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Abstract: - Conformal self mappings of a given domain of the complex plane can be obtained by using the Rie-
mann Mapping Theorem in the following way. Two different conformal mappings φ and ψ of that domain onto
one of the standard domains: the unit disc, the complex plane or the Riemann sphere are taken and then ψ−1 ◦ φ
is what we are looking for. Yet, this is just a theoretical construction, since the Riemann Mapping Theorem does
not offer any concrete expression of those functions. The Möbius transformations are concrete, but they can
be used only for particular circular domains. We are proving in this paper that conformal self mappings of any
fundamental domain of an arbitrary analytic function can be obtained via Möbius transformations as long as we
allow that domain to have slits. Moreover, those mappings enjoy group properties. This is a totally new topic.
Although fundamental domains of some elementary functions are well known, the existence of such domains for
arbitrary analytic functions has been proved only in our previous publications mentioned in the References sec-
tion. No other publication exists on this topic and the reference list is complete. We deal here with conformal self
mappings of fundamental domains in its whole generality and present sustaining illustrations. Those related to
the case of Dirichlet functions represent a real achievement. Computer experimentation with these mappings are
made for the most familiar analytic functions.
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1 Introduction

Let f(z) be a holomorphic function in C with the ex-
ception of isolated singular points, which can be poles
or essential singular points. It is known, [1], that
C = ∪n≤∞

k=1 Ωk, where Ωk are open connected sets,
Ωk∩Ωj = ∅,when j ̸= k and everyΩk is conformal
(hence bijectively) mapped by f onto C\Lk, where
Lk is a slit, or a cut, i.e., a Jordan arc or a Jordan in-
finite curve. We will treat slits mostly as point sets.
If E ⊂ C is any point set we will denote by f(E) the
image of E by f, i.e.

f(E) = {f(z)|z ∈ E}

and by f−1(E) the pre-image of E by f i.e.,

f−1(E) = {z|f(z) ∈ E}.

This convention cannot produce any confusion. The
uniqueness theorem of analytic functions guarantees
that for a non constant analytic function f(z) the pre-
image by f(z) of a point w is a discrete set of points
{zn} such that f(zn) = w.

A slit exhibits two distinct edges, [2], and a point
of the slit can be n on one edge or on the other. The in-
verse function f−1

|Ωk
, which exists for every k, in view

of bijectiveness of f in Ωk, fails to have a continuous
extension to Lk, since for sequences of points tend-
ing to the same point on Lk from the sides of dif-
ferent edges the function has different limits. How-
ever, the function f|Ωk

can be extended by continu-
ity to the boundary ∂Ωk of Ωk and it maps ∂Ωk onto
Lk.This fact is granted by the Riemann-Caratheodory
Theorem of boundary correspondence in the confor-
mal mapping [3] and [4]. The same theorem allows
the extension of f−1

|Ωk
not toLk, but to the two edges of

Lk which then are mapped one to one by the extended
function onto ∂Ωk.

Ahlfors, [2], called the domains Ωk fundamental
regions of f.When f is a rational function of degree
m, then n = m, [5].

Fundamental domains are known also for analytic
functions having non isolated singular points, as for
example the modular function or the infinite Blaschke
products. For the modular function every point of the
real axis is a singular point (obviously, non isolated),
while for the infinite Blaschke products such points
are the cluster points of the poles.
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Examples of fundamental domains for different
classes of analytic functions were given in [6], [7].
We have n there that they are not uniquely determined,
yet some points of their boundaries must be the same
for any partition of the complex plane into fundamen-
tal domains and these are the branch points of the
function f. The branch points of f are the zeros of
derivative of f, the multiple poles and the essential
singular points of this function. Since in any neigh-
borhood of such a point the function fails to be injec-
tive, the branch points cannot belong to any funda-
mental domain and therefore they should be located
on the boundaries of these domains. This simple re-
mark, as well as the simultaneous continuation tech-
nique, [5], [6], [7], [8], [9], allowed us to implement
procedures of finding fundamental domains for dif-
ferent classes of analytic functions.

It is known that for a Blaschke product w = B(z)
of degree n the equation B(z) = 1 has exactly n dis-
tinct solutions ζk all located on the unit circle and for
every k the image by B(z) of the arc of the unit cir-
cle between ζk and ζk+1 is the whole unit circle. The
equationB′(z) = 0 has no solution on the unit circle,
[5], [7], [8]. Then the pre-image by B(z) of the point
1 is the set of points {ζk} and when w moves from
1 towards 0 on the real axis, n points zk will move
each one from the corresponding ζk inside the unit
disc describing some Jordan arcs. These arcs can only
meet each other at the branch points of B(z). When
two adjacent arcs starting from consecutive points ζk
and ζk+1 on the unit circle meet each other at ak, they
bound together with the arc of the unit circle between
ζk and ζk+1 a domain which is conformal mapped by
B(z) onto the unit disc with a slit alongside the real
axis from B(ak) to 1. The symmetric of this domain
with respect to the unit circle is conformal mapped
by B(z) onto the exterior of the unit circle with a slit
alongside the real axis from 1 to 1/B(ak) and there-
fore the union Ωk of the two domains and of the com-
mon part of the boundary is conformal mapped by
B(z) onto the whole complex plane with a slit along-
side the real axis from B(ak) to 1/B(ak). The do-
main Ωk is a fundamental domain of B(z) and we
obtain the remaining n − 1 fundamental domains of
B(z) in a similar way.

