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1 Introduction

An absolute valued algebra, is a nonzero real algebra,
that is equipped with a multiplicative norm (||zy|| =
|z||lly|])- These algebras have attracted the attention
of many mathematicians, [3], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. In 1947 Albert, [1]. Proved that
the finite dimensional unital absolute valued algebras
are classified by R, C, H, Q. And that every finite di-
mensional absolute valued algebra is isotopic to one
of the algebras R, C, H, 0. And so has dimension 1,
2,4 or 8, [1]. Note that, the norm ||| of any finite-
dimensional absolute valued algebras, comes from an
inner product (./.), [2]. Urbanik and Wright proved
in 1960 that, all unital absolute valued algebras are
classified by R, C, H, O, [4]. It is easily to seen
that, the one-dimensional absolute valued algebras are
classified by R. And it is well-known that the two-
dimensional absolute valued algebras, are isomorphic

to, C, *C, C*, or C, [5]. The four-dimensional ab-
solute valued algebras, have been described by M.I.
Ramirez Alvarez in 1997, [6]. The problem of classi-
fying all four (eight)-dimensional absolute valued al-
gebras seems still to be open.

Motivated by these facts, we became interested in
the study of four-dimensional absolute valued alge-
bras, with a nonzero omnipresent idempotent. which
generalizes the studies of M.L. El-Mellah, [3]. The
classification of these algebras containing only one
two-dimensional sub-algebra is still an open prob-
lem. We note that there are a four-dimensional ab-
solute valued algebras, with left unit not containing a
nonzero omnipresent idempotent, [6]. On the other
hand the four-dimensional absolute valued algebra
with a nonzero central idempotent, contains a subal-
gebras of dimension two. Which means that a cen-
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tral idempotent is an omnipresent idempotent . The
reciprocal does not hold in general, and the counter-
example is given (remark 3.2). From the comments
below, it arises in a naturel way the following ques-
tion: what is the classification of four-dimensional
absolute valued algebras with a nonzero omnipresent
idempotent and containing two different sub-algebras
of dimension two?. This paper is devoted to shed
some lighe on this problem.

In section 2, we introduce the basic tools for the
study of four-dimensional absolute valued algebras,
with a nonzero omnipresent idempotent, and contain-
ing two different sub-algebras of dimension two.

Moreover, In section 3, we introduce news classes
of four-dimensional absolute valued algebras, with a
nonzero omnipresent idempotent, namely M;, Moy,

M3, My, My, My, M3, My, *M;, *Ms, *Ms, *My,
M7, M3, M3 and M.

In section 4, we classify algebraically, all four-
dimensional absolute valued algebras, containing at
least, two different subalgebras of dimension two.

In section 5, we summarize our study in the ta-
ble.6.

2 Notations and Preliminary Results

Throughout this paper, the word algebra refers to a
non-necessarily associative algebra, over the field of
real numbers R.

Definition 2.1 Let A be an arbitrary algebra.

i) Ais called a normed algebra (resp, absolute val-
ued algebra) if it’s endowed with a space norm:
|-l such that ||lzy|| < ||z[[[ly]l (resp, llzyll =
[z|l[lyl), for all z,y € A.
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A is called a division algebra if, for all nonzero
a € A, the operators L,(x) = ax and R,(x) =
xa (for all x € A) of left and right multiplica-
tion by a are bijectives. Note that every finite-
dimensional absolute valued algebra is a division
algebra.

iii) We mean by a nonzero omnipresent idempotent,
an idempotent which is contained in all two-
dimensional sub-algebras of A.

iv) A(x,y) denote the sub-algebra of A generated by
x, and y.

The most natural examples of absolute valued alge-

bras are R, C, H (the algebra of Hamilton quaternion),

and O (the algebra of Cayley numbers). The algebras
*

*C, C*, and C (obtained by endowing the space C
with the products defined respectively by

rxy=2y, xxy=ay, and zxy==zy (P)

Where x — T is the standard conjugation of C.
*

We shall also denote by *H, H*, or H the real
algebras obtained by endowing the space H with the
products defined by (P) respectively, with x — Z is
the standard conjugation of H. The reader is referred
to [11] for more informations of these classical
absolute valued algebras.

We need the following results.

Theorem 2.2 ./2]. The norm of any finite dimen-
sional absolute valued algebra come from an inner
product.

