l Reo Rii o o Rk,n_z]
N = : : : -, : :
Rk'z Rk'3 Rk'4 e e Rk’l
Rk'l Rk'z Rk'3 e e Rk,O
and
1 1 1
[r 1 1]
M=]: P
l rTr . T 1I
l r T T 1J

then clearly Ry, =MoN, where o denotes the
Hadamard product. So,

E-ISSN: 2224-2880

max

ssM) =1 i <n

n
2
Z|mu| =
j=1
D

B jkz(z}n —1)+3n+6k(2"—-1)

max
ti(N) =4 <j<n Zlnul

3

Hence, by Lemma 1.2, we have
[Rirll, < s1(MDE (W)

J k?(4" - 1)+ 3n+6k(2" - 1)
= |n .
3

Thus
k2(4" — 1) + 3n + 6k(2" — 1)
I7. <|

*
R k,r

3 2

j k2(4" — 1) + 3n+ 6k(2™" - 1)
< |n 3

as desired.
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Now we give the relations above for the k-
Mersenne numbers.

4 k-Mersenne r-circulant matrix

u and v be non-negative integers and r € C — {0}.
The r-circulant matrices k-Mersenne numbers are
denoted by My, ,- and defined as follows:

Definition 4.1 The k-Mersenne r-circulant matrix is
defined as My, = Circ(k,7; ¢) where the first-row
vector is

= (Mk,u' Mk,u+v' Mk,u+2v: ey Mu+(n—1)v) ie.,
matrix of the form

Mk,u Mk,u+v Mk,u+2v Mk,u+(n—2)v Mk,u+(n—1)v
er,u+(n—1)v Mk,u Mk,u+v Mk,u+(n—3)v Mk,u+(n—2)v
Mkr — : : : . : :
| M 1420 "™y yi3zv ™rytray My, Miyso |
My ytv "™yvwi2o "™ryuszy - "™uym-1 My,

Theorem 4.2 The eigenvalues of k-Mersenne 7-
circulant matrices My , are

_r(Mk,vn+u) + rpW_iZV(Mk,v(n—1)+u) + My — vaw_i(Mk,u—v)' u>v
Ai(Mk,r) = _T(Mk,u(n+1)) + rpW_lzu(Mk,un) + Mk,u u=v
_T(Mk,vn+u) + rpw_lzv(Mk,v(n—1)+u) + Mk,u - ZupW_l(Mk,v—u)r v>u

wherei =0,1,2,...,n — 1.

Proof.  A;(Miy) = S8 My jo (pw ™)’

n-1

= > 2w = Dpw iy
j=0
n—1 n-1
= k24 ) @pw i = ) (pw
j=0 j=0
_ ot 1-(2VpwH" 1- (pw‘i)n
B 1—2vpwt 1—pwt
1-2"r 1—-r
() (o
1-2pw™ 1—-—pw™

k2% — k2¥pw ™t — g2V + 2V pw Tl — 1 4 2%pw T — r 2V rpw T 4
1—pw=i—2Vpw= + 2V (pwH)?

= —r(=1 4 k2% 4+ rpw =2V (k2VVYEY — 1) — 1 + k2% + 2Vpw ™ — k2¥%pw
foru > v

Ai(Mk,r) = _r(Mk,vn+u) + rpw_lzv(Mk,v(n—l)Hi) + Mk,u - vaw_l(Mk,u—v)r
foru<wv

Ai(Mk,r) = _r(Mk,vn+u) + rpw_lzu(Mk,v(n—1)+u) + Mk,u + kzupw_l(Mv—u)'
and for u =v
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Ai(Mk,r) = _T(Mk,u(n+1)) + rpW_iZu(Mk,u) + Mk,u
as desired.

Corollary 43 For r =1landr=-1 we get
eigenvalues for the k-Mersenne right and skew-right

circulant matrices as follows:
u>v

Ai(Mk,l) = - (Mk,vn+u) + pw_izv(Mk,v(n—l)Ht) + Mk,u + vaW_i(Mk,u—v)

u<v

2 - (Mk,vn+u) + pW_izv(Mk,v(n—l)Ht) + Mk,u + kzupw_i(Mk,v—u)
u=v

= — (Mk,u(n+1)) + pW_izu(Mk,un) + Mk,u
and
u>v

Ai(Mk,—l) = (Mk,vn+u) - SW_iZU(Mk,v(n—lﬂu) + Mk,u - vaw_i(Mk,u—v)

u<v

= (Mk,vn+u) - S;W_izv(Mk,v(n—l)+u) + My — kzufw_i(Mk,v—u)
u=v

= (Mk,u(n+1)) - S;W_izu(Mk,un) + My,
where € is the nth. the root of -1.

