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Abstract: The contributions of this paper are threefold. First, it conducts a formal comparison of the primary ap-
proaches to consensus clustering, using the concepts of agreement and consent. Secondly, it presents theoretical
evidence justifying the preference for mean-based methods, which rely on consent, over other agreement-based
procedural methods like the q-rule, which are now mostly used as quality evaluators in practice. Thirdly, the
paper computes the exact reduction achieved by criteria available in existing literature to assess the quality of
mean-based consensus solutions and reduce the search space’s size. Finally, it compiles the regions where con-
sensus functions associated with well-known dissimilarity measures, such as the Mirkin metric and Variation of
Information, accumulate their consensus solutions.
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1 Introduction
Clustering problems are widespread and have led to
the development of numerous algorithms; however,
the lack of reliable performance information has cre-
ated “The User’s Dilemma,” [1], making algorithm
selection uncertain.

To address this, two approaches have emerged.
First, formal theories aim to establish generic con-
cepts and rules to classify and understand cluster-
ing algorithms, [2], [3], [4], [5]. Second, more ad-
vanced algorithms combine outcomes from multiple
traditional methods to produce integrated solutions,
known as “consensus methods,” [6], [7], [8], [9]. This
paper primarily focuses on consensus methods, par-
ticularly those based on the concept of a mean parti-
tion.

1.1 Consensus methods
Consensus algorithms take a set of partitions
p1, p2, . . . , pm, usually called an ensemble or a
profile, generated by standard clustering algorithms
and merge them into a holistic solution called the
“consensus partition.” These input partitions rep-
resent partial solutions, akin to expert judgments
from different perspectives. The consensus par-
tition aims to condense these partial perspectives
into a comprehensive representation. There are
several interesting axiomatic studies, many of them
published in journal of economics or social sci-
ences, [10], [11], [12], [13], [14], which address
partitions as equivalence relations and define the
consensus mechanisms as a function that receives an
m-tuple of equivalence relations (an ordered ensem-
ble) and returns the equivalence relation resulting of

taking the meet (see Section 2) of some subset of the
inputs determined by a fixed subset of the indexes
(e.g., the meet of the first, third, and fifth partitions
in the tuple), [11]. Similar mechanisms are obtained
if instead of the meet, the join operator is used. In
the first case, the consensus mechanism is called a
meet aggregator, while in the second case it is called
join aggregator. What varies from one aggregator
to another of the same kind is the set of indexes
to be considered. Apart from the axiomatic ap-
proaches, there exist two closely related fundamental
mechanisms of consensus in the ambit of partitions,
which have been often applied in pattern recognition
and machine learning tasks: quota rules [15] and
mean-based consensus, [16], [6], [7], [8].

Quota rules constitute a slightly more flexible join
aggregator. Given 0 ≤ q ≤ m (m denotes the total
number of partitions in the ensemble), the q-quota rule
is the finest partition that places in the same cluster
all those pairs of objects that were placed in the same
cluster of more than q partitions of the ensemble, [15],
[17]. Given a subset A of X , we said that a partition
of X refines A is every cluster of this partition either
lies entirely within A or entirely outside A. The dual
q-quota rule, 0 ≤ q ≤ m, is the coarsest partition that
refines all subsets A of X that are refined by more
than q partitions of the ensemble.

In turn, the consensus solutions in the mean-based
approach are defined as the minimizers of the con-

sensus function φ(p) =

m∑
i=1

D(p, pi), where D is

a dissimilarity measure for quantifying the resem-
blance between two partitions and p1, p2, . . . , pm are
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the members of the ensemble.
When comparing different methodologies, quota

rules align nicely with the idea of agreement, offer-
ing straightforwardly interpretable results. However,
they are highly sensitive to factions within the en-
semble, which is common in practice. This sensitiv-
ity leads to fragmented partitions and limited insights
into data interrelations. Meet aggregators share sim-
ilar sensitivity issues. In contrast, dual quota rules
and join aggregators tend to produce compact parti-
tions dominated by a few large clusters, known as the
“chaining effect.”

Mean-based methods, favored for their robustness
in practical applications, handle diverse ensembles
and provide more informative outcomes compared to
quota rules, especially regarding cluster number and
size. However, accurately computing mean-based so-
lutions can be computationally expensive due to the
large search space, unless additional information is
available for effective reduction. Additionally, the ac-
curacy of approximations by commonly used heuris-
tic methods for averaging remains uncertain.