Lemma 2.3 .[9]. Every algebra in which 2% = 0 only
if = 0. Contains a nonzero idempotent.

Lemma 2.4 . Let A be an absolute valued algebra of
dimension n > 2, containing a nonzero central idem-
potent e, and let B a 2-dimensional sub-algebra of A.
Then B contains a nonzero element orthogonal to e.

Proof.. Let a, b be an orthonormal basis of B. Then
there exists A\, 3 € R and u,v € {e}* such that a =
Xe +u, b= fPe+v. Now fa — \b = w € B\ {0}
andw = fBu — \v € {e}*

Lemma 2.5 . Let A be a four-dimensional absolute
valued algebra, containing a nonzero central idem-
potent f, then the following statements hold.:

i) A contains a 2-dimensional sub-algebra.
ii) 2% = —||z||*f, for all x € {f}+.

iii) If e € A is another nonzero idempotent such that
e # f, then the subalgebra A(e, f) is isomorphic

to C.

E-ISSN: 2224-2880

563

Noureddine Motya, Abdelhadi Moutassim

Proof..

i) We can induce isometries from the commutative
linear isometries L; and [2y on the orthogonal
space {e}* := F of dimension 3. So there ex-
ist common norm-one eigenvector v € E for
both L and R associated to eigenvalues o, 3 €
{—1,1}. That is, u? —f. Consequently
A(u, f) is a two-dimensional subalgebra of A.

i1) As A has an inner product space, we can assum
that ||z|| = 1. We have

lz* = fIl = |z = fllllz + f]| = 2
That is (z2/f) = —1, then 2% = — f.
iii) As e # f. We have

le = £l = lle* = £l = lle = flllle + f1

That is ||e + f|| = 1, this imply (e/ f)

1
—580
e+ f+ef=0

Consequently, A(e, f) is isomorphic to C.

Lemma 2.6 . Let A be a four-dimensional absolute
valued algebra containing 2-dimensional subalgebra

B.
1) Ifx € BY, then 22 € B.

2) If f is a nonzero central idempotent of A, then f
is an omnipresent idempotent.

Proof.. By Rodriguez theorem, [5]. B is isomorphic

to C, *C, C*, or C, and by lemma 2.3, B contains a
nonzero idempotent e. We canset B = A(e, i), where
ei = +i, ie = +i, and i* = *e.

1) We have {e,i} is an orthonormal basis of B,
which can be extended to an orthonormal basis
F = {e,i,j,k} of A. Since L; is bijective, there
exist j1, and jo, such that
Jji=1 and jj2=e
Let x = aj + bk € B+, we have

(J1/e) = (jir/je) = (i/je) = £(ie/je) = £(i/j) = 0

And

(r/1) = (G /3i) = (i/ji) = £(ei/ji) = £(e/j) = 0

Hence, j1 = aj + Bk, likewise jo = o/j + (k.
So we have

i = jj1 = aj®+ Bjk
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and

e=jja=a'j* + f'jk
As aff’ — Ba’ = £1, then 52 € B, and jk € B.
Similarly we show that k2 € B and kj € B, so

2% = a%j% + b*k* + ab(jk + kj) € B

2) Let x be a nonzero element of A orthogonal to
f,s0o 22 = —|z||?f then f = —||z|| 7?22 € B
which mean that f'is an omnipresent idempotent.

Remark 2.7 . For any orthogonal two elements
T,y € et, we have (vy/yx) = — (22 /y?).
Proof. A simple linearisation of the identity ||z?| =
|z||? give this result.

3 New class of four-dimensional
absolute valued algebras with a

nonzero omnipresent idempotent

In this paraghraph we construct some news classes
of four-dimensional absolute valued algebras with a
nonzero omnipresent idempotent.

