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Abstract: - The Cauchy problem associated with the Helmholtz equation is an ill-posed inverse problem
that is challenging to solve due to its instability and sensitivity to noise. In this paper, we propose a
metaheuristic approach to solve this problem using Genetic Algorithms in conjunction with Tikhonov
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effectiveness and accuracy of our approach.
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1 Introduction
Let Ω be an open and bounded domain in R2 with
a smooth boundary Γ. We divide the boundary
into two disjoint parts, Γ = Γi∪Γc, where Γi∩Γc =
∅ and mes(Γc) 6= 0.

Mathematical formulation of the Cauchy prob-
lem for the Helmholtz equation can be expressed
as:

(P ) :


−∆u + κ2u = 0 in Ω

u = f on Γc

∂nu = g on Γc

(1)

where ∆ is the Laplacian operator, ∂n denotes the
outward normal derivative, κ is a complex num-
ber (wave number), f and g are the Cauchy data
available on the accessible boundary Γc.

This problem arises in many important physi-
cal applications related to wave propagation and
vibration phenomena see, [1], [2], [3], [4].

The Helmholtz equation is a fundamental equa-
tion in physics that describes the propagation of
waves. In the past century, extensive research
has been carried out on the direct problem of
the Helmholtz equation, which involves finding
the solution to the equation given boundary data
(Dirichlet, Neumann and Dirichlet-Neumann).
However, in practical situations, it is often not
possible to obtain boundary data for the entire
boundary. Instead, we may only have access to
noisy data related to a specific section of the
boundary or some points within the domain. This

leads to inverse problems, in which the goal is to
find the solution to the equation given incomplete
or noisy data.

The Cauchy problem for the Helmholtz equa-
tion is an example of an inverse problem that is ill-
posed. This means that small perturbations in the
given data can result in significant changes to the
solution, and the solution does not continuously
depend on the given Cauchy data. This makes it
difficult to find accurate solutions to the Cauchy
problem, and special methods are often required.
References, [5], and, [6], discuss the ill-posedness
of the Cauchy problem for the Helmholtz equation
in more detail. Conventional numerical methods
are not sufficient for solving the problem being
investigated. To remedy this, numerous numeri-
cal methods have been suggested in order to solve
the Cauchy problem for the Helmholtz equation,
such as the method of fundamental solution, [7],
the method of plane waves, [8], the Landweber ap-
proach, [9], the method of Fourier regularization,
[10], [11], conjugate gradient method, [12], [13],
the boundary element minimal error method, [14],
the method of spherical wave expansion, [15], the
method of boundary knot, [16].

For solving the Cauchy problem associated
with the Helmholtz equation, two main ap-
proaches are commonly used: iterative methods
and direct methods. Iterative methods start with
an initial guess of the solution and then iteratively
improve the guess by minimizing a cost function,
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such as the error between the calculated and mea-
sured data. This process can be computationally
intensive, as the problem must be solved at each
iteration. However, iterative methods are often
more robust than direct methods and can be used
to solve problems that are ill-posed. On the other
hand, direct methods require less computational
time as the problem is discretized only once, but
they may be susceptible to numerical instability.

It should be noted that the aforementioned
methods are deterministic techniques, However,
deterministic approach has limitations, particu-
larly when dealing with complex systems that are
influenced by many variables and factors. In such
cases, deterministic models may not be able to
account for all the variables and uncertainties in-
volved, leading to inaccuracies and incomplete un-
derstanding of the system. Beside deterministic
techniques, there is a second class called stochastic
techniques. Stochastic techniques refer to a class
of mathematical methods that deal with random-
ness, uncertainty, and probability.

Metaheuristic algorithms draw inspiration from
natural processes such as biological evolution,
swarm intelligence, and other phenomena. For
instance, genetic algorithms, [17], emulate natu-
ral selection and evolution, while particle swarm
optimization, [18], mimics the collective behavior
of flocks of birds or swarms of insects. Similarly,
ant colony optimization, [19], is based on the be-
havior of real ant colonies, and the bat algorithm,
[20], imitates the echolocation behavior of bats.
These algorithms are designed to efficiently ex-
plore a vast search space by iteratively generating
and evaluating candidate solutions, with the goal
of finding an optimal or near-optimal solution.