From a foundational perspective, there are uncer-
tainties about how the consensus functionφ that com-
putes the mean using a dissimilarity measure aligns
meet and join operations in the lattice of partitions
with basic arithmetic operations on real numbers.
These unique characteristics raise questions concern-
ing the solutions quality and regarding the solutions
location.

1.1.1 Quality of consensus solutions
Asmentioned earlier, quota rules and dual quota rules
align well with the concept of agreement, making
their results easily interpretable and practical. While
quota rules offer limited but consistently reliable in-
formation, dual quota rules might provide some noise
by potentially including some irrelevant information.
Quota rules may not be highly informative as consen-
sus solutions, but they capture essential information.
In contrast, dual quota rules encompass all the infor-
mation (even if it includes noise) that a quality con-
sensus solution should contain.

Consequently, these rules, although not serving as
primary consensus solutions, serve as quality evalua-
tors. They assess the quality of mean-based consen-
sus solutions as follows: a consensus solution is con-
sidered acceptable if it contains at least the informa-
tion provided by a quota rule and no more than what a
dual quota rule offers. These rules play a crucial role
in evaluating the effectiveness of mean-based consen-
sus solutions.

This situation has been empirically addressed by
several researchers, [18], [19], [20].

1.1.2 Location of consensus solutions
To tackle computational challenges, various ap-
proaches have proposed reducing the search space,
each with its own method. While these reductions
may appear intuitive, they often lack substantial ev-
idence or support from general principles governing
consensus solution behavior.

The exponential growth of the Bell sequence (the
nth Bell number represents the number of partitions of
a set with n elements) underscores the impossibility
of evaluating each individual partition of a given fi-
nite dataset to find consensus solutions. Hence, prac-
tical procedures frequently employ unverified search
methods. Pruning the search space becomes neces-
sary to handle computational constraints. This in-
volves identifying a smaller region where consensus
solutions are likely to be found, thereby improving
computational efficiency and approximation quality.

However, certain questions arise that warrant con-
sideration: Is there a common region where con-
sensus solutions, regardless of the consensus func-
tion, should be sought? For many dissimilarity mea-
sures, the answer is yes. As mentioned earlier, quota
rules and dual quota rules serve as lower and upper
bounds of consensus solutions, significantly reducing
the search space.

Another important question is whether all consen-
sus functions accumulate their solutions in the same
region of the search space. The answer is no. For ex-
ample, consensus functions associated with the lattice
metric and the symmetric difference metric accumu-
late their solutions in opposing regions of the partition
space, [15].

1.2 Contributions
Motivated by these considerations, this paper delves
into the distinction between “agreement” and “con-
sent” within the context of clustering consensus meth-
ods, focusing on significant subtleties and nuances,
and formalizes these concepts. Subsequently, the arti-
cle translates the primary agreement-based consensus
criteria into rules for evaluating the quality of mean-
based consensus solutions.

In addition to these criteria, the paper incorporates
other criteria derived from axiomatic approaches,
though it is important to note that not all of them are
equally applicable or desirable. These are necessary
steps to facilitate access to the main contribution of
the paper: the exact computation of the pruning capa-
bility of these criteria.

For each criterion, the paper investigates its po-
tential as a means to prune the search space by pre-
cisely calculating the number of partitions it elimi-
nates. This aspect of the methods has not been ex-
plored to the best of my knowledge, making it a novel
and unexplored area of research.
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By addressing these aspects, the paper aims to
deepen our understanding of clustering consensus
methods and provide valuable insights into their per-
formance and effectiveness.

2 The size of the lattice of partitions
Let X = {x1, x2, . . . , xn} be a finite set. A parti-
tion p of X is a collection p = {C1, C2, . . . , Cs} of
subsets of X such that Ci ∩ Cj = ∅ for i ̸= j and
∪s
i=1Ci = X . The subsets C1, C2, . . . , Cs are called