Although we use the wordsmove and describe this
is a static situation, where arcs are mapped bijectively
onto some intervals of the real axis.

Let us notice that the topological facts listed
above have as corollary a surprising algebraic result,
namely, that the image by B(z) of the roots of B′(z)
are all real.

Fig. 1, Fig. 2, Fig. 3 and Fig. 4 illustrate this affir-
mation forB(z) having the triple zeros a,−awith |a|
< 1 and 0. Different stages of the construction of the

Figure 1: Building fundamental domains of a
Blaschke product of degree 9

fundamental domains are exhibited in these figures.
This result has been generalized in [7] to infinite

Blaschke products and we have found that in every
neighborhood of a cluster point of poles (which is
necessarily on the unit circle) of an infinite Blaschke
product there are infinitely many fundamental do-
mains of that function. This is a completion of the
Big Picard Theorem in the sense that such a point is
not an isolated singular point (being limit of poles)
and instead of infinitely many points having the same
image it states that infinitely many domains have the
same image.

We notice also that every neighborhood of an iso-
lated essential singular point of any analytic function
f intersects infinitelymany fundamental domains. In-
deed, let a be such a point and letV be a neighborhood
of a. If w is a non omitted value of f , then there are
infinitely many points zk ∈ V such that f(zk) = w.
Each one of the points zk is either an interior point of
a fundamental domain Ωk or a finite number km of
fundamental domains meet in zk. As the set (km) is
infinite, infinitely many fundamental domains f in-
tersect V .

The exponential function f(z) = ez has as funda-
mental domains horizontal strips of width 2π, as for
example

Ωk = {z|2kπ < ℑz < 2(k + 1)π}

where k ∈ Z.
Each one of these domains is conformal mapped

by f(z) onto the complex plane with a slit alongside
the positive real half axis.
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Figure 2: Building fundamental domains of a
Blaschke product of degree 9

Figure 3: Building fundamental domains of a
Blaschke product of degree 9

Figure 4: Fundamental domains of a Blaschke prod-
uct of degree 9

Let us notice that f(z) = ez maps one to one the
interval

{z = iy|0 ≤ y < 2π} ⊂ Ω0

onto the unit circle. Moreover, since

ex0+iy0 = ex0(cos y + i sin y)

is the equation of a circle centered at the origin and
of radius ex0 , when 0 ≤ y < 2π, f(z) is a conformal
mapping of the half ofΩ0 on the left side of the imagi-
nary axis (corresponding to x0 < 0) onto the unit disc
(since ex0 < 1) with a slit alongside the real axis from
0 to 1. It is also a conformal mapping of the half ofΩ0

at the right side of the imaginary axis onto the exterior
of the unit disc (since ex0 > 1) with a slit alongside
the real axis from 1 to ∞. This remark gives a good
idea of the geometry of the conformal mapping of Ω0

by f(z) = ez . We have a similar situation for every
Ωk. Fundamental domains of the exponential func-
tion are illustrated in Fig. 5.

The fundamental domains of f(z) = cos z are
bounded by vertical lines ℜz = kπ and ℜz = (k +
1)π, k ∈ Z. This function realizes a conformal map-
ping of each one of these strips onto the complex
plane with a slit alongside the real axis complemen-
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Figure 5: Fundamental domains of ez

Figure 6: Fundamental domains of cos z

tary to the interval (−1, 1). Indeed, we have

cos z = 1

2
(eiz + e−iz) =

1

2
(eix−y + e−ix+y)

=
e−y

2
(cosx+ i sinx) + ey

2
(cosx− i sinx)

= cosx
[
1

2
(ey + e−y)

]
− i sinx

[
1

2
(ey − e−y)

]
= cosx cosh y − i sinx sinh y.

Thus,
cos(kπ + iy) = (−1)k cosh y,

which shows that every vertical line z = kπ + iy,
k ∈ Z is mapped two to one by f(z) = cos z onto the
interval of the real axis from−∞ to−1when k is odd
and from 1 to +∞ when k is even. Therefore every
vertical strip bounded by two consecutive such lines
is a fundamental domain for f(z) = cos z, which is
mapped by f(z) onto the complex plane with a slit
alongside the real axis complementary to the interval
(−1, 1). Fundamental domains of the cosine function
are given in Fig. 6. All the other trigonometric func-
tions have similar fundamental domains.

The Euler Gamma function is an extension to
the whole complex plane of the arithmetic function
Γ(n) = (n − 1)!. For ℜz > 1 the extension is given
by

Figure 7: Fundamental domains of the Euler Gamma
and the Riemann Zeta function

Γ(z) =

∫ ∞

0
e−ttz−1dt (1)

Integrating by parts, we find that Γ(z) satisfies the
functional equation zΓ(z) = Γ(z + 1) which allows
its extension to the half-planeℜz ≤ 1. The pre-image
byΓ(z) of the real axis displays fundamental domains
of this function as shown in Fig. 7. The red curves
are the pre-image of the positive half axis and the
black ones that of the negative half axis. The domains
bounded by consecutive curves of the same color are
fundamental domains of Γ(z). They are conformal
mapped by the function onto the complex plane with
a slit alongside some intervals of the real axis. On the
right side of Fig. 7, the preimage of the real axis by
the Riemann Zeta function is illustrated. It is similar
to that of the Gamma function, yet not all the domains
bounded by its components are fundamental domains.

