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1 Introduction

Distributed optimization has broad application
prospects in the fields of economic dispatch in
smart grid, [1], wireless sensor networks, [2], UAV
formation, [3], etc., so it has become a research
hotspot at present. Several types of distributed
algorithms based on the framework of multi-agent
systems have been proposed successively and are
used to solve various optimization problems.

Up to now, in most of the literature (see, [4], [5]),
many works have been derived based on the setting
of discrete-time. Owing to the fact that continuous-
time dynamic systems are more convenient to
study convergence and their applications in
physical systems are more flexible, distributed
continuous-time algorithms have also received
widespread attention from scholars. In [6], the
authors put forward the continuous-time distributed
adaptive coordination protocols to address the given
optimization problems. Aiming at the distributed
optimization problem with general constraints,
a proportional-integral (PI) consensus protocol
was proposed by [7]. However, in light of these
distributed strategies depend on the differentiability
of local objective functions, they may not be able
to solve the problems that local objective functions
are non-smooth. The dual decomposition technique
was given to decouple the equality constraints and
a new initialization-free distributed continuous-
time algorithm was developed in [8]. In [9], the
authors adopted the Laplacian-gradient method
and designed an adaptive control to resolve the
resource allocation problem, and constructed a
distance-based exact penalty function to handle local

convex sets. Different from the above distributed
optimization problems based on single integrator
multi-agent systems, the Euler-Lagrange systems
were considered in [10], and the system dynamics
were second-order dynamical systems in [11].

These above researches are all based on undirected
networks, which require the information transmission
between agents to be symmetrical and bidirectional.
However, in the actual systems, the information
exchange between agents is often one-way and easy
to be interfered with external factors, such as data
packet loss and signal attenuation. Therefore, in
recent years, distributed optimization on digraphs
has attracted more and more attention. In [12],
the authors proposed a subgradient optimization
algorithm of distributed average consistency and in
[13], the authors established an improved subgradient
push algorithm by introducing push-sum protocol
and distributed subgradient algorithm for the
deterministic directed switching network. In [14],
the authors solved the constrained optimization
problems without any initialization conditions and in
[15], the authors researched the resource allocation
problems with the help of a projection operator over
weighted balanced digraphs. In [16], [17], [18], [19],
the directed network is generalized to the situation
of weight-unbalanced. To avoid knowing certain
information of both in-neighbors and out-neighbors,
the effort was made in [16], to design a continuous-
time coordination algorithm. In [17], the authors
designed an adaptive algorithm by virtue of dynamic
coupling gains and the requirements of the Lipschitz
constants, meanwhile, the network connectivity
was removed. Resorting to the gradient-tracking
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and PI strategies, in [18], the authors established a
distributed optimization algorithm with a fixed step-
size, which ensured that the convergence rate was
not affected by the decreasing step-size. In [19], the
authors designed an adaptive distributed continuous-
time algorithm, in which the out-Laplacian matrix
was adopted to overcome the difficulties brought
about by a weight-unbalanced communication graph.

As an important carrier of distributed information
processing, linear multi-agent systems have achieved
many research results. For homogeneous linear
multi-agent systems on general digraphs, some
relevant studies have been conducted in [20].
Actually, different multi-agents have different system
states and even diverse dimensions of state space.
Many works in [21], [22], [23], have been derived
for heterogeneous linear multi-agent systems. By
means of the KKT condition and primal-dual control
scheme, in [22], the authors proposed the state-based
and output-based adaptive control algorithms without
initialization. Based on output feedback, the PI
control technique was used to handle distributed
optimal output consensus problem in [23]. This did
not require the convexity of the local cost functions,
but the global control parameters were adopted.
For more related works on distributed optimization
algorithms, readers can refer to some literature
reviews, [24], [25], [26], [27], [28], [29].

Most of theses above-mentioned researches
are limited to distributed optimization problems
under undirected graphs or unconstrained digraphs.
The design of constrained distributed algorithms
under weight-unbalanced digraphs still has some
limitations. When the balance of communication
topology is damaged, the original distributed
algorithms suitable for undirected and balanced
directed graphs may become invalid. The Laplacian
matrix for the unbalanced communication graph is
asymmetric, so the equilibrium point of the general
distributed algorithm is not equal to the optimal
solution. Hence, it is quite necessary to extend
the constrained distributed optimization algorithms
to the weight-unbalanced digraphs. Besides, most
systems are generally heterogeneous in practice, in
the meantime, notice that more and more scholars
focus on the heterogeneity of multi-agent systems.
Generally speaking, on account of the more complex
dynamics involved in systems, dealing with the
consistency of heterogeneous systems is undoubtedly
a challenge. thus, the study of distributed constrained
optimization problems over weight-unbalanced
digraphs considering the heterogeneous structure of
multi-agent systems can be further discussed.