the clusters or blocks of p. Throughout this paper,
mX denotes the partition all whose clusters are sin-
gletons —mX := {{x} : x ∈ X}—, while gX de-
notes the partition whose only cluster is the entire set
X —gX := {X}. There is a natural partial order
between partition: we say that the partition p refines
the partition p′, in notation notation p ⪯ p′, if the
following condition holds: for every pair of objects
x, x′ ∈ X , if x and x′ are in the same cluster of p,
then they are also in the same cluster of p′. Naturally,
p ≺ p′ means that p strictly refines p′. We say that
a partition p covers a partition p′ if (a) p and p′ are
different partitions; (b) p′ refines p; and (c) if p′ re-
fines p′′ which in turn refines p, then either p′′ = p′
or p′′ = p (i.e., there is no partition in between p′ and
p). The notation p′ ⊏ p means p covers p′. For any
two partitions p and p′ there are partitions that refine
both. The coarsest partition that satisfies this property
is denoted by p∧ p′ and is called the meet of p and p′.
Two elements x, y ∈ X are placed in the same cluster
of p∧ p′ if and only if they are simultaneously placed
in the same cluster of p and in the same cluster of p′.
Therefore the clusters of p ∧ p′ are all the possible
non-empty intersections of one cluster of p with one
cluster of p′. For any two partitions p and p′ there are
partitions that are refined by both. The finest partition
that satisfies this property is denoted by p ∨ p′ and is
called the join of p and p′. Two elements x, y ∈ X
are placed in the same cluster of p ∨ p′ if and only if
there is a sequence x = xi1 , xi2 , . . . , xik = y such
that, for all j ∈ {1, 2, . . . , k − 1}, xij and xij+1

are
either placed in the same cluster of p or in the same
cluster of p′. Thus, the cluster of p∨p′ are the subsets
of X that can be expressed both as unions of clusters
of p and as unions of clusters of p′, and are minimal
with respect to this property. Henceforth, PX denotes
the lattice of all partitions of X .

The partitions with exactly n − 1 clusters, i.e.,
partitions all whose clusters are singletons except for
one which includes exactly two elements, are called
the atoms or atomic partitions of PX . From now
on, pxx′ denotes the atomic partition whose only non-
singleton cluster is {x, x′}. Moreover,AX , or simply
A, denotes the set of atoms of PX whileA(p) denotes
the set of all the atoms of PX that refine the given
partition p. Analogously, the partitions with exactly

2 clusters are called the co-atoms or co-atomic parti-
tions of PX . Henceforth, pM denotes the co-atomic
partition whose only clusters are M and X − M .
CAX denotes the set of co-atoms of PX and CA(p)
denotes the set of co-atoms of PX that are refined the
given partition p. It is well-known that every partition
p ̸= mX can be expressed as the join of atom while
every partition p ̸= gX can be represented as the meet
of co-atoms.

The number of partitions in PX is given by the nth
Bell number, Bn, where n is the number of elements
inX . Bell numbers can be computed by using any of
the following equivalent formulas:

Bn =
1

e

∞∑
k=0

kn

k!
(Dobinski’s formula); (1)

Bn =

n−1∑
k=0

(
n− 1

k

)
Bk, B0 = 1; (2)

Bn =

n∑
k=1

S(n, k). (3)

Equation (3) defines the Bell numbers as the sum
of the Stirling numbers of the second kind, S(n, k),
where, for specific values of n and k, S(n, k) gives
the number of partitions of n elements into k clusters.
In turn, Equations (1) and (2) together show that the
difference between two consecutive Bell numbers is
an exponential, which implies that Bn increases ex-
tremely quickly as n increases. Table 1 shows the first
ten Bell numbers, which are additionally compared to
2n−1, as well as the difference between any two con-
secutive of them, in order to numerically illustrate the
claim above.

Table 1: The first ten Bell numbers

n 7 8 9 10
Bn 877 4,140 21,147 115,975

Bn −Bn−1 674 3,273 17,007 94,828
2n−1 64 128 256 512

3 Consensus by agreement vs.
consensus by consent: Quota rules
and mean-based consensus

This section commences by exploring the distinction
between two closely related concepts: ”agreement”
and ”consent.” The primary objective of this discus-
sion is to offer formal evidence regarding the dissimi-
larity between the two main approaches in consensus
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methods: quota rules and mean-based methods. Fur-
thermore, it seeks to clarify why the latter approach
has gained more popularity in applied fields such as
pattern recognition and machine learning.