The modular function λ(τ) has been built, [2],
starting with a domain Ω1 bounded by the half-lines
ℜτ = ±1, ℑτ ≥ 0 and the half-circles |τ ± 1/2| =
1/2, ℑτ ≥ 0. The Riemann Mapping Theorem states
that there is a unique conformal mapping λ(τ) of the
domain Ω1 onto the complex plane with a slit along-
side the real axis from −∞ to −1 and from 1 to +∞
such that τ = 0, 1,∞ corresponds to λ = 1,∞, 0,
[2]. Using the Schwartz Symmetry Principle this
mapping can be extended analytically to the whole
upper half plane. The domains obtained by iterated
symmetries with respect to the half-lines and half-
circles are all fundamental domains of λ(τ), which
are illustrated in Fig. 8. In every neighborhood of a
point of the real axis there are infinitely many such
domains and therefore the real axis is a singular line
of λ(τ).

The fundamental domains mentioned above are
obvious, yet for most of the classes of analytic func-
tions they have to be found. On the other hand, there
is no hope to compute the values of λ(τ) since the
Riemann Mapping Theorem states only the fact that
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Figure 8: The fundamental domains of the modular
function

such a function exists and is unique. However, it has
this special feature that the conformal mappings of the
fundamental domains one of each other are known,
namely those generated by τ → τ+1 and τ → −1/τ .
We will show later that for any analytic function such
mappings can be found as long as we allow funda-
mental domains to have slits.

The Weierstrass ℘ function has been defined, [2],
by the formula

℘(z) =
1

z2
+

∑
ω ̸=0

[
1

(z − ω)2
− 1

ω2

]
(2)

where ω = mω1 + nω2, (m,n) ∈ Z × Z \ {(0, 0)}
withω1 andω2 arbitrary complex numbers having non
real ratio ω1/ω2. It is a doubly periodic function with
the periods ω1 and ω2. The parallelogram determined
by ω1 and ω2 is divided by the diagonal from ω1 to
ω2 into two triangles which are fundamental domains
for ℘, [8]. The conformal mapping of these triangles
made by ℘ onto the complex plane with three slits is
illustrated in Fig. 9.

2 Fundamental Domains of Dirichlet
Functions

The conformal mappings by Dirichlet functions have
been studied in [10], [11], [12], [13] and the way the
fundamental domains of these functions can be re-
vealed has been explained. However, for a better un-
derstanding of this topic we will repeat some of the
findings in those papers.

Figure 9: The fundamental domains of ℘ and their
conformal mapping onto the whole complex plane
with three slits

Since the Dirichlet L-functions have been imple-
mented in different packages of software and for illus-
tration purposes we only make use of these functions,
it is necessary to present them separately.

A Dirichlet character modulo q is an arithmetic
function χ(n) which is periodic of period q and such
that if q and n are not relatively prime, then χ(n) = 0
and if they are relatively prime then χ(n) is a root of
order φ(q) of the unity, where φ is the Euler totient
function. For every q we have χ(1) = 1.

Let us take q = 7. Then φ(q) = 6 and the six
Dirichlet characters modulo seven are given in Table
1, where ω = eπi/3.

χ\n 0 1 2 3 4 5 6
χ1(n) 0 1 1 1 1 1 1
χ2(n) 0 1 ω2 ω −ω −ω2 -1
χ3(n) 0 1 −ω ω2 ω2 −ω 1
χ4(n) 0 1 1 -1 1 -1 -1
χ5(n) 0 1 ω2 −ω −ω ω2 1
χ6(n) 0 1 −ω −ω2 ω2 ω -1

Table 1: Dirichlet characters modulo 7

ADirichlet function is obtained by performing an-
alytic continuation to the whole complex plane of the
sum of a Dirichlet series

ζA,Λ(s) =

∞∑
n=1

ane
−λns (3)

where Λ = (λn) is a non decreasing sequence of pos-
itive numbers, A = (an) is an arbitrary sequence of
complex numbers and s = σ + it is a complex vari-
able. It make sense to deal only with normalized se-
ries (3) in which a1 = 1 and λ1 = 0. For every nor-
malized Dirichlet series ζA,Λ(s) we have

lim
σ→+∞

ζA,Λ(σ + it) = 1. (4)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.72 Andrei-Florin Albişoru, Dorin Ghişa

E-ISSN: 2224-2880 656 Volume 22, 2023



This apparently trivial property has surprising conse-
quences regarding the geometry of the mappings by
Dirichlet series. We list here a few of them.

The pre-image of the real axis by ζA,Λ(s) has
infinitely many components which are of the three
types:

a) Γ′
k , k ∈ Z extending for σ from −∞ to +∞

and which are mapped by ζA,Λ(s) bijectively onto the
interval (1,+∞) of the real axis. These curves do
not intersect each other and Γ′

k and Γ′
k+1 form infi-

nite open strips Sk which are mapped by ζA,Λ(s) not
necessarily one to one onto the whole complex plane
with a slit alongside the interval (1,+∞) of the real
axis. We count them from−∞ to+∞ such that Sk+1

is above Sk and 0 ∈ S0.

b) Every strip Sk, k ̸= 0 contains a unique com-
ponent Γk,0 of the pre-image of the real axis which
is mapped by ζA,Λ(s) bijectively onto the interval
(−∞, 1) of the real axis. This component also ex-
tends for σ from −∞ to +∞.

c) Every strip Sk, k ̸= 0 contains a finite number
of componentsΓk,j , j ̸= 0 of the pre-image of the real
axis which are mapped bijectively by ζA,Λ(s) onto the
whole real axis. These components extend for σ from
−∞ to some finite values. They are parabola shaped
curves with the branches extending to −∞. The strip
S0 has infinitely many components Γ0,j .