3.1 Construction of M, My, M, and M,
Let {e, 1, j, k} be the orthonormal basis of the algebra
H of quaternions with the usual multiplication table:

Table.l. H
e|1|] |k
ele| 1] |k
1]1]-e| k|-
Jl11-k]-e]1
klk|j|-]-e

Let ¢, 4, A the linaer isometries of the euclidian
space H whose matrices with respect to the canonical
basis are given, respectively, by diag {1,1,1, —1},
diag {1,1,—1,—1}, diag{1,1,—1,1}. We define
news multiplications on the space H.

vy = ¢(x)o(y)
T2y = ¢(x)y
T x3y = o(y)

z x4y = P(z)A(y)

we get new class of algebras with the multiplica-
tion tables defined respectively by:

Table.2. M;

e | 1]k
el e | 1]|j |-k
1|1 |-e|k|]
Jlg-k|-e]|-
k|-k|[-]1]-e
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Table.3. My
e |1 ]] |k
ejle|1]|]]|k
11 ]-e|k]-
J1 g 1-kl-e|i
k|l-k|-]1]e
Table.d. Ms
el 1] |k
e|le| 1| |-k
i]1|-e|k]]j
Tl k|-
klk|j]|-1]e
Table.5. My
e | 1[J |k
ele |1 |-k
1)1 ]-e|-k|-
J1 9 k|-e|-
k|l-k|-j]-1]e

Lemma 3.1 . The algebras M1,My, M3, and My are
absolute valued algebras with omnipresent idempo-
tent e.

Proof. All these algebras are trivially absolute val-
ued. We have also:

1. e is central idempotent for My, so it’s an om-
nipresent.

2. e is left-unit for algebra My so the only non zero
idempotent. It belongs to all subalgebras of My,
[10]. So e is omnipresent.

3. e is a right-unit for algebra M3 so it is om-
nipresent.

4. Let B be a two dimensional sub-algebra of
My, then there exist an nonzero idempotent f
and t in B, such that (f/t) = 0 and t? =
+f. Using the basis {e,i,j,k} there exists
alaﬁlv/yladlaaQaBQa’YQ?é? € R such that f =
are + B1i + vj + Skand t = agse + Bt +
Y2j + 6ok We have

P=j32=—¢, k’=¢, ie=ci=1i

je=ej=—j, ke=—k, ek=%k
And

ik=ki=—j, ij=—ji=—k, jk=kj=—i

Volume 22, 2023



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2023.22.62

Since f2 = f, then
af =i -1 +6 = a (1)
2181 = 2m01 = B ()
20171 — 28101 = m 3)
b = 0 4)
As ||f|| = 1, then o + 52 + 4% + 6% = 1 also

—B%—ﬁ—é%:al (1), we get
207 —a; —1=0
thusa; = lora; = —%.

(a) If a; = 1, thereforee = f € B

(b) Ifa; = —%, then the equalities (2) and (4)
give f1 = 61 = 0. So
1 V3
VB e
f=—gef e Ale))
On the other hand, we know that t> = +f
then
a3 —f3 -7 +0 = *or (5)
20003 — 27200 = 0 (6)
—20072 — 23200 = £y (7)
b = 0 8)
Since ||t|| = ||f| = 1, then a3 + 2 +

73 4+ 83 = 1. The equalities (5)and (8) give
203 — 1 = day, thus ag # 0 and v5 # 0.
Hence the equalities (6) and (8) imply that
Bo = §o = 0, thatis, t = age + Y25 €
A(e, j). Therefore B = A(e, j),so e € B.
As aresult e is a nonzero omnipresent idem-
potent of M.

Remark 3.2 . e is a nonzero omnipresent idempotent
for the algebras My, M3 and My which isn't a central
idempotent.

3.2 Construction of the standard isotope of
Ml, Mg, Mg and M4

Let M denote one of absolute valued algebras M,
My, M3 or M. We constructon the vectorial space
of M by the news multiplications given respectively,
byx*xy =2y, r*xy =Ty, r*xy = Yy, wherex — T
is the standard conjugation of M. The algebras ob-
tained called the standard isotopes of M, and denoted

respectively by M, *M, M*,

Since the conjugation is an isometry, M, *M, M*
are absolute valued algebras, As any two dimensional
sub-algebra of M is invariant under conjugation, then
e is also an omnipresent idempotent of these news al-
gebras.
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4 Main results

In this section, we assume that A is a four dimensional
absolute valued algebra with omnipresent idempotent
e and having at least two different subalgebras B; and
Bs of dimension two.

We have the following studies.

4.1 B and B, are isomorphic to C or C

Proposition 4.1 . If By and Bs are isomorphic to C.
Then A is isomorphic to H, My, Ms or M.

Proof. Let B; = A(e, i) and By = A(e, j) be a two
subalgebras of A isomorphic to C, then we have

2 = 2
We know also (e/i) = (e/j) = 0, so without loss of
generality we may assume that (i/j) = 0. indeed, if

(i/7) # Othent = HJ Ez%g 7 is orthogonal to e. Since

te = et = tand ||e| = ||t]] = 1, we get t*> = —e.
Which implies that A(e, t) is isornorphic to C.