In essence, agreement can be viewed as what is
desired, whereas consent represents what is accepted.
Consequently, in an ensemble, a member may choose
to consent to a proposal that is not their top choice,
aiming to achieve a solution that might not be optimal
but is satisfactory to all members. As a result, obtain-
ing consent appears to be easier than achieving agree-
ment. This flexibility in consent-based methods leads
to more informative solutions with a better balance
between the size and number of clusters. On the con-
trary, agreement-based methods tend to reveal only a
limited amount of the underlying data structure, pri-
marily due to either a high level of fragmentation or a
high level of concentration. Organizing the lattice of
partitions, we observe that agreement methods often
produce partitions that lie either in the lower or higher
levels of the partition space.

Despite the limited information provided by
agreement-based methods, it is undeniable and can
be valuable as a source of information when seeking
to prune the search space in mean-based methods. In
this context, it plays a crucial role, even though it may
not suffice as a standalone consensus solution.

To formalize these ideas, I shall introduce the fol-
lowing definition:

Definition 1 In the process of creating the consensus
solution p∗, the jth member of the ensemble, pj , is
said to agree that the pair of objects x and x′ to be
placed in the same cluster of p∗ if and only if x and x′
are in the same cluster of pj . Thus, the ensemble E =
{p1, p2, . . . pm} is said to contain a quota q ∈ [0, 1]
of agreement with the fact that the pair of objects x
and x′ in X to be placed in the same cluster of p∗ if
and only if more thanmq members of the ensemble E
agree that x and x′ to be placed in the same cluster of
p∗. In other words, if

|{pj ∈ E : pxx′ ⪯ pj}| > mq.

In the process of creating the consensus solution
p∗, the jth member of the ensemble, pj , is said to con-
sent, according to the dissimilarityD, that the pair of
objects x and x′ inX to be placed in the same cluster
of p∗ if and only if the partition obtained from p∗ by
merging those clusters containing x and x′, respec-
tively, either maintains or lowers the dissimilarity
with respect to pj . In other words, D(pj , p ∨ pxx′) ≤
D(pj , p). The entire ensemble E is said to consent,
according to D, that the pair of objects x and x′ in
X to be placed in the same cluster of p∗ if and only if
φ(p∗ ∨ pxx′) ≤ φ(p∗), which amounts to saying that

m∑
i=1

D(pi, p
∗ ∨ pxx′) ≤

m∑
i=1

D(pi, p
∗).

The dissimilarity D(pj , p∗) can be thought as the
degree of consent that the jth member of the ensem-
ble, pj , assigns to the proposal “the partition p∗ is the
consensus solution”.

This definition establishes that a consensus
reached by agreement is the solution of certain q-
quota rule, while a consensus obtained by consent is
the solution of a certain mean-based method. Now, it
is worthy, for the sake of completeness, to introduce
a more formal definition of quota rules.

Quota rules: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the
data set X , and a real number q ∈ [0, 1], the q-quota
rule, in notation pq, is the finer partition from among
those that are refined by every atom that, in turn,
refines more thanmq members of the ensemble.

By definition, the finer partition refined by some
given partitions is their join. It can be therefore con-
cluded that:
pq =

∨
{pxx′ ∈ A : |{pi ∈ E : pxx′ ⪯ pi}| > mq} .

In the case that the set of such atoms is empty, then
pq = mX .

Among the q-quota rules, unanimity rule and ma-
jority rule stand out by being used the most in practice
(see, for instance, [15]).

Unanimity rule: The unanimity rule is the q-quota
rule that corresponds to q =

m− 1

m
. (In this case,

mq = m− 1, which means that the atoms to be con-
sidered are those that refine all the members of the
ensemble.) Accordingly, the unanimity consensus is
given by the meet of all the members of the ensemble:
m∧
i=1

pi.

Majority rule: The majority rule is the q-quota
rule that corresponds to q = 1/2.

In an effort to address the issue of quota rules tend-
ing to generate small clusters, the concept of Dual
Quota Rules has been introduced [15].

Dual quota rules: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the data set
X and a real number q ∈ [0, 1], the dual q-quota rule,
in notation pdq , is the coarser partition from among
those that refine every co-atoms that, in turn, is re-
fined by more thanmq members of the ensemble.

Since the coarser partition that refines some given
partitions is their meet, it can be concluded that:

pdq =
∧

{pM ∈ CA, : |{pi ∈ E : pi ⪯ pM}| > mq} .
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In the event that the set of such co-atoms is empty,
then pdq = gX .

The Dual unanimity rule and the Dual majority
rule correspond to q = m−1

m and q = 1
2 , respectively.

Similar to quota rules, these dual rules are frequently
employed in practical applications.