The strip Sk, k ̸= 0 havingm components Γk,j of
the pre-image of the real axis can be partitioned into
m sub-strips, the interiors of which are fundamental
domains of ζA,Λ(s). The strip S0 contains infinitely
many fundamental domains.

For k ̸= 0 the fundamental domains of every func-
tion ζA,Λ(s) are bounded by components of the pre-
image by ζA,Λ(s) of the interval (1,+∞) of the real
axis to which components of the pre-image of the
segment between 1 and ζA,Λ(vk,j) is added, where
ζ ′A,Λ(vk,j) = 0. We have shown in [10] that such a
construction is always possible.

There is number σc ≤ ∞ such that the series (3)
converges locally uniformly forℜs > σc and diverges
for ℜs < σc. The number σc is called the abscissa of
convergence of the series (3).

When an = χ(n) are Dirichlet characters of some
module q and λn = logn then we have a Dirichlet
L-series:

L(χ, s) =

∞∑
n=1

χ(n)

ns
(5)

The character whose values are only 0 and 1 is
called principal character. Every Dirichlet L-series

defined by a non principal character has the abscissa
of convergence 0, while the Dirichlet series defined
by principal characters have the abscissa of conver-
gence 1.

When q = 1 the only character is the principal one
and the corresponding series is the Riemann series,
whose abscissa of convergence is known to be 1. The
analytic continuation of this series:

ζ(s) =

∞∑
n=1

1

ns
(6)

is the famous Riemann Zeta Function.
The Riemann Zeta Function is one of the most

studied analytic functions, in view of its many appli-
cations in number theory, algebra, complex analysis,
statistics, as well as in physics.

The pre-image of the real axis by ζ(s) shows in-
finite strips, Fig. 7, which can be divided into sub-
strips representing fundamental domains of this func-
tion. The way it can be done is described in [10].

We have found later, [11], [12], [13], that this
property is common to the whole class of Dirich-
let functions to which the Riemann Zeta function be-
longs. The Dirichlet functions are analytic continu-
ations to the whole complex plane of Dirichlet series
(3). Wewill keep the notation ζA,Λ(s) for such a func-
tion.

The components of the pre-image by ζA,Λ(s) of
circles centered at the origin and of radius r are of
three types depending on the values r.

When r < 1, these components are all closed
curves around some zeros of the function. For r small
enough each one of these curves contains just one
zero.

When r = 1, (the unit circle) every strip Sk, k ̸=
0 contains exactly one unbounded component of the
pre-image of the unit circle and some bounded ones.
The unbounded component has the branches tending
asymptotically to the boundary ∂Sk of Sk.

When r increases over one, the unbounded com-
ponents fuse all into one unbounded curve expanding
from t = −∞ to t = +∞. The bounded components
expand also and two of them can fuse into one con-
taining the zeros of both of them.

These components and the pre-image of the real
axis form an orthogonal net of quadrilaterals which
are conformal mapped by ζA,Λ(s) on half-rings cen-
tered at the origin with two opposite sides on the real
axis and included respectively in the upper and the
lower half-planes.

When an are all real, then the real axis is included
in the pre-image by the respective Dirichlet function
of the real axis. Otherwise, such an inclusion does
not take place. This is obvious for the Riemann Zeta
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Figure 10: The pre-images by two Dirichlet L-
functions of an orthogonal net formed with circles
centered at the origin and the real axis

function, Fig. 7, but also for the Dirichlet L-functions
illustrated in Fig. 10 and Fig. 11.

3 Fundamental Domains with Slits
The list of the classes of analytic functions we have
visited is not exhaustible, yet it gives us an idea of
what happens in general. When dealing with any an-
alytic function we can focus on a particular funda-
mental domainΩ. The function performs a conformal
mapping of Ω onto the complex plane with a slit L. If
we do also a Möbius transformationM of the image
plane, the function M◦ f is a conformal mapping of
the domain Ω onto the complex plane with two slits:
L and M(L). One of them is the image by M◦ f
of a slit in Ω, thus we need to deal with fundamental
domains with slits. This is even more obvious when
we study conformal self mappings of Ω of the form
f−1
|Ω ◦M ◦ f.
More exactly, there is a slitL′ in the complex plane

carried byM onto L and which is the image by f of
a slit LM of Ω. Therefore, f carries LM into L′, M
carries L′ into L, f−1

|Ω carries the two edges of L into
∂Ω, thus

χM = f−1
|Ω ◦M ◦ f (7)

carries LM into ∂Ω. The inverse function of χM ,
where defined, is

χ−1
M = f−1

|Ω ◦M−1 ◦ f.

There is a slit L′′ of the complex plane, the image of
L byM−1 and which is also the image by f of a slit

Figure 11: The pre-image of the real axis by two
Dirichlet L-functions defined by χ2(n) and χ4(n)
modulo 7

LM−1 of Ω, thus f carries LM−1 into L′′, which is
carried byM into L and L is carried by f−1

|Ω into ∂Ω.