This study proposes a new computational al-
gorithm for solving the Cauchy problem related
to the Helmholtz equation. The method is based
on a genetic algorithms coupled with Tikhonov
Regularization, and considers the solution on the
underspecified Γi boundary as a control in a di-
rect mixed well-posed problem. The proposed ap-
proach aims at accurately fitting the Cauchy data
on the overspecified boundary Γc by minimizing
a cost function that measuring the discrepancies
between the available data and the corresponding
calculated values.

The rest of this paper is outlined as follows.
Section 2 introduces the formulation of the inverse
problem under consideration. In Section 3, we of-
fer a concise overview of genetic algorithms and
explore the capabilities of the real-coded genetic
algorithms, which has been tailored to solve the
inverse problem under consideration. To demon-
strate the accuracy and efficiency of the proposed

method, Section 4 presents two numerical exam-
ples featuring regular and irregular domains. Fi-
nally, Section 5 summarizes the key findings of the
research and offers concluding remarks.

2 Formulation of the problem as an
optimization problem

2.1 Optimization problem
The purpose of this paper is the use an adapted
genetic algorithm with real coded combined with
finite element method to estimate the Cauchy data
on the inaccessible part of the boundary Γi from
the available data f and g on Γc.

Since the φ and φ′ on the boundary Γi is to be
determined, two direct problems are considered:

(PD) :


−∆u + κ2u = 0 in Ω
u = φ on Γi

∂nu = g on Γc

(2)

(PN ) :


−∆u + κ2u = 0 in Ω
u = f on Γc

∂nu = φ′ on Γi

(3)

It should be noted that if φ ∈ H1/2 (Γi) and
g ∈ H−1/2 (Γc) (resp f ∈ H1/2 (Γc) and φ′ ∈
H−1/2 (Γc)), then there is a unique solution u(φ, g)
(resp u(φ′, f)) of the direct problem Eq.(2) (resp
Eq.(3)) see, [21], and we are looking for φ (resp φ′

) such that:{
u(φ, g) = f on Γc

∂nu(φ′, f) = g on Γc
(4)

which leads to minimize the least-squares func-
tional JD and JN defined by:

JD(φ) = 1
2‖u(φ, g) − f‖2

L2(Γc) (5)

and
JN (φ′) = 1

2‖u(φ′, f) − g‖2
L2(Γc) (6)

2.2 Tikhonov regularization
In an inverse problem, the observed data is typ-
ically affected by noise and measurement errors,
which can lead to instability and poor accuracy
in the estimation of the unknown parameters.
Tikhonov regularization helps to overcome these
issues by introducing a regularization term.
In this case the Tikhonov regularization method is
used to convert the tow objective functions Eq.(5)
and Eq.(6) to the well-posed form given as follows:
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JDR(φ) = 1
2‖u(φ, g) − f‖2

L2(Γc) + α

2 ‖φ‖2
L2(Γi) (7)

and

JN R(φ′) = 1
2‖u(φ′, f) − g‖2

L2(Γc) + β

2 ‖φ′‖2
L2(Γi)

(8)
where α and β are the regularization parameters,
α
2 ‖φ‖2 and β

2 ‖φ′‖2 are the well-known Tikhonov
regularization terms. In the literature, there
are various effective techniques recommended for
choosing the most suitable value for the regular-
ization parameter, including the L-curve method,
[22], and the discrepancy principle, [23]. These
approaches avoid the need to use excessively small
or large positive values of α (resp β) to assure the
stability of the solution.

3 Application of genetic algorithms
to inverse problem

3.1 Overview of genetic algorithms
Genetic algorithms, [24], have proven to be effec-
tive in solving a variety of optimization problems.
They are based on the principles of biological evo-
lution and operate as a searching method. A pop-
ulation of chromosomes is used to represent po-
tential solutions and genetic operators are applied
to progressively improve each chromosome, which
becomes the basis for the next generation. This
process continues until the desired number of gen-
erations has been completed or a predefined stop-
ping criteria value has been reached.