Restated in terms of consent, quota rules and dual
quota serve as criteria designed to evaluate the in-
ner workings of other consensus methods that may
not be equally transparent. This assessment provides
valuable information about the quality and location of
their consensus solutions, which can then be utilized
to effectively prune the search space.

Quota rules for consent: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the data set
X and a real number q ∈ [0, 1], the q-quota rule for
consent establishes that any consensus partition, par-
ticularly the minimizers of the mean-based consensus

function φ(p) =
m∑
i=1

D(p, pi), must be refined by pq.

In essence, q-quota rules for consent stipulate that
pairs of objects appearing together in the same cluster
for more than qm partitions of the ensemble should
be grouped together in the same cluster of any con-
sensus partition. Consequently, this rule ensures that
any consensus solution must be at least as inclusive as
pq, rather than declaring pq itself as the consensus so-
lution. To illustrate, in terms of intervals in PX , these
rules propose replacing a larger interval, namely the
entire set PX of partitions X , with a smaller interval
defined as [pq, gX ].

Similarly, the dual q-quota rules for consent assert
that any consensus solution lies within the interval
[mX , pq].

Dual quota rules for consent: Given an ensem-
ble E = {p1, p2, . . . pm} of partial partitionings of
the data set X and a real number q ∈ [0, 1], the dual
q-quota rule for consent establishes that any consen-
sus partition, particularly the minimizers of the mean-

based consensus function φ(p) =
m∑
i=1

D(p, pi), must

refine pdq .
It is time to introduce the Undesired Atoms crite-

rion. Instead of listing the pairs that should appear
together in the same cluster of a consensus partition,
the following criterion has a prohibitive approach.

Undesired atoms: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the dataset
X , this rule establishes that any atomic parti-
tion pxx′ for which there is no sequence x =
xi1 , xi2 , . . . , xik = x′ such that every atom pxij

,xij+1
,

j = 1, 2, . . . , j−1, refines at least one partition of the
ensemble E , must refine no consensus solution.

This rule finds its foundation in the notion that
there are essentially two fundamental reasons for
placing a pair of objects in the same cluster of a con-
sensus partition: (i) when the ensemble reaches an
agreement on this pairing, and (ii) when the ensem-
ble decides to do so through consent or cooperation.
For (i), this pair must appear together in a sufficient
number of ensemble members, ensuring the required
quota of agreement. Conversely, in (ii), this pair is
placed together in the same cluster of the consensus
partition due to the chaining effect resulting from co-
operation among the ensemble members. An unde-
sirable atom is one that lacks justification for its ele-
ments to be grouped together in the same cluster, nei-
ther through agreement nor cooperation.

To elaborate, if a partition p refined by an unde-
sirable atom pxx′ is prohibited from being a consen-
sus solution, it implies that the union of the intervals
[pxx′ , gX ], where pxx′ ranges over the set of undesired
atoms, does not contain any consensus partitions.

To conclude this section, I will introduce two novel
criteria that I have recently uncovered while inves-
tigating the influence of submodularity on the local-
ization of consensus partitions, [21], [22]. Submodu-
lar functions can be considered akin to discrete con-
vex functions, and as it is widely recognized, con-
vexity is one of the most advantageous scenarios in
continuous optimization. The exploration of the im-
pact of this seemingly natural property has garnered
increasing interest within several areas of mathemat-
ics and computer science, including optimization and
machine learning.

Unanimity rule for consent bounded from above
by the ensemble: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the dataset
X , this rule establishes that any consensus solution
must be refined by the meet of all the members of E ,∧m

j=1 pj , and refines at least one member of E .
Essentially, this rule asserts that any consensus

partition can be obtained by refining a certain parti-
tion of the ensemble to be discovered, ensuring that
no pairs placed together in the same cluster for any
partition in the ensemble are split apart. Formally,
this statement implies that all consensus partitions lie

within the union of the intervals

 m∧
j=1

pj , pi

, pi ∈ E .

While this rule may impose a restrictive condition,
it is not intended to be satisfied by every consensus
function; rather, it has emerged naturally when inves-
tigating the behavior of consensus solutions produced
by submodular consensus functions.

In a similar vein and stemming from the same
source, the following and final rule posits that any
consensus partition can be identified by merging clus-
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ters from a particular member of the ensemble to be
revealed, with the assurance that all new pairs are the
result of cooperation among the members of the en-
semble.