Now in A there exists an orthonormal subset {e, 7, j }
which can be extended to an orthonormal basis
{e,i,j,k} for A. Since k € {e,i,j}*, then k? €
A(e i) N Ale, ]) = {e} (lemma 2.6.(1)). We get
k% = +e. But since

=—e, te=cit=1 and je=¢ej =]

(ek/e) = (ek/e?) = (e/k) =0
(kefe) = (ke/e?) = (k/e) =0
(eh/i) = (ek/ei) = (k/i) = 0
(ke/i) = (ke/ie) = (k/i) =0
(ek/7) = (ek/ej) = (k) =0
(ke/§) = (ke/je) = (k) =0

we obtain ek = ¢k and ke = Ck, where |¢| = || = 1.
We conclude that A(e, k) is two-dimensional subalge-
bra of A, that is A(e, k) is isomorphic to C, *C, C* or
C. We distinguish the following cases:
1. If A(e, k) is isomorphic to C.
Then e will be the unit element of A and, there-

fore the multiplication of A is given by Table.1,
so A is isomorphic to the quaternion H.

2. If A(e, k) is isomorphic to C.

So ke = ek = —k and k? = —e, since
(ig/e) = (ij/ —i%) = —(i/j) =0
(i3 /i) = (ij/ie) = (i/j) = 0
and
(ij/3) = (ij/5) = (i/j) =0
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Hence 75 = k or ¢j = —k. In a similar manner,
we can show that

tk=7 or tk=—j

and
jk=1 or jk=—i

Assume that ij = k, in this case we have ik = j
and jk = —1. Indeed, if tk = —j, then

i(j+k)=k—j=—ek—ej=—e(k+}))

Which gives ¢ = —e (A has no zero divisors),
contradiction. Also if jk = ¢, then

(t+j)k=7+i=(j+1i)e

which implies £ = e, absurd. Moreover, by re-
mark 2.7, we have

(ij /i) = —(i*/3%) =
which means that
lij + jil[> = 0
So ©j = —ji, and by the same way we have

ik = —ki, and jk = —kj. Therefore, the mul-
tiplication of A is given by the Table.2, which
mean that A is isomorphic to M.

. A(e, k) is isomorphic to *C.
We have ek = k, ke = —k and k? = e. Using
remark 2.7, we have (ik/ki) = —(i2/k®) = 1
which means that
ik — ki||> =0

So ik = ki, similarly, we get

jk=kj and ij = —ji
By simple calculations, we show that

ij=k or ij=—k

k=373 or tk=—j
and

jk=1 or jk=—i
Assume that ij = k, in this case we have ik =
—j and jk = i. Indeed, if ik = j, then

i(j+k)=k+j=cek+ej=celk+))

Which gives ¢ = e (A has no zero divisors), con-
tradiction. Also if jk = —i, then
—(j+i)e
which implies ¥ = —e, absurd. So the multi-

plication of A is given by the Table.3, and A is
isomorphic to M.

(i+))k=—j—i=—je—ie=
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4. A(e, k) is isomorphic to C*,
We have ek = —k, ke = k and k> = e. By
remark 2.7, we get

ik =ki, jk=Fkj and ij = —ji
And by simple calculations, we show that

ij=k or ij=—k

tk =7 or itk =—

and
jk =1 or jk=—i

Assume that ¢j = k, in this case we have ik = j
and jk = —i. Indeed, if tk = —j, then
i(j+k)=k—j=—ek—ej=—elk+])

This implies that i = —e (A has no zero divi-
sors), contradiction. Also if jk = i, then

(i+)Nk=j+i=je+ie=(j+1i)e

which implies £ = e, absurd. Then the product
of A is given by Table.4, So A isomorphic to M.

Proposition 4.2 . If By and B are isomorphic to C.
Then A is isomorphic to H, My, Ms or M.