Genetic algorithms offer a number of advan-
tages over other optimization approaches. First,
they search from a population of solutions instead
of just one. Second, they can use any fitness func-
tion, even if it is not continuous. Third, they
use random operators to generate new solutions.
Fourth, they do not need to know anything about
the problem to find a good solution.

Genetic algorithms typically consist of the fol-
lowing basic elements:

1. Initialization: The genetic algorithm begins
by creating a population of potential solutions
to the problem being solved. This is typically
done by randomly generating a set of indi-
viduals, where each individual is a potential
solution represented as a set of genes or chro-
mosomes.

2. Fitness function: The fitness function is used
to evaluate each individual in the population
and assign a fitness score based on how well

it solves the problem being considered. The
fitness score is used to select individuals for
reproduction in the next generation.

3. Selection: The selection process involves
choosing the fittest individuals from the cur-
rent generation to be parents for the next gen-
eration. The individuals are selected using
various techniques such as roulette wheel se-
lection or tournament selection.

4. Crossover: Crossover is the process of com-
bining genetic material from two parents to
create a new individual in the next genera-
tion. This is typically done by selecting two
parents based on their fitness score and swap-
ping genetic material between them to create
a new individual.

5. Mutation: Mutation introduces random
changes to the genetic material of an individ-
ual, leading to potentially new and improved
solutions. It is typically applied to a small
fraction of individuals in the population to
maintain genetic diversity.

6. Termination: The algorithm terminates when
a stopping criterion is met, such as reaching
a desired fitness score or running for a certain
number of generations.

We can summarize these steps in the following di-
agram, Fig.1.

Figure 1: Flowchart of genetic algorithms.

These elements work together to produce a pop-
ulation of increasingly fit individuals that can be
used to find optimal solutions to a wide range of
problems.
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3.2 Genetic operators
In order to address the Cauchy problem associ-
ated with the Helmholtz equation, we consider a
real coded (floating-point) GAs (RCGA), which
perform better than binary coded GA, where the
chromosome corresponds to a vector of real pa-
rameters, the gene corresponds to a real number,
and the allele corresponds to a real value.

3.2.1 Crossover
This operator is the most important operator in
the genetic process between two individuals se-
lected according to a probability pc, [25], [26], pro-
ducing new offspring. Several crossover operators
have been developed, adapted to the type of en-
coding used. In this study, we consider the arith-
metic crossover operator with real encoding.
Typically, parents are denoted as:

Par(1) =
(
Par

(1)
1 , . . . ., Par(1)

n

)
Par(2) =

(
Par

(2)
1 , . . . , Par(2)

n

) (9)

The representation of offspring is given by:

Off (1) =
(
Off

(1)
1 , . . . , Off (1)

n

)
Off (2) =

(
Off

(2)
1 , . . . , Off (2)

n

) (10)

where, Off (i) and Par(j) represent the ith off-
spring and jth parent, respectively. The variable
n denotes the number of genes on each individual.

In arithmetic crossover two parents produce
two offspring which can be expressed using Eq.(11)
given as follows:

Off
(1)
i = αiPar

(1)
i + (1 − αi) Par

(2)
i

Off
(2)
i = αiPar

(2)
i + (1 − αi) Par

(1)
i

(11)

where, αi represents uniformly distributed random
numbers.
It is important to mention that αi can be gener-
ated at each generation; in this case we talk about
non-uniform arithmetic crossover, [27].

3.2.2 Mutation
The mutation operator is applied to specific ele-
ments of selected chromosomes. If we consider the
selected chromosome at the kth generation, in the
following form:

Off = (Off1, . . . , Offi, . . . , Offn)

the form of the obtained chromosome, knowing
that Offi is the element to be mutated, is given
by:

Off ′ = (Off1, . . . , Off ′
i , . . . , Offn)

Non-uniform mutation is one of the commonly
used mutation operators in real-coded genetic al-
gorithms (RCGAs), [28], [29]. It is defined as fol-
lows:

Off ′
i =

{
Offi + δ (k, ui − Offi) , if τ = 0
Offi − δ (k, Offi − li) , if τ = 1

(12)
where, τ is a random digit which takes either the
value 0 or 1 and, li and ui are the upper and
lower bounds of Offi. The function δ(k, y) yields
a value within the range [0, y] and it is designed
such that the likelihood of the value being close to
0 becomes higher as k increases. The value of the
function δ is given as follows:

δ(k, y) = y

(
1 − η

(
1− k

T

)b
)

(13)

where,

• η is a uniformly distributed random number
in the interval [0, 1],

• k is the current generation,

• T is the maximal generation number,

• b is a system parameter determining the de-
gree of non-uniformity.