Theorem 1. The function χM is a conformal map-
ping of Ω \ LM−1 onto Ω \ LM . The boundaries
∂Ω ∪ LM−1 and ∂Ω ∪ LM of the two double con-
nected domains correspond one to each other through
χM in the following way: ∂Ω is carried into LM and
LM−1 is carried into ∂Ω.

Proof: The functions f, M and f−1
|Ω are analytic

functions in their domains, except for the simple pole
ofM, if there is one. The functionM−1 ◦ f is a con-
formal mapping ofΩ and carries ∂Ω intoL′′,which is
carried by f−1

|Ω into LM−1 , hence χM is a conformal
mapping of Ω \ LM−1 which carries LM−1 into ∂Ω.
On the other hand, the function χM does not take any
value belonging to LM since it is injective and χ−1

M
carries LM into ∂Ω. By the boundary correspondence
theorem LM must be carried by χM into LM−1 . This
completely proves the theorem.

It is known that for two arbitrary Möbius transfor-
mations M1 andM2 the functionM1 ◦M2 is also a
Möbius transformation. On the other hand, where all
the functions are defined, we have:

χM1◦M2
(s) = f−1

|Ω ◦ (M1 ◦M2) ◦ f(s)

= (f−1
|Ω ◦M1 ◦ f) ◦ (f−1

|Ω ◦M2 ◦ f(s))
= χM1

◦ χM2
(s).

(8)
Thus, the composition law in the family {χM} of
transformations of Ω with slits defined by all Möbius
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transformations M through the formula (7) is an in-
ternal operation. It is obvious that ifM0 is the identity
mapping, them χM0

is the identity transformation of
Ω. Also, for everyM the transformation χM−1 is the
inverse mapping of χM . The associativity of the com-
positions of mappings χM is a direct corollary of the
same property of the mappingsM. Thus, we have:

Theorem 2. Any subgroup of Möbius transforma-
tions defines through the formula (7) a group of trans-
formations of any fundamental domainΩwith slits of
an analytic function f.

Proof: Let G be a subgroup of Möbius transfor-
mations. We can think at any subgroup well stud-
ied in the literature, as for example the subgroup of
Möbius transformations which represent the unit disc
onto itself, or those with real coefficients etc.. Let
GΩ = {χM |M ∈ G}, where χM is defined by the
formula (7). It doesn’t harm to use the same sign for
the composition in G and in GΩ. We need to prove
thatGΩ with the assumed composition law is a group
of transformations of Ω. If χM1

, χM2
∈ GΩ, where

M1,M2 ∈ G, then by (8) we have: χM1
◦ χM2

(s) =
χM1◦M2

(s), thus the composition in GΩ is an inter-
nal operation. IfM0 is the unit element of G, i.e. for
every M ∈ G we have M ◦M0 = M0 ◦M = M,
then χM ◦ χM0

= χM◦M0
= χM and χM0

◦ χM =
χM0◦M = χM , therefore χM0

is the unit element of
GΩ. Finally, χM ◦ χM−1 = χM◦M−1 = χM0

and the
conclusion is that GΩ is indeed a group of transfor-
mations of Ω with slits.

4 Fixed Points of Self-Mappings of
the Fundamental Domains

Suppose that for s0 ∈ Ω we have that f(s0) is
a fixed point of the Möbius transformation M, i.e.
M(f(s0)) = f(s0). We notice that f(s0) does not
belong to the slit L corresponding to Ω.We have

χM (s0) = f−1
|Ω (M(f(s0))) = f−1

|Ω (f(s0)) = s0,

therefore s0 is a fixed point of χM . Reciprocally, if s0
is a fixed point of χM this means

f−1
|Ω (M(f(s0))) = s0,

so
M(f(s0)) = f(s0),

therefore f(s0) is a fixed point ofM,which obviously
does not belong to L.Moreover:

Theorem 3. The fixed points of the transforma-
tion χM of Ω are those points s for which z = f(s)
are fixed points ofM.

When M has a fixed point z located on L, then
to this point correspond two fixed points s1 and s2 of
the extended χM such that χM (s1) = χM (s2) = z
( Fig. 13). If no fixed point of M is located on L,
then there is a one to one correspondence between the
fixed points ofM(z) and those of χ(s).

It is known, [15], that any Möbius transformation
M has either just one fixed point (the parabolic case),
or two fixed points in which case the configuration of
the mapping byM can be of three kinds: elliptic, hy-
perbolic or loxodromic. All depends on the so-called
multiplier ofM, which is a number µ such that

M(z)− ξ1
M(z)− ξ2

= µ
z − ξ1
z − ξ2

(9)

where ξ1 and ξ2 are the fixed points ofM.The number
µ is associated to ξ1.

The multiplier associated to ξ2 is 1/µ, [16].
If s1 and s2 are the fixed points of χM (s) corre-

sponding to the fixed points ξ1 and ξ2 ofM(z), then
the formula (9) translates into a similar formula for
χM (s), namely:

f(χM (s))− f(s1)

f(χM (s))− f(s2)
= µ

f(s)− f(s1)

f(s)− f(s2)
.

An important property of Möbius transformations
is that of transforming circles into circles, where by
circle we understand a proper circle or a straight line
(circle of infinite radius). We will call Ω-circle the
pre-image by f|Ω of a circle from the complex plane.
We notice that if for a circle C we have C ∩ L = ∅,
then the pre-image CΩ of C is a closed curve in C.
Otherwise, if C traverses L then CΩ ends up at two
different points on the boundary ∂Ω of Ω and if C
is tangent to L then CΩ is a closed curve tangent to
∂Ω. These are obvious topological properties of the
conformal mapping f|Ω.