Proof.. we define a new multiplication on A by

T*y = Ty, we obtain an algebra A which contains two
different subalgebras isomorphic to C. Therefore, ap-

plying proposition 4.1, A is isomorphic to ]HI Ml, M2
or M3 Consequently, A is isomorphic to ]HI Ml, M2
or M3

4.2 B, isomorphic to C and B, isomorphic

to é
We assume that B; = A(e, i) isomorphic to C and

By = A(e, 7) isomorphic to C, we have

i+ 517 = llel*li + 41> = llei + ejl|* = [l — 4|
That is

24+ 2(i/4) = 2 - 2(i/)

Hence (i/7) = 0.
Proposition 4.3 . If B is isomorphic to C and By is
isomorphic to C. Then A is isomorphic to My, My,
My, or My.
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Proof.. We can form an orthonormal basis {e, 7, j, k}
of A. Since k € {e,i,7}*, then k2 € A(e, i) N
Ae,7) = {e} (lemma 2.6.(1)). We get k? = +e.
But since

(ek/e) = (ek/e?) = (e/k) =0
(ke/e) = (ke/e?) = (k/e) =0
(ek/i) = (ek/ei) = (k/i) =0
(ke/i) = (ke/ie) = (k/i) =0

(ke/j) = (ke/ —je) = (k/j) =

We obtain ek = ek and ke = Ck, where |e| = |¢| = 1.
We conclude that A(e, k) is two-dimensional subalge-
bra of A, that is A(e, k) is isomorphic to C, *C, C* or

C. We have the following cases:

1. If A(e, k) is isomorphic to C, or C.
Then A has two different subalgebras isomor-

*
phic to C or isomorphic to C. Hence A is iso-

morphic to M, M, (Proposition 4.1, and Propo-

sition 4.2.).
2. If A(e, k) is isomorphic to *C.

We have ek = k, ke = —k and k2 = e.
According to remark 2.7, we have (ik/ki) =
—(i%/k?) = (e/e) = 1 which means that

ik — ki||> =0
So ik = ki, and similarly, we get
jk=kj and ij = —ji
We can also show that
ij=k or ij=—k
tk =3 or itk =—j

and
jk=1 or jk=—i

Ifij = —k, then ik = —j and jk = —i. Indeed,
if itk = 7, then

i(j+k)=—-k+j=—ek—ej=—elk+7)

So i = —e (Absurde).
Also if jk = 1, then

(i+j)k=—j+i=jet+ie=(j+1i)e
which implies & = e, absurd. So the multiplica-

tion of A is given by Table.5, and A is isomor-
phic to My.
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3. If A(e, k) is isomorphic to C*,
On A we can define a new algebra ;1 by the mul-
tiplication =z x y = Zy. Then ;1 contains three
different subalgebras isomorphic to (E?, Cand *C
respectively. Hence the last result imply that ;1
is isomorphic to My. So A is isomorphic to M*L;.

4.3 B, and B, are isomorphic to *C or C*
We have the following results

Proposition 4.4 . If By and Bs are isomorphic to *C.
Then A is isomorphic to *H, *M;, *Msy or *Ms.

Proof.. We define a new multiplication on A by
x * y = Ty, we obtain an algebra * A which contains
two different subalgebras isomorphic to C. There-
fore, applying proposition 4.1, *A is isomorphic to
H, My, My or M3. Consequently, A is isomorphic to
*H, *My, *My or *Ms.

Proposition 4.5 . If B1 and B are isomorphic to C*.
Then A is isomorphic to H*, My*, My* or Mi3*.

Proof.. We change the product of A by zxy = zy, we
get the algebra noted A* which contains two different
subalgebras isomorphic to C. So by Proposition 4.1.
A* is isomorphic to H, My, My or Mi3. Which mean
that A is isomorphic to H*, M;*, My*, or Mig*.

4.4 B, isomorphic to C and B, isomorphic
to *C

We can pose B1 = A(e, i), and By = A(e, j) isomor-

phic to *C, we have (i/j) = 0.

Proposition 4.6 . If By isomorphic to C and Bs iso-
morphic to *C. Then A is isomorphic to My, My,
*Ms, or *My.

Proof.. We can construct an orthonormal basis
{e,1, j, k} of A. and we have by the same argument in
the precedent case, A(e, k) is two-dimensional subal-
gebra of A.
1. If A(e, k) is isomorphic to C, or *C.
Then A has two different subalgebras isomor-
phic to C or isomorphic to *C. Hence A is iso-
morphic to My, or *Ms (Propositions 4.1, and
Proposition 4.4).