3.3 Computation procedure for the GA
Optimization

In this section, we describe the steps involved
in using the proposed genetic algorithm (GA) to
solve the Cauchy problem for the Helmholtz equa-
tion.
The different steps of the proposed procedure are
given by:

• Step 1 : Parameter setting:

– N : Population size
– pc : Probability of Crossover
– pm : Probability of Mutation
– MaxGen : Maximum number of Genera-

tion

• Step 2 : Random generation of initial popu-
lation φ

(0)
p with p = 0, · · · , N .

• Step 3 : Solve the direct problem Eq.(14) be-
low, for each given φ

(0)
p by the finite element

method.

(PGA)p :


−∆u + κ2u = 0 in Ω
u = φ

(0)
p on Γi

∂nu = g on Γc

(14)
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• Step 4 : Compute the fitness value for each
individual using JDR

(
φ

(0)
p

)
(Eq.(7)).

• Step 5 : Create the next generation φ
(1)
p using

the GA process given by:

φ(1)
p = Mu.Cr.Se(φ(0)

p )

where:

– Se : Random selection,
– Cr : Arithmetic Crossover,
– Mu : Non-uniform mutation.

• Step 6 : Return to step 3 and replace φ
(0)
p

with φ
(1)
p .

• Step 7 : The genetic process continue for φ
(m)
p ,

m = 1, 2, · · · , MaxGen.

The purpose of this procedure is to establish
the Dirichlet condition on Γi. However, if we want
to determine the Neumann condition instead, we
can modify the procedure by implementing certain
adjustments. Specifically, in step 2, we should re-
place φ

(0)
p with (φ(0)

p )′ and in step 3 (PGA)p by
(PGA)′

p such that:

(PGA)′
p :


−∆u + κ2u = 0 in Ω
u = f on Γc

∂nu = (φ(0)
p )′ on Γi

(15)

Finally, in step 4 and step 5, we need to substitute
Eq.(8) for Eq.(7).

4 Numerical results and discussion
The aim of this study is to find an approximation
of the missing Dirichlet and Neumann boundary
conditions. Since we do not know the exact
form of the solution, we will use the polynomial
approximation. In order to illustrate the conver-
gence and the stability of the proposed numerical
method, we solve the Cauchy problem for the
Helmholtz equation by considering two cases of
domains in 2D.

The genetic algorithm used for evolving each
individual population employed the following ge-
netic operators and parameters:

• Number of Generations: MaxGen = 200,

• Population size: npop = 60,

• Crossover operator: Arithmetic Crossover,
with pc = 0.9,

• Mutation operator: Non-uniform Mutation,
with pm = 0.01,

• Insertion: We consider the principle of elitism
to conserve the best solution in the next gen-
eration.

The experiments were conducted on a machine
with an Intel(R) Core(TM) i7-8565U CPU @
1.80GHz 1.99 GHz. The implementation of the al-
gorithm was done using the software FreeFem++,
[30], which is a free software for solving partial
differential equations (PDEs) in R2 and R3 using
finite element method. It is worth noting that the
FreeFem++ language enables the rapid specifica-
tion of the EDP (direct problem resulting from
the considered optimization problem) by writing
its variational formulation.

We investigate also the stability of the proposed
algorithm by perturbing the Cauchy data f and g
as follows:

(fper, gper) = (1 + νθ)(f, g) (16)

where ν denotes the noise level and θ is a ran-
dom number in the range [−1, 1] sampled using a
uniform distribution.