To handle the distributed optimization problem
with inequality constraints, in which the local
objective functions are strongly convex, this

paper aims to design a novel continuous-time
optimization algorithm for heterogeneous linear
multi-agent systems. Simultaneously, each agent
interacts information with other agents through a
communication network modeled by the weight-
unbalanced digraph. The main contributions of this
paper are given as follows.

(1) Compared with [6], [7], [8], [22], which require
the graphs to be undirected, our algorithm is
designed over weight-unbalanced digraphs. In
addition, some of the methods used to prove
convergence cannot be applied to unbalanced
graphs such as the symmetry of undirected
graphs in [6]. The distributed optimization
problems on unbalanced digraphs have also
been studied in [16], [17], [23]. However, in
contrast to [16], [17], [23], which can only deal
with unconstrained optimization problems, these
approaches they used do not enable agents to
reach consensus on the intersection of feasible
sets subject to set constraints.

(2) We devote ourselves to researching the
heterogeneous linear multi-agent systems in
this study while the works of [15], [20] are
restricted to homogeneous linear multi-agent
systems. The subsystems of this paper have
different dynamics, so the method is also
suitable for agents with identical dynamics.

We arrange the remaining parts of this paper in the
following order. Section 2 introduces some useful
preliminaries. Section 3 formulates the constrained
optimization problem and gives some indispensable
assumptions and lemmas. The main result of
this article presented in Section 4 is to seek the
optimal output of a given problem by designing a
distributed continuous time optimization algorithm,
and to analyze its asymptotic convergence.Then in
Section 5, the effectiveness of the proposed algorithm
is illustrated via two numerical examples. Finally,
Section 6 discusses our conclusions and future work.

2 Preliminaries

2.1 Notations

Let R, Rn, Rn×m stand for the sets of real
numbers, n-dimensional real vectors, and n × m-
dimensional real matrices, respectively. Let In ∈
Rn×n, 1n ∈ Rn, 0n ∈ Rn represent the identity
matrix, the vector with entries equal to one and
zero, respectively. A> and ‖ · ‖ are respectively
the transpose of a matrix A and the Euclidean norm.
col(x1, . . . , xn) = (x>1 , . . . , x

>
n )

> is a column vector
sequentially stacked by vectors x1, . . . , xn. (p)+ =
p, if p > 0, and (p)+ = 0 otherwise. ⊗ represents the
Kronecker product.
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2.2 Convex Analysis and Projection

Operation

For a set Ω ⊆ Rd, if τx1 + (1 + τ)x2 ∈ Ω for

any x1, x2 ∈ Rd, x1 6= x2 and τ ∈ (0, 1), then Ω
is a convex set. f : Rd → R is a continuously-
differentiable function, if there exists m > 0 such
that (x1−x2)

>(∇f(x1)−∇f(x2)) ≥ m‖x1−x2‖2,
for any x1, x2 ∈ Rd holds, the function f is said to
be strongly convex over a convex set Ω ⊆ Rd. And
moreover, if there exists εx,M > 0 such that for
any x1, x2 ∈ B(x, εx), there is |f(x1) − f(x2)| ≤
M‖x1 − x2‖, then we say f is locally Lipschitz at

x ∈ Rd.
We signify PΩ(x) = argminy∈Ω‖x − y‖ as the

projection of a vector x, where Ω denotes a closed
convex set. A useful lemma on the based on the
definition of PΩ(x) is following:

Lemma 1 ([7]) Define Ω ⊆ Rd to be a nonempty
closed convex set. Then x = PΩ(y) if and only if

x ∈ Ω and (x− y)>(%−x) ≥ 0 holds for any % ∈ Ω.