Dual unanimity rule for consent bounded from
below by the ensemble: Given an ensemble E =
{p1, p2, . . . pm} of partial partitionings of the dataset
X , this rule establishes that any consensus solution
must be refined by at least one the pi’s in E and re-
fines

∨m
j=1 pj , the join of all the members of E . Ac-

cordingly, any consensus partition lies in the union of

the intervals

pi, m∨
j=1

pj

, pi ∈ E .

4 On the exact prune of the search
space

In this section, we calculate the exact reduction of-
fered by each criterion examined in the previous sec-
tion. The phrase ”reduction provided by the rule R”
implies that if an average consensus function satisfies
the rule R, the minimizers of φ are among the parti-
tions of PX accepted byR.

As each criterion provides a region that is either an
interval or a collection of intervals, it is convenient to
determine the number of partitions contained within
an interval [p, p′].
Lemma 1 Let p and p′ = {C1, C2, . . . , Ck} be par-
titions such that p ≺ p′. If the cluster Ci, 1 ≤ i ≤ k,
of p′ is the union of ni clusters of p, then the number

of partitions in the interval [p, p′] is
k∏

i=1

Bni
.

Table 2 shows some illustrative numbers.

Table 2: Computing the number of partitions in [p, p′]
by applying Lemma 1

n k #p n1; . . . ;nk

k∏
i=1

Bni
Bn

10 2 7 3; 4 75 115,975
10 2 8 4; 4 225 115,975
10 2 8 2; 6 406 115,975
12 3 10 2; 3; 5 520 4,213, 597
12 4 11 2; 2; 3; 4 300 4,213,597
15 3 12 3; 4; 5 3 900 1,382,958,545
15 4 10 3; 3; 4 375 1,382,958,545

PROOF 1 Any partition that refines the partition p′
can be thought of as an union of partitions of the clus-
ters of p′. Thus, as a first step toward our desired

conclusion, we could think that if we compute the to-
tal number ai of ways in which every cluster Ci of p′
can be partitioned, then the product of the product of
the ai’s would provide us with an estimate of the num-
ber that we are looking for. Notice that Ci is a set
itself, hence the number of partitions of Ci is the Bell
number corresponding to the number of elements inX
that form Ci. However, we do not want to count every
partition that refines p′, but only those that are refined
by p as well. To take into consideration the latter con-
dition, it suffices to count only those partitions of Ci

in which the elements lying in the same cluster of p
remain together. This means that the finest partition
of Ci that we can consider is that consisting of those
clusters of p that are contained in Ci. This suggests
that, instead of considering the elements of X that
form Ci to determine the Bell number that matches
ai, the clusters of p contained in Ci should be con-
sidered as individual elements to determine such Bell
number. Since there are ni of such clusters of p, the
number of ways of partitioning Ci under the required
condition isBni

, the nith Bell number. Therefore, the

number of partitions in the interval [p, p′] is
k∏

i=1

Bni
.

Now, we are poised to calculate the precise reduc-
tion offered by each criterion presented in the previ-
ous section. I will present them in the same order in
which they were introduced earlier.

Proposition 1 If pq has k clusters, then the reduction
provided by q-quota rule for consent is of Bn − Bk

partitions.

PROOF 2 Remember that the q-quota rule for con-
sent basically establishes that any consensus partition
must lie in the interval

[
pq, gX

]
. Since the only cluster

of gX is the entire setX , which is the union of k clus-
ters of pq, it can be concluded, in view of Lemma 1,
that the number of partitions in the interval

[
pq, gX

]
is

Bk. Consequently, the reduction provided by q-quota
rule is of Bn −Bk partitions.

Let us analyze now the reduction provided by the
dual q-quota rule.

Proposition 2 If the cluster Ci of pdq has ni elements,
then the reduction provided by the dual q-quota rule
is of Bn −

∏k
i=1Bni

partitions.

PROOF 3 The dual q-quota rules basically states
that any consensus partition lies in the interval[
mX , pdq

]
. Since all the clusters of mX are singletons,

each cluster of pdq is the union of ni clusters of mX if
and only if it contains ni elements ofX . The result is
now a direct consequence of Lemma 1.
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Now, let us direct our attention to the Undesired
Atoms rule. Before calculating the reduction pro-
vided by this rule, we must address a more funda-
mental question: How many undesirable atoms are
there? An atom pxx′ is deemed undesirable if and only
if the elements x and x′ belong to different clusters

of
m∨
j=1

pj—the join of all members in the ensemble

E . Thus, the number of undesirable atoms is equiva-
lent to the number of possibilities for selecting a pair
of elements from X that reside in distinct clusters of
m∨
j=1

pj .