4.1 First case:
In the first case, the numerical tests are made on
a unit square domain Ω =]0, 1[2 (Fig.2), where the
boundary Γ = ∂Ω is divided into two parts:

Γi = {(0, y) : 0 < y < 1}
Γc = Γ\Γi

and the exact solution of the problem Eq.(1) with
k2 = 5 is given by:

uex(x, y) = exp(2x − y)

Figure 2: Unit square with mesh.

Fig.3 presents the analytical solution in the
whole domain.
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Figure 3: Analytical solution.

4.1.1 Choice of regulation parameter

Table.[1] reveals that as the value of α and β de-
crease from 1e − 01 to 1e − 08, the JDR(φ) and
JN R(φ′) cost functions also decrease, indicating
a better fit to the data. However, the rate of de-
crease slows down as we move towards smaller val-
ues of α and β, balancing the accuracy of the fit
with the complexity of the solution. The results
indicate that a small amount of regularization is
sufficient to prevent overfitting for both JDR(φ)
and JN R(φ′), as the lowest cost is obtained for
α = β = 1e − 05.

Fig.4 and Fig.6 illustrate the progressive con-
vergence of the numerical solution towards the an-
alytical solution throughout the iterative process.
Initially, the numerical solution exhibits substan-
tial deviation from the exact solution, but this dis-
crepancy diminishes rapidly with each iteration.
Such behavior highlights the efficacy of the iter-
ative method in effectively resolving the inverse
problem.

Figure 4: Trace of u on Γi.

Figure 5: Objective function JDR(φ).

Figure 6: The derivative of u (∂nu) on Γi.

Figure 7: Objective function JN R(φ′) for different
iterations.

Furthermore, Fig.5 and Fig.7 demonstrate the
significant reduction in the objective functions
JDR(φ) and JN R(φ′) during the initial iterations.
As the iterations progress, the convergence rate of
the objective function gradually slows down, al-
though it ultimately reaches a low value by itera-
tion k = 200.
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α and β 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 1e-07 1e-08
JDR(φ) 1.72e-02 2.09e-03 5.9e-04 1.41e-04 2.56e-05 1.31e-04 3.52e-05 6.103e-04
JN R(φ′) 7.108e-02 9.31e-03 1.36e-03 6.604e-04 5.10466e-04 5.19e-04 5.201e-04 5.48e-04

Table 1: Cost function JDR(φ) (resp. JN R(φ′)) for various values of α (resp. β).

4.1.2 Stability of the Proposed Method
Fig.8 and Fig.10 illustrate a comparison between
the numerical solution and the analytical solution
across varying levels of noise in the measurement
data. The numerical solution exhibits a slight de-
viation from the exact solution for low level of
noise level. However, this disparity increase, when
the noise level reaches a high values.

Figure 8: u/Γi for various levels of noise.

Figure 9: JDR(φ) for various levels of noise.

In Fig.9 and Fig.11, the cost function is
displayed for different noise levels, specifically
ν = 1%, 3%, 5%, 7%. The figures indicate that
as the noise level increases, the cost function
also increases, indicating a less precise fit to the
data. Nevertheless, for low noise levels, the cost
function remains relatively low, suggesting that
the numerical solution still offers a satisfactory fit

to the data.

Figure 10: ∂nu/Γi for various levels of noise.

Figure 11: JN R(φ′) for various levels of noise.

4.2 Second case:
In the second case, the numerical tests are per-
formed on an unit disc Fig.12 where the boundary
of this domain is divided into two parts:

Γi =
{

(x, y) : x2 + y2 = 1, y > 0 , x > 0
}

Γc = Γ\Γi

and the exact solution of the problem Eq.(1) with
k2 = −2 is given by:

uex(x, y) = sin(x) sin(y)
Fig.13 shows the analytical solution in the whole
domain.
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Figure 12: Unit disc with mesh.

Figure 13: Analytical solution.

4.2.1 Choice of regulation parameter
Table.[2] demonstrates that reducing the value of
α and β from 1e − 01 to 1e − 08 leads to a de-
crease in the cost functions JDR(φ) and JN R(φ′),
indicating an improved fit to the data. However,
as α and β approache smaller values, the rate of
decrease in the cost functions slows down, striking
a balance between fit accuracy and solution com-
plexity. These results suggest that a small degree
of regularization effectively prevents overfitting for
both JDR(φ) and JN R(φ′), with the lowest cost
achieved when α = 1e − 04 and β = 1e − 07.