It is known that to every non-parabolic Möbius
transformation with fixed points ξ1 and ξ2 we can
associate two families of circles, namely all circles
passing through ξ1 and ξ2 and all circles orthogonal
to them centered on the line between ξ1 and ξ2 and
containing just one of the points ξ1 or ξ2. These last
circles are called the Apollonius circles. Together the
two families of circles form the so called Steiner net.
The pre-image by f|Ω of a Steiner net will be called
Ω-Steiner net, which is a net of orthogonal curves in
Ω since f−1

|Ω is a conformal mapping.
The Steiner net ofM describes the wayM moves

the points of the complex plane and this depends on
the value of µ. If µ = eiθ, θ ∈ R (the elliptic case)
the points are moved alongside the Apollonius circles
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counterclockwise around ξ1 and clockwise around ξ2
and the orthogonal circles move one into the other.
If µ ∈ R, µ ̸= 1 (the hyperbolic case) the points are
moved such that the Apollonius circles expand around
ξ1 and they shrink around ξ2.When µ = ρeiθ, θ ∈ R,
ρ ̸= 1 (the loxodromic case) the motion of the points
byM is a combination of the previous two, resulting
in trajectories of double spirals issuing from ξ1 and
entering in ξ2.When the transformation is parabolic,
i. e., it has a unique fixed point ξ then we have two
families of orthogonal circles passing through ξ and a
combination of elliptic and hyperbolic motions.

Theorem 4. The pre-image by f|Ω of the Steiner
net generated by a Möbius transformationM is a net
of orthogonal Ω-circles, the Ω-Steiner net. This net
describes the motion of the points s by the self map-
ping χM of Ω in the same way the Steiner net ofM
does with the points f(s).

Proof: Suppose that M is non parabolic, there-
fore it has two distinct fixed points ξ1 and ξ2. If none
of them belong to the slit associated to Ω, then they
are the image by f of two distinct points s1, s2 ∈ Ω,
which are fixed points of χM . If one of them belongs
to the slit, then it is the image by the extended f of
two points on ∂Ω.

The pre-image by f|Ω of every Apollonius circle
around ξk is a Ω-circle around sk, k = 1, 2, the Apol-
lonius Ω-circle. The pre-image by f|Ω of every circle
orthogonal to the Apollonius circles is a Ω-circle or-
thogonal to all the Apollonius Ω-circles. Since f−1

|Ω
is a conformal mapping, the sense of the motion of
the points on the Ω-circles by χM is the same as that
of their f|Ω-images byM. So, in the elliptic case the
points s move on the Apollonius Ω-circles around sk
in counterclockwise around s1 and clockwise around
s2. In the hyperbolic case, the Apollonius Ω-circles
around s1 expand while those around s2 shrink. Fi-
nally, in the loxodromic case the motion of the points
s is on a double spiral issuing from s1 and entering in
s2.

In the parabolic case, whereM has a unique fixed
point ξ there are four families of orthogonal Ω-circles
passing through s0 = f−1

|Ω (ξ).The transformationχM
of Ω will move the points s in the same way as M
moves the points z of the complex plane in the corre-
sponding Steiner net.

The computer experimentation with Dirichlet L-
functions revealed some surprising facts. Since the
formula (4) suggests that the components of the pre-
image of circles passing through z = 1 tend to ∞
as σ → ∞ one could conclude that the function χM
corresponding toM(z) = (2z − 1)/(2− z) has only

one fixed point, which is attractive, while ∞ is re-
pelling. However, in Fig. 19 appeared some other
repelling points. We realized that these are points on
the boundaries of the fundamental domains where the
respective Dirichlet L-function takes the value z = 1.
Fig. 19 portrays the conformal self mapping of sev-
eral fundamental domains whose boundaries cannot
be n in the image. What we know for sure is the fact
that these boundaries are necessarily between compo-
nents of the pre-image of Apollonius circles asymp-
totically tangent at infinity.

5 Some Subgroups of the Group of
Transformations of Ω

The subgroups of the group of transformations of
Ω correspond to subgroups of the group of Möbius
transformations. The most familiar subgroup of
Möbius transformations is

G =

{
Ma,θ

∣∣∣∣Ma,θ(z) = eiθ
z − a

1− az
, |a| ̸= 1, θ ∈ R

}
(10)

which leaves invariant the unit circle and transforms
the unit disc into itself when |a| < 1 and onto the ex-
terior of the unit disc when |a| > 1. Also the exterior
of the unit disc is transformed into itself when |a|< 1
and onto the unit disc when |a| > 1.

It can be easily checked thatMa,θ ◦Mb,η =Mc,ϕ,
where

c =
a+ e−iθb

1 + eiθab
and ϕ = θ + η,

and thus the composition in G is an internal law. The
unit element of G is obtained for a = 0 and θ = 0.
The inverse elementMb,η ofMa,θ is obtained for b =
−eiθa and η = −θ. It is obvious that the elements
of G with |a| < 1 form a subgroup of G. This is not
true for the elements of G with |a| > 1 since the unit
element of G is not among them.

The interval (1,+∞) of the real axis is trans-
formed by Ma,θ into an arc of a circle and if a ∈ R
and θ = 0 it is transformed into an interval of the
real axis. This remark will be useful for the examples
which follow.