Given this, each element in an arbitrary cluster Cu

of the join can be paired with each element in an-
other arbitrary cluster Cv of this partition, resulting
in #Cu · #Cv undesirable pairs. This proves the fol-
lowing lemma.

Lemma 2 If
m∨
j=1

pj has k distinct clusters

C1, C2, . . . , Ck with n1, n2, . . . , nk, respectively,
then, according to E , there are∑

1≤u<v≤k

nunv

undesired atoms.

Lemma 3 The join of r ≥ 1 atoms consists of at least
n− r clusters (and at most n− 1 clusters).

PROOF 4 Given an arbitrary partition p and an ar-
bitrary atom pxx′ , either x and x′ are together in the
same cluster of p or not. In the case that x and x′ are
placed in the same cluster of p, then p∨pxx′ = p. Oth-
erwise, when the join of p and pxx′ is taken, the clus-
ters of p that contain x and x′, respectively, merge into
a single cluster. Thus, p∨pxx′ ⊏ p, which means that
p ∨ pxx′ has one cluster less than p. Therefore, each
time the join of any partition and an atom is taken,
either the partition states the same or its number of
clusters decreases by one.

Suppose the join of r atoms is now considered.
We can think of the initial partition p as any of these
atoms, and then, we will take the join with the r − 1
remaining atoms, one at a time. By virtue of the rea-
soning that we just made, after having performing the
join with all the r − 1 remaining atoms, the initial p
lost no more than r − 1 clusters.

Proposition 3 Let UA = {A1,A2, . . . ,Aq} be the
set of all the undesired atoms according to the ensem-
ble E . The reduction provided by Undesired Atoms
rule is of

qBn−1 +

n−1∑
j=2

 q∑
r=j

(−1)r+1prj

Bn−j (4)

partitions, where prj is the number of sets consist-
ing of exactly r undesired atoms whose join has n− j
clusters (1 ≤ j ≤ r).

PROOF 5 According to this rule, if a partition lies
in some of the intervals [Aj , gX ], then it is prohib-
ited from being a consensus solution. As a result,
the union of these intervals must be removed from the
search space and the reduction provided by this rule
is the cardinality of such a union.

Applying the inclusion-exclusion principle, we get

that #
q∪

j=1

[Aj , gX ] is equal to

q∑
r=1

∑
u∈Or

q

(−1)r+1#

[∨
u
pu, gX

]
, (5)

where Or
q := {u = (u1, u2, . . . , ur) ∈ Zr : 0 <

u1 < u2 < . . . < ur < q} and
∧

u pu should be
understood as pu1

∧ pu2
∧ . . . ∧ pur

, provided u =
(u1, u2, . . . , ur) ∈ Or

q .
Now, by virtue of Lemma 3, the join of r ≥ 2 atoms

at least n − r clusters. Let us group all the possible
joins of r undesired atoms according to their number
of clusters. Using the fact that if a partition p has
n − j clusters, the interval [p, gX ] has Bn−j parti-
tions, we can conclude that Aj1 ∨ Aj2 ∨ . . .Ajr con-
tributes to (5) with (−1)r+1Bn−j provided this join
has n − j clusters. Denoting now by prj the num-
ber of joins of r atoms that have n − j clusters, we
get that the total contribution such undesired atoms
is (−1)r+1prjBn−j . Adding up these contributions,
the result follows.

Next, we examine the Unanimity Rule for Con-
sent Bounded from Above by the Ensemble. As
demonstrated earlier, this rule stipulates that consen-
sus solutions should lie in the union of the inter-

vals

 m∧
j=1

pj , pi

, i = 1, 2, . . . ,m. Applying again

the inclusion-exclusion principle combined with the
property that the intersection of two intervals of the
form [p, p′] and [p, p′′], respectively, is the interval
[p, p′∧p′′] because p′∧p′′ is the coarser partition that
simultaneously refines the partitions p′ and p′′, it fol-

lows that
m∪
i=1

 m∧
j=1

pj , pi

 is equal to:
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m−1∑
r=1

(−1)r−1
∑
u∈Or

m

#

 m∧
j=1

pj ,
∧
u
pu

 .