2.3 Graph Theory

We describe G = (V, ε,A) as a communication
graph consisting of N agents with node set V =
{1, . . . , N} and edge set ε ⊆ V × V , and A =
[aij ] ∈ RN×N is a weighted adjacency matrix.
Particularly, aij > 0 if (i, j) ∈ ε, and aij = 0
otherwise. A directed path from agent i to agent
j is a sequence of ordered edges in the form of
(i, i1), (i1, i2), . . . , (il, j). If there exists a directed
path connecting every pair of nodes, then G is called
a strongly connected directed graph. Let dini =∑N

j=1 aij and douti =
∑N

j=1 aji respectively be the

in-degree and out-degree of agent i. The Laplacian
matrix L = [lij ] ∈ RN×N associated with G
is denoted by L = Din − A, where Din =
diag(din1 , d

in
2 , . . . , d

in
N ). For all i ∈ V , if dini = douti ,

then we say the directed graph is weight-balanced,
otherwise weight-unbalanced.

Lemma 2 ([16]) For a strongly connected graph G,
and L ∈ RN×N is its Laplacian matrix. Then, the
following properties hold.

(1) L1N = 0N ;

(2) there is a positive left eigenvector ξ =
(ξ1, ξ2, . . . , ξN )> concerning eigenvalue zero

such that ξ>L = 0>N and
∑N

i=1 ξi = 1;

(3) L̃ = ΞL+L>Ξ
2 is a valid Laplacian matrix

for a strongly connected and balanced graph,

where Ξ = diag(ξ1, . . . , ξN ), and L̃ is positive
semidefinite. Zero is a simple eigenvalue of

L̃ and λ2(L̃) = min1>N=0N
x>L̃x
x>x is its second

smallest eigenvalue.

3 Problem formulation
We consider that a multi-agent system is

composed of N agents, and each agent i is given the
following heterogeneous linear dynamics:

ẋi = Aixi +Biui,

yi = Cixi,
(1)

where xi ∈ Rni is the state variable of agent i, ui ∈
Rpi is the control input of agent i, and yi ∈ Rd is the
control output of agent i. Ai ∈ Rni×ni , Bi ∈ Rni×pi ,
Ci ∈ Rd×ni are the state, input, and output matrices,
respectively, which are constant matrices.

Our goal is to design a proper controller ui(t)
for each agent i, where each agent only knows its
own information and local interaction, such that all
agents can reach the optimal output y∗ under the local
inequality constraints. The optimization problem
with inequality constraints is formulated as follows:

min f(y) =

N∑
i=1

fi(y),

s.t. gi(y) ≤ 0, i = 1, . . . , N,

(2)

where y ∈ Rd, fi : Rd → R, gi : Rd → Rri .
Here, fi(y) is known as the local objective function

of ith agent, and gi(y) = (gi1(y), . . . giri(y))
> is

the local inequality constraints of ith agent, where ri
denotes the number of local constraints. Clearly, the
optimization problem can be resolved in a distributed
way due to both information of the local objective
functions fi(y) and local constraints gi(y) are only
obtained by agent i.

Before the introduction of our main results, we
make a few assumptions about the communication
graph, the local objective functions and the local
constraint functions.

Assumption 1 The communication network G is
strongly connected.

Assumption 2 The function fi(y), i = 1, . . . , N
is mi-strongly convex. Local constraint function
gi(y), i = 1, . . . , N is convex.

Assumption 3 The gradient function of the local
objective function ∇fi, i = 1, . . . , N as well as the
local constraint function ∇gi, i = 1, . . . , N is Mi-
Lipschitz withMi > 0.

Under the whole output variable y =
col(y1, y2, . . . , yN ) ∈ RNd, the global
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objective function incurred by all agents is

f(y) =
∑N

i=1 fi(yi). Under Assumption 1, we
can reformulate the problem (2) as

min f(y) =

N∑
i=1

fi(yi),

s.t. (L⊗ Id)y = 0, gi(yi) ≤ 0, i = 1, . . . , N.

(3)

The equality constraint (L ⊗ Id)y = 0 ensures that
y1 = y2 = . . . = yN , the problem (2) and problem
(3) are equivalent in terms of the optimal solution
set. Then to solve the problem (2), we can solve the
problem (3) instead.

Remark 1 Define Y =
⋂N

i=1 Yi with Yi = {yi ∈
Rd|gi(yi) ≤ 0, i = 1, . . . , N} as the global constraint
set on the output variable. And the optimal set of the
considered optimization problem is denoted by Y∗.
Assumption 1 permits the graph to be unbalanced.
Assumption 2 ensures that the optimal solution to (3)
is unique and the optimal set Y∗ is convex.