*
2. If A(e, k) is isomorphic to C.
By Proposition 4.3. A is isomorphic to My
3. If A(e, k) is isomorphic to C*.
We considere the product z x y = Zy, we ob-
tain an algebra * A which contains three different

subalgebras isomorphic to C, C and *C respec-
tively. Therefore, applying the last result, *A is
isomorphic to M. Consequently, A is isomor-
phic to *My.
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4.5 DB; isomorphic to C and B, isomorphic
to C*

We pose B1 = Ale, i), and By = Ale, j). we always

have (i/7) = 0. the identity

i + 51 = llell*lli + 11> = llei + ej|* = |li — 41
Give
2+2(i/j) =2 —2(i/j)

So (i/7) = 0.
Proposition 4.7 . If By isomorphic to C and Bs iso-
morphic to C*. Then A is isomorphic to M3, M3*,
*My or Mly.
Proof.. We have (i/j) = 0 so {e,i,j} is an or-
thonormal familly which can be extend to an or-
thonormal basis {e, 7, j, k} of A. Since A(e, k) is two-

dimensional subalgebra of A. We have the following
cases:

1. If A(e, k) is isomorphic to C or C*.
Then A has two different subalgebras isomor-
phic to C or isomorphic to C*. Hence A is
isomorphic to Miz,or Mi3* (Proposition 4.1, and
Proposition 4.5).

2. If A(e, k) is isomorphic to ((*3
By Proposition 4.3. A is isomorphic to I\XLL.

3. If A(e, k) is isomorphic to *C, then A is isomor-
phic to *My (Proposition 4.6).

Remark 4.8 .

1. If A has two subalgebras By = A(e, 1), isomor-
phic to é and By = A(e, j) isomorphic to *C.
We can define a new algebra ;1 with product
Txy =Y. So ;1 contains two different subalge-
bras isomorphic to C and C* respectirely. So ;1

is isomorphic to M3, M3*, *My, or My (Propo-
sition 4.7). Consequently A is isomorphic to My,
s M?,, *Mg, or M4*.

2. if A has two subalgebras B1 = Ale,i) iso-

morphic to C, and By = A(e,j) isomorphic
to C*. We define a new multiplication on A by

x x y = Ty, and we obtain an algebra A, which
contains two different subalgebras isomorphic
to C, and *C respectively. By Proposition 4.6,

*

A is isomorphic My, Mly, *Ms, or *My. Hence
* *

A is isomorphic to My, My, Mo™ or My*.
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4.6 B, isomorphic to *C and B, isomorphic
to C*
Let’s By = A(e, i), and By = A(e, j). We have

i+ 11 = lli + 31 llel* = lie + jel® = || — i+ ]

So
2+2(i/j) = 2 —2(i/J)
Hence (i/7) = 0.

Proposition 4.9 If By isomorphic to *C and Bs iso-
morphic to C*. Then A is isomorphic to *My, , *My,
M *, or M4*

Proof. We construct an orthonormal basis {e, i, j, k}
of A.:

1. If A(e, k) is isomorphic to C*, or *C.
Then A has two different subalgebras isomor-
phic to *C or isomorphic to C*. Hence A is iso-
morphic to *My,or M;* (Propositions. 4.4, and
Proposition. 4.5).

2. If A(e, k) is isomorphic to C, the result is a con-
sequence of the Proposition. 4.6, thus A is iso-
morphic to *My.

*

3. If A(e, k) is isomorphic to C, the result is a con-

sequence of the remark. 4.8. Hence A is isomor-
phic to M, *.

Remark 4.10 If 15 = —k, we subistitute —k = t we
obtainij = t, so we use the basis {e, 1, j,t}, we again
get the same classifications.

5 Conclusion
In this section, we have the following main result.

Theorem 5.1 Let A be a four dimensional absolute
valued algebra with a nonzero omnipresent idempo-
tent e, and having two different subalgebras By and
Bs of dimension two. The following table specifies
the isomorphisms classes.
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Table.6. All classifications
B | By A

(C (C H; Ml; MQ, M3

* * * * * *

(C C ]H[, Ml; MQ, M3

CcC | C My, My, My, My
*C | *C *H, *My, *My, *Ms
c*| C* H*, M ", My, M3™
C | *C My, My, *My, *My
C |C* Mz, Mi3*, *My, My
* *

C *C M4, ng *M3; M4*
C |C* M, My, Mp*, My*
*C | C* | *My,, *My, M ", or My*
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