Theorem 4.4 For a positive integer n, we have
n-1

Z _r(Mk,vn+u) + rpW_iZU(Mk,v(n—1)+u) + My, = n(k2" - 1).

i=0
Proof. To get the desired result, we need to know
that the trace of any given square matrix is equal to
the sum of the eigenvalues of that matrix. In that
case,

n—-1 n—1
z Ai(Mk,r) = Z _r(Mk,u(n+1)) + rpW_izu(Mk,un) + Mk,u-
i=0 i=0

According to the expression given above, this sum

is equal to nMy,,,. So
n-1
z _T(Mk,vn+u) + rpW_iZU(Mk,v(n—IHu) + My = nMy,, = n(k2* —1)
i=0

as desired.

Theorem 4.5 Determinant of My, ,. is given by

n
det(Mk,r) = (_r)n((Mk,WHu + Mk,u)n + 2t (r(Mk,v(n—1)+u) - (Mk,u—v)) .
Proof. We can prove it like Theorem 2.5.

Corollary 4.6 The determinants of the k-Mersenne
right circulant and skew-right circulant matrices are
given as

n
det(Mk,l) = (_1)n((Mk,vn+u + Mk,u)n + 2" ((Mk,v(n—1)+u) - (Mk,u—v)) .

n
det(Mk,—l) = ((Mk,vn+u + Mk,u)n — 2 (_(Mk,v(n—1)+u) - (Mk,u—v)) .

On setting i = 0,7 = 1,and p = 1lin Theorem 4.2,
the following sum identities are verified for the k-
Mersenne numbers.
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_Mk,vn+u + 2v(]\/lk,v(n—1)+u) + Mk,u - Zka,u—v' u>v
Z Mk,u+jv = _Mk,u(n+1) + Zu(Mk,un) + Mk,u u=v
/ _Mk,vn+u + 2v(l\/lk,v(n—l)+u) + Mk,u + kZuMk,v—u: u<v

5 Norm of k-Mersenne 7-circulant

matrices
Whenwetakeu =0 and v=1
Mk,o Mk,l Mk,z Mk,n—z Mk,n—l
[TMk,n—1 Myo My1 . Myp-3 Mk,n—z]
Mp,.=| : P s :
Ty, TMgs TMy, .. My o My 4
T™My, TMg, TMys .. TMpn_q Mg,

From Lemma 5.1, the sum of the squares of the k-
Mersenne numbers will be used to obtain the norms
of different matrices.

Lemma 5.1 The finite sum of squares of the k-
Mersenne numbers is given by

T, kEEM—1)+3n—6k@2" - 1)
Z(Mk,j) = 3

j=0

Proof. The proof is similar to that of Lemma 3.1.
Theorem 5.2 The Euclidean norm for the k-

Mersenne r-circulant matrices is given by
n-1

M., 2((Mk, 1) = My o)l — (1= I P)]
Proof. By Eq. (1.4) we get
n-1
. 12 2 .
I, = Ml = i1 = 1712)
=0
n-—1
= ) k2 = 12— (1= )]
=0
n-1
= ) 022 — k2 4 D - A= )]
j=0
n—-1

= > (M + D = My jp)ln = (L= IrI?)]
=0

Theorem 5.3 The bound for the spectral norm of the
k-Mersenne r-circulant matrices is:

For |r| =1

< [|Mi. I,

\/k2(4n — 1)+ 3n— 6k(2" — 1)
3
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3+ (k2(4" — 1) + 3n — 6k(2" — 1))

- j|r|2(k2(4n —1) + 3n — 6k(2" — 1))
= 3

and for |r| < 1

] \/k2(4"— 1) +3n—-6k(2" -1
.
3

)
< [|Micx Il

\/ k2(4" - 1) + 3n—6k(2™ — 1)
< |n

3
Proof. We can prove it like Theorem 3.3.

6 Conclusion
Based on the k —Fermat and k —Mersenne number
sequences with similar recurrences, which have
been studied less, the r-circulant matrices of these
sequences were created. Euclidean, row, and
spectral  norms, which are  eigenvalues,
determinants, and some special norm values, are
discussed depending on this matrix. In addition, the
lower and upper bounds of these matrices for the
spectral norm were examined in closed form. In
addition, right circulant and skew-right circulant
matrices were examined for 1 and -1 values of r
depending on eigenvalues. Finally, some interesting
results and sum properties were given.

More interesting results can be expected by
working with the lesser-known Fermat equation
22" + 1 and the more general form of this equation,

a?" +b?";a,b €N.
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