Assumption 4 (Ai, Bi) is controllable, and

rank(CiBi) = d, i = 1, . . . , N. (4)

Lemma 3 ([23]) Under Assumption 4, the following
matrix equations

CiBiΥi = CiAi,

CiBiΨi = Id.
(5)

exist solutions Υi ∈ Rpi×ni , Ψi ∈ Rpi×d.

4 Distributed General

Continuous-Time Convex

Optimization Algorithm
In this part, we give a novel distributed

optimization algorithm to solve the problem (3)
and prove its convergence property in detail. The
distributed optimization algorithm is given as follows

ui = −Υixi +Ψi(−
∇fi(yi)

zii
− (∇gi(yi))

>(µi + µ̇i)

− α

N∑
j=1

aij(yi − yj)−
N∑
j=1

aij(ηi − ηj)),

η̇i = α

N∑
j=1

aij(yi − yj),

żi = −
N∑
j=1

aij(zi − zj),

µ̇i = (µi + gi(yi))
+ − µi,

(6)

where ηi ∈ Rd and µi ∈ Rr
+ with r =

∑N
i=1 ri are the

auxiliary states of agent i, zi ∈ RN and zii is the ith
component of zi, xi, ui, yi are same defined as (1). α
is a positive parameter. Υi, Ψi are feedback matrices
based on Lemma 3. ∇fi is the gradient of fi, ∇gi is
the gradient of gi. The simulation structure diagram
of the control algorithm (6) is shown in Figure 1
(Appendix)

Remark 2 In comparison, the related work in [7],
[8], [22] only give the results on undirected graphs,
while (6) is designed over unbalanced digraphs. We
evaluate the left eigenvector associated with the

zero eigenvalue of the Laplacian matrix L̃ through
(6) by designing the variable zi, which removes
the imbalance of the communication graph, and
ensures that the constrained optimization algorithm
can converge to the optimal output y∗ without
knowing the information of the left eigenvector.
However, in [20], the information of ξ needs to
be obtained in advance. And moreover, the µi is
applied to handle local inequality constraints. It
should be noted that the algorithms in [16], [17],
[23], do not take the local state constraints into
account. Furthermore, for some other unconstrained
optimization problems over weight-balanced directed
graphs or undirected graphs, the algorithm (6) we
designed is still applicable.

Let x = col(x1, . . . , xN ), y = col(y1, . . . , yN ),
z = col(z1, . . . , zN ), η = col(η1, . . . , ηN ),
µ = col(µ1, . . . , µN ), Ψ = diag(Ψ1, . . . ,ΨN ),A =
diag(A1,Υ = diag(Υ1, . . . ,ΥN ), . . . , AN ),
B = diag(B1, . . . , BN ), C =
diag(C1, . . . , CN ), ZN = diag(z11 , . . . , z

N
N ),

g(y) = col(g1(y1), . . . , gN (yN ),∇f(y) =
col(∇f1(y1), . . . ,∇fN (yN )),∇g(y) =
col(∇g1(y1), . . . ,∇gN (yN )), and µ̄ = (µ + g(y))+.
On the basis of the above definition, the compact
form of the algorithm (6) can be written as

ẋ = (A−BΥ)x+BΨ(−(Z−1
N ⊗ Id)∇f(y)

− (∇g(y))>µ̄− α(L⊗ Id)y − (L⊗ Id)η),
(7a)

η̇ = α(L⊗ Id)y, (7b)

y = Cx, (7c)

ż = −(L⊗ IN )z, (7d)

µ̇ = µ̄− µ. (7e)

Pre-multiplying (7a) by C, substituting Lemma 3
into the above system, then we can get the following

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.83 Zhengquan Yang, Wenjie Yu, Zhiyun Gao

E-ISSN: 2224-2880 759 Volume 22, 2023



result.

ẏ = −(Z−1
N ⊗ Id)∇f(y)− (∇g(y))>µ̄

− α(L⊗ Id)y − (L⊗ Id)η,

η̇ = α(L⊗ Id)y,

ż = −(L⊗ IN )z,

µ̇ = µ̄− µ.

(8)

Remark 3 In order to guarantee the existence of

Z−1
N , it is essential that the initial value z(0) satisfies

zii = 1 for i = 1, . . . , N and zji = 0 for all i 6= j.
With Assumption 1, it can be readily obtained that
e−Lt(t > 0) is a nonnegative matrix with positive
diagonal entries. This implies that zii > 0 for all

t ≥ 0. Therefore, there exists (zii)
−1, that is, Z−1

N
is well-defined.