Figure 14: Trace of u on Γi.

Fig.14 and Fig.16 illustrate the progressive con-
vergence of the numerical solution towards the an-
alytical solution throughout the iterative process.
Initially, the numerical solution exhibits substan-
tial deviation from the exact solution, but this dis-
crepancy diminishes rapidly with each iteration.
Such behavior highlights the efficacy of the iter-
ative method in effectively resolving the inverse
problem.

Figure 15: Objective function JDR(φ).

Furthermore, Fig.15 and Fig.17 demonstrate
the significant reduction in the objective functions
JDR(φ) and JN R(φ′) during the initial iterations.
As the iterations progress, the convergence rate of
the objective function gradually slows down, al-
though it ultimately reaches a low value by itera-
tion k = 200. These observations indicate that the
obtained solution is highly precise and represents
an excellent fit to the available data.

Figure 16: The derivative of u (∂nu) on Γi.
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α and β 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 1e-07 1e-08
JDR(φ) 4.65e-03 6.69e-04 1.354e-04 2.19e-05 5.12e-05 3.574e-04 8.63e-004 5.42e-04
JN R(φ′) 1.76e-02 2.12e-03 4.18e-04 6.308e-04 1.31e-03 1.07e-04 1.94e-05 1.82e-03

Table 2: Cost function JDR(φ) (resp. JN R(φ′)) for various values of α (resp. β).

Figure 17: Objective function JN R(φ′) for differ-
ent iterations.

4.2.2 Stability of the Proposed Method
Fig.18 and Fig.20 illustrate a comparison between
the numerical solution and the analytical solution
across varying levels of noise in the measurement
data. For a low noise levels, the numerical so-
lution exhibits a slight deviation from the exact
solution. However, this disparity increase for im-
portant noise levels, in particular, when approach-
ing Neumann condition in the extremities of the
domain.

Figure 18: u/Γi for various levels of noise.

Fig.19 and Fig.21 depict the cost func-
tion for various noise levels, specifically ν =
1%, 2%, 3%, 5%. These figures show that as the
noise level increases, the cost function also in-
creases, indicating a decreased level of accuracy in
fitting the data. However, even with higher noise

levels, the cost function remains relatively low, in-
dicating that the numerical solution still provides
a reasonably good fit to the data.

It is important to note that reconstruct-
ing Dirichlet boundary conditions on inaccessible
parts of a boundary is typically more accurate and
reliable than reconstructing Neumann boundary
conditions. This is because Dirichlet boundary
conditions provide more information about the so-
lution than Neumann boundary conditions. The
factors that contribute to this difference in accu-
racy and reliability can vary, and may depend on
the geometry of the domain being studied or the
regularity of the solution being reconstructed.

Figure 19: JDR(φ) for various levels of noise.

Figure 20: ∂nu/Γi for various levels of noise.
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Figure 21: JN R(φ′) for various levels of noise.

5 Conclusion
In this research paper, we address the challeng-
ing ill-posed inverse problem associated with the
Cauchy problem for the Helmholtz equation. Var-
ious optimization methods have been developed
to approximate solutions for such problems. In
this study, we explore the use of genetic algo-
rithms, which have the advantage of not requir-
ing specific regularity assumptions for the under-
lying functional. To achieve this objective, we
propose an optimization formulation that incor-
porates a Tikhonov regularization term. The ef-
fectiveness of our approach is evaluated through
numerical experiments conducted on both regular
and irregular domains. The results demonstrate
the efficiency of the real-coded genetic algorithm,
enhanced with adapted genetic operators, in suc-
cessfully solving the Cauchy problem associated
with the Helmholtz equation. However, as with
any other investigation, the present study has lim-
itations related to computational complexity, the
need for parameter tuning, uncertainties in solu-
tion quality, and sensitivity to initial population.
These limitations create opportunities for future
research exploring the utilization of parallel com-
puting and self-adaptive algorithms.
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