Let us deal first with the Möbius transformation

M(z) =
2z − 1

2− z
(11)

which is an element of G above with a = 1/2 and
θ = 0. This is a non-parabolic Möbius transforma-
tion with the fixed points 1 and −1. We will clas-
sify the circles of the corresponding Steiner net tak-
ing into account their position with respect to the slit

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.72 Andrei-Florin Albişoru, Dorin Ghişa

E-ISSN: 2224-2880 660 Volume 22, 2023



Figure 12: The Steiner net of the Möbius transforma-
tion (11) with the slits corresponding to the exponen-
tial function

L = (1,+∞) associated to a fundamental domain Ω
of a Dirichlet function ζA,Λ(s). We notice that the
Apollonius circles corresponding to this transforma-
tion are of two kinds: those around 1, which intersect
the slit in one point and therefore their pre-images
by ζA,Λ(s) are arcs having the ends on each one of
the components of ∂Ω and those around −1 which
do not intersect the slit and therefore their pre-images
are closed Ω-circles. All these Ω-circles fill the do-
main bounded by the pre-image of the imaginary axis,
which is a parabola-like curve with the branches tend-
ing asymptotically towards ∂Ω at σ = −∞. The re-
maining part ofΩ is filled by the pre-images of circles
intersecting the slit. Each point of ∂Ω is the end point
of such an Ω-circle.

Let us notice that sinceM has real coefficients, it
maps the real axis onto itself and so doesM−1. Thus,
for L = (1,+∞) we have that L′ and L′′ are parts
of the real axis. Since M(1) = 1, M(2) = ∞ and
M(∞) = −2, we have L′ = (−∞,−2) ∪ (1,+∞).
Also, sinceM−1(1) = 1 andM−1(∞) = 2, we have
that L′′ = (1, 2). Since L′′ ⊂ L, for these functions
we have LM−1 ⊂ ∂Ω, thus χM : Ω → Ω \ LM .
SinceM has the fixed points 1 and −1, the function
χM should have the fixed points s1 and s−1 for which
ζA,Λ(s1) = 1 and ζA,Λ(s−1) = −1. Yet, there is no
such s1 ∈ Ω such that ζA,Λ(s1) = 1. We only have
limσ→+∞ ζA,Λ(σ + it) = 1. We cannot say that ∞
is a fixed point for χM since χM is not defined at
∞. However,∞ is repelling for χM and χM has the
attracting fixed point s−1.

This is a hyperbolic Möbius transformation with
the multiplier µ = 3. Let us notice that if a circle C
of the net passing through −1 and 1 has the center at
ih, h ∈ R, then its radius is r = (h2 +1)1/2. For any
Apollonius circle orthogonal to it of center x ∈ R and
radius ρ we have

r2 + ρ2 = x2 + h2 = x2 + r2 − 1,

Figure 13: The conformal self-mapping by χM of the
fundamental domain of the exponential function and
the corresponding Ω-Steiner net when M is given by
the relation (11)

hence x2 = ρ2 + 1, which means that x and ρ de-
pend on each other, but not on h and r, confirming the
known fact that the Apollonius circles are all orthogo-
nal to every circle C passing through the fixed points
of the Möbius transformation. These relations help us
to illustrate the corresponding Steiner net by choos-
ing conveniently the parameters of the two families
of circles. In the picture above we have chosen for
h the values: ±1/2, ±1 and ±3/2. Correspondingly,
we have for r the values:

√
5/2,

√
2 and

√
13/2. If

we let ρ = r, then we have for x respectively: ±3/2,
±
√
3 and ±

√
17/2. Now we can write the equations

of the 12 circles chosen to represent the Steiner net
and use a software to draw the respective net and its
pre-image by any analytic function into any funda-
mental domain of that analytic function.

Fig. 12 is so simple since the Möbius transfor-
mationM(z) we have taken has real coefficients and
therefore the real axis is mapped byM(z) onto itself
and LM and LM−1 are located on the preimage of the
real axis, Fig. 13, Fig. 15 and Fig. 17 . In particular,
when the slit is L = (1,+∞), which is the case of
Dirichlet functions and the fundamental domains R1

andR−1, thenL′ andL′′ are also on the real axis. The
situation is a little more complicated when the coeffi-
cients ofM(z) are complex. Then the pre-images of
L byM andM−1 are arcs of a circle, Fig. 14, which
are mapped by f−1

Ω into some curves on theΩ-Steiner
net, Fig. 14 and Fig. 15. Let us deal with the Möbius
transformation:

M(z) =
z − a

1− az
, a /∈ R, |a| ̸= 1 (12)

This is a non parabolic Möbius transformation with
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Figure 14: The Steiner net of to the Möbius transfor-
mation (12) with the slits corresponding to the expo-
nential function

the fixed points ξ1,2 = ±eiθ, where θ = arg a. It can
be easily checked that if a = reiθ then the multiplier
of the transformation (12) is µ = 1+r

1−r , therefore this
transformation is hyperbolic.

The function M(z) transforms the interval
(1,+∞) into an arc of circle with the ends at
1−a
1−a = e2iϕ, where ϕ = arg(1 − a) and −1/a and
this arc of circle is mapped by f−1

|Ω into LM . Also,
M−1 transforms (1,+∞) into an arc of circle with
the ends at 1+a

1+a = e2iψ, where ψ = arg(1 + a) and at
1/a and this arc of circle is transformed by f−1

|Ω into
LM−1 .