It suffices now to apply Lemma 1 to prove the fol-
lowing proposition.
Proposition 4 Given u ∈ Or

m, r = 1, 2, . . . ,m − 1,

let nu
su stand for the number of clusters of

m∧
j=1

pj

whose union is the suth cluster of
∧
u
pu, where

pu1
, pu2

, . . . , pur
belong to ensemble E . The re-

duction provided by Unanimity Rule for Consent
Bounded From Above by the Ensemble is of:

Bn −
m−1∑
r=1

(−1)r−1
∑
u∈Or

m

∏
su

Bnu
su
.

Analogously to the previous rule, we can calculate
the reduction provided by the Dual Unanimity Rule
for Consent Bounded from Below by the Ensemble.
This rule essentially states that any consensus solu-

tion lies in the union of the intervals

pi, m∨
j=1

pj

,
i = 1, 2, . . . ,m. The cardinality of these intervals
can be determined using the inclusion-exclusion prin-
ciple coupled with the fact that the intersection of two
intervals of the form [p′, p] and [p′′, p] is the interval
[p′ ∨ p′′, p] because p′ ∨ p′′ is the finer partition that
simultaneously refines the partitions p′ and p′′.

Thus, the cardinality #
m∪
i=1

pi, m∨
j=1

pj

 is equal to:

m−1∑
r=1

(−1)r−1
∑
u∈Or

m

#

∨
u
pu,

m∨
j=1

pj

 .

On account of Lemma 1 we get the following
proposition.
Proposition 5 Given u ∈ Or

m, r = 1, 2, . . . ,m −
1, let mu

s stand for the number of clusters of
∨
u
pu,

pu1
, pu2

, . . . , pur
∈ E , whose union is the sth cluster

of
m∨
j=1

pj , 1 ≤ s ≤ k. The reduction provided by Dual

Unanimity Rule for Consent Bounded From Below by
the Ensemble is of:

Bn −
m−1∑
r=1

(−1)r−1
∑
u∈Or

m

k∏
s=1

Bmu
s
.

5 State-of-the-art dissimilarity
measures

The  Table  3 compiles  the most significant  results
reported in literature for consensus functions associ-
ated to well-known dissimilarity functions.

Table 3: State-of-the-art measures’ compliance with
reduction criteria (Unanimity (U); Dual Unanimity
(DU); Majority (M); Dual Majority (DM)).

Measure U DU M DM
Var. of Inform. ✓ ✓
Mirkin metric ✓ ✓

Dual Symm. Diff. Metric ✓ ✓ ✓
Lattice Metric ✓ ✓ ✓

0-1 Disagreement meas. ✓
Split-merge meas. ✓ ✓

As previously mentioned, the works of
Barthélemy and Leclerc ensure that the consen-
sus functions linked to any metric constructed from
a lower valuation exhibit a behavior akin to the
consensus functions associated with the Variation
of Information and Mirkin metric, respectively.
Likewise, the consensus functions related to any
metric constructed from an upper valuation display a
behavior similar to the consensus function associated
with the lattice metric [15].

6 Conclusions and future work
This paper embarked on an exploration of lattice the-
ory to delve into the fundamental distinctions between
the two primary approaches to consensus within the
domain of partitional clustering. By presenting for-
mal evidence, we clarified the preference for average-
based methods over quota rules, despite the latter’s
intuitive and easily interpretable nature. We under-
scored that quota rules and similar criteria have not
diminished in importance; rather, they have assumed
a new role.

These methods are now instrumental in apprais-
ing the quality of average-consensus solutions and
furnishing valuable insights into the whereabouts of
average solutions. They assist in the efficient prun-
ing of the search space. The principal contribution
of this article is the compilation of key criteria for
evaluating average-consensus solutions and the quan-
tification of the exact reduction in the search space
achieved by each criterion. Moreover, these findings
offer insights into the pruning capabilities of each cri-
terion, enhancing our understanding of mean-based
consensus methods, which carry significant practical
implications.
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Looking ahead, further investigation is warranted
to analyze the various average consensus functions
corresponding to well-known dissimilarity measures.
While the Symmetric Difference measure has re-
ceived extensive scrutiny, other widely-used metrics
such as Variation of Information and Van Dongen’s
metric remain less explored. The results presented
here expand the horizons for in-depth exploration of
mean-based consensus methods in future research.
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