Next, the optimality condition is given in Lemma 4
which plays a crucial part in the following analysis.

Lemma 4 Let the Lagrangian function of problem

(3) be L(y, η, µ) = f(y)+ 1
2‖(Ξ

1

2 ⊗Id)µ̄‖2+y>(L̃⊗
Id)η, where η ∈ RNd and µ ∈ RNr

+ are Lagrange
multipliers. Then, if Assumptions 1-4 hold, the point
y∗ is an optimal solution of the optimization problem
(3) iff there exist Lagrangian multipliers (η∗, µ∗) ∈
RNd × RNr

+ such that the following KKT condition
holds:

0 = ∇f(y∗) + (µ∗)>(Ξ⊗ Id)∇g(y∗) + (L̃⊗ Id)η
∗,

µ∗ ≥ 0, g(y∗) ≤ 0, (µ∗)>g(y∗) = 0.
(9)

Proof 1 The second formula of (9) can be discussed
in the following two cases.

(1) It follows from µ∗ ≥ 0, g(y∗) = 0 that

(µ∗)>g(y∗) = 0, then we can get that (µ∗ +
g(y∗))+ = max(µ∗ + g(y∗), 0) = µ∗ + g(y∗) =
µ∗.

(2) It follows from µ∗ = 0, g(y∗) ≤ 0 that

(µ∗)>g(y∗) = 0, by similar discussion, we can
also have that (µ∗ + g(y∗))+ = 0 = µ∗.

And vice versa.

Combined with the definition of (·)+ and pre-
multiplying (9) by (Ξ−1 ⊗ Id), (9) is equivalent to

0 = (Ξ−1 ⊗ Id)∇f(y∗) + (∇g(y∗))>µ∗

+ (L⊗ Id)η
∗,

µ∗ = (µ∗ + g(y∗))+.

(10)

The lemma below gives the relation between an
optimal solution to the optimization problem (3) and
an equilibrium point of the algorithm (8).

Lemma 5 Assume thatAssumptions 1-4 hold. Given
z(0) in Remark 3 and the parameter α(α > 0),
if (y∗, η∗, µ∗, z∗) is the equilibrium point of the
algorithm (8), then y∗ is an optimal solution of the
distributed constrained optimization problem (3).

Proof 2 Let (y∗, η∗, µ∗, z∗) is the equilibrium point
of the algorithm (8), so

0 = −((Z−1
N )∗ ⊗ Id)∇f(y∗)− (∇g(y∗))>µ̄∗

− α(L⊗ Id)y
∗ − (L⊗ Id)η

∗,

0 = α(L⊗ Id)y
∗,

0 = −(L⊗ IN )z∗,

0 = µ̄∗ − µ∗.

(11)

It follows from [16], that limt→∞ z =
limt→∞ e−(L⊗IN )tz(0) = (1Nξ> ⊗ IN )z(0) =
1N ⊗ ξ, which implies that limt→∞ Z−1

N = Ξ−1.

Thus, z∗ = 1N ⊗ ξ and (Z−1
N )∗ = Ξ−1. Based on the

above discussion and combined with the definition
of µ̄ = (µ+ g(y))+, then we have

0 = −(Ξ−1 ⊗ Id)∇f(y∗)− (∇g(y∗))>µ∗ − (L⊗ Id)η
∗,

(12a)

0 = (L⊗ Id)y
∗, (12b)

µ̄∗ = µ∗ = (µ∗ + g(y∗))+. (12c)

It is obvious that (12b) generates y∗ = 1N ⊗ ỹ
with ỹ ∈ Rd. Furthermore, by comparing (12a), (12c)
with (10), we can obtain that the equilibrium point
of (8) satisfies the condition (10). By Lemma 4, we
know that y∗ is an optimal solution to the problem (3).

Then, Theorem 1 provides the proof of convergence.

Theorem 1 Under Assumptions 1-4, given z(0) in
Remark 3 and the parameter α(α > 0), then
the output variable y(t) asymptotically converge to
the optimal solution y∗ of (3) for any initial value
(y(0), η(0), µ(0)) ∈ RNd × RNd × RNr

+ .

Proof 3 Let θ = col(y, η, µ), it follows from (8) that
θ satisfies

θ̇ = f(θ) + g(t, θ) + v(t), (13)

where

f(θ) =

(
f1(θ)
f2(θ)
f3(θ)

)
.

f1(θ) = −(Ξ−1 ⊗ Id)∇f(y)− (∇g(y))>µ̄− α(L⊗
Id)y−(L⊗Id)η, f2(θ) = α(L⊗Id)y, f3(θ) = µ̄−µ,
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g(t, θ) =

((Ξ−1 − Z−1
N )⊗ Id)(∇f(y)−∇f(y∗))

0
0

 ,

v(t) =

((Ξ−1 − Z−1
N )⊗ Id)∇f(y∗)

0
0

 .

First, consider the stability of the system:

θ̇ = f(θ). (14)

Let θ∗ = col(y∗, η∗, µ∗) be an equilibrium point
of system (14) and the Lyapunov candidate is defined
as

V1 =
1

2
(y − y∗)>(Ξ⊗ Id)(y − y∗), (15)

Then we have

V̇1 = (y − y∗)>(Ξ⊗ Id)(−(Ξ−1 ⊗ Id)∇f(y)

− (∇g(y))>µ̄− α(L⊗ Id)y − (L⊗ Id)η)

= −(y − y∗)>(∇f(y)−∇f(y∗))

− (y − y∗)>(Ξ⊗ Id)((∇g(y))>µ̄− (∇g(y∗))>µ∗)

− α

2
(y − y∗)>((ΞL+ L>Ξ)⊗ Id)(y − y∗)

− 1

2
(y − y∗)>((ΞL+ L>Ξ)⊗ Id)(η − η∗)

= −(y − y∗)>(∇f(y)−∇f(y∗))

− (y − y∗)>(Ξ⊗ Id)((∇g(y))>µ̄− (∇g(y∗))>µ∗)

− α(y − y∗)>(L̃⊗ Id)(y − y∗)

− (y − y∗)>(L̃⊗ Id)(η − η∗),

(16)

where L̃ = ΞL+L>Ξ
2 we have used in Lemma 2.

Next, define V2 = 1
2(µ− µ∗)>(Ξ⊗ Id)(µ− µ∗).

According to the definition of (·)+ and Lemma 1, we
can conclude that

(µ̇+ µ− (µ+ g(y)))>(µ∗ − µ̇− µ) ≥ 0, (17)

expand the equation (17), that is,

µ̇>(µ∗ − µ)− ‖µ̇‖2 − g(y)>(µ∗ − µ̄) ≥ 0, (18)

pre-multiplying (7a) by (Ξ ⊗ Id), it can be obtained
that

µ̇>(Ξ⊗ Id)(µ
∗ − µ)− ‖(Ξ⊗ Id)

1

2 µ̇‖2

− g(y)>(Ξ⊗ Id)(µ
∗ − µ̄) ≥ 0,

(19)

by combining (19) and the definition of V2, it is
simplified as

V̇2 ≤ −‖(Ξ⊗ Id)
1

2 µ̇‖2 − g(y)>(Ξ⊗ Id)(µ
∗ − µ̄).

(20)

Take V3 = 1
2α(η − η∗)>(Ξ⊗ Id)(η − η∗), where

α > 0. Then the derivative of V3 along with (14) is

V̇3 =
1

2α
· α(y − y∗)>((ΞL+ L>Ξ)⊗ Id)(η − η∗)

= (y − y∗)>(L̃⊗ Id)(η − η∗).
(21)

Let
V = V1 + V2 + V3 (22)

be a Lyapunov function candidate, obviously, which
is positive semi-definitive. By utilizing (16),(20) and
(21), and from (22), we can obtain that

V̇ = −(y − y∗)>(∇f(y)−∇f(y∗))

− α(y − y∗)>(L̃⊗ Id)(y − y∗)

− ‖(Ξ⊗ Id)
1

2 µ̇‖2 − g(y)>(Ξ⊗ Id)(µ
∗ − µ̄)

− (y − y∗)>(Ξ⊗ Id)((∇g(y))>µ̄

− (∇g(y∗))>µ∗).

(23)

Since the function f is strongly convex, we have

(y − y∗)>(∇f(y)−∇f(y∗)) ≥ m‖y − y∗‖2. (24)

Utilized the fact that the communication graph is
a connected digraph, one can obtain that

α(y − y∗)>(L̃⊗ Id)(y − y∗) ≥ αλ2(L̃)‖y − y∗‖2,
(25)

where λ2(L̃) is the second smallest eigenvalue of L̃.
Next analyzing ω = −g(y)>(Ξ ⊗ Id)