When the slit corresponding to f|Ω is (0,∞), as in
the case of the exponential function, we haveM(0) =
−a, M(∞) = −1/a, M−1(0) = a andM−1(∞) =
1/a.

Let us take a = 1
2(1 + i), hence arg a = π/4.We

get the non parabolic Möbius transformation with the
fixed points±(1+i)/

√
2. It can be easily checked that

the image by M of the interval (1,+∞) is an arc of
circle with the ends in−i and−(1+i) passing through
(−1/2)(1 + i) and the image by M−1 of the same
interval is an arc of circle with the ends in (4 + 3i)/5
and 1 + i passing through (9 + 7i)/10.When the slit
corresponding to f|Ω is (0,∞), then L′ is an arc of
circle ending at−(1+ i) and (−1/2)(1+ i) and L′′ is
an arc of circle ending at (1/2)(1 + i) and 1 + i, Fig.
15.

Additional Steiner nets for different functions are
illustrated in Fig. 16 and Fig. 18.

Figure 15: The conformal self-mapping by χM of the
fundamental domain of the exponential function and
the corresponding Ω−Steiner net when M is given by
the relation (12)

Figure 16: The Steiner net of the Möbius transfor-
mation (11) with the slits corresponding to the cosine
function

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.72 Andrei-Florin Albişoru, Dorin Ghişa

E-ISSN: 2224-2880 662 Volume 22, 2023



Figure 17: The conformal self-mapping by χM of the
fundamental domain of the cosine function and the
corresponding Ω-Steiner net when M is given by the
relation (11)

Figure 18: The Steiner net of the Möbius transforma-
tion (11) with the slits corresponding to the Dirichlet
L-function L(7,2,s)

Figure 19: The conformal self-mapping by χM of the
fundamental domain of the Dirichlet L(7,2,s) func-
tion and the corresponding Ω−Steiner net when M is
given by the relation (11)

6 Conformal Mappings of the
Fundamental Domains with Slits
One Onto Each Other

LetΩk andΩj be two fundamental domains of the an-
alytic function f and let f|Ωk

and f|Ωj
be conformal

maps of these domains onto the complex plane with
the slits Lk and respectively Lj . There is a slit Lk,j
of Ωk which is mapped by f|Ωk

onto Lj and there is
a slit Lj,k of Ωj which is mapped by f|Ωj

onto Lk , in
other words Lk,j = f−1

|Ωk
(Lj) and Lj,k = f−1

|Ωj
(Lk).

The function χk,j(z) = f−1
|Ωj

◦ f|Ωk
(z) is a conformal

mapping of Ωk\Lk,j onto Ωj\Lj,k. These two double
connected domains have the boundaries ∂Ωk ∪ Lk,j
and respectively ∂Ωj ∪Lj,k and χk,j carries ∂Ωk into
Lj,k and Lk,j into ∂Ωj . when k = j then Lk,j = ∅
and χk,k is the identity mapping of Ωk. It is also ob-
vious that χ−1

k,j = χj,k.

We can only compose functions χk,j with χm,k for
different j andm and we obtain χm,j .

Each one of the domainsΩk,Ωj andΩm have now
two slits , namely Lk,j and Lk,m, respectively Lj,k
and Lj,m and finally Lm,k and Lm,j .

The mappings can be extended to the boundaries.
We notice that

(χk,j ◦ χm,k) ◦ χl,m = χm,j ◦ χl,m = χl,j
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and

χk,j ◦ (χm,k ◦ χl,m) = χk,j ◦ χl,k = χl,j ,

thus the composition law is associative. However, the
set of these mappings fails to form a group since no
two arbitrary mappings can be composed.

Let us notice that when Lk = Lj then Lk,j =
Lj,k = ∅ and χk,j is a conformal mapping ofΩk onto
Ωj . This mapping can be extended by continuity to
∂Ωk and the extended function maps one to one ∂Ωk
onto ∂Ωj . A lot of classes of analytic functions ful-
fill this condition, as for example the exponential, the
modular function, the trigonometric and hyperbolic
functions.

Finally, if f has a finite number m of fundamen-
tal domains, as is the case of the rational functions of
degreem,then the number of functions χk,j ism2.

7 Conclusion

The study of the fundamental domains of analytic
functions initiated by Ahlfors, proved to be useful
in revealing global mapping properties of these func-
tions and in particular in the theory of distribution of
zeros of Dirichlet functions. In our opinion the fa-
mous Riemann Hypothesis related to the non trivial
zeros of the Riemann Zeta function is an aspect of a
deeper inside of these global mapping properties of
Dirichlet functions. This topic has been treated in
the literature only by number theory techniques. Us-
ing the powerful tool of conformal mappings has the
advantage of a global view. Moreover, this tool en-
abled a strategy of divide and conquer, in which it was
enough to deal with a specific strip containing a fi-
nite number of fundamental domains in order to draw
conclusions valid for the whole complex plane. The
graphics we included have shown that the behavior of
those mappings is like that of the Möbius transforma-
tions. They do to the fundamental domains the same
thing that the Möbius transformations are doing to the
whole complex plane. In this paper we have focused
on a particular property of fundamental domains of
any analytic function, namely that of allowing con-
formal mappings onto itself. These mappings are ob-
tained by combining the function with Möbius trans-
formations and the inverse function. We have also
studied the conformal mappings between two funda-
mental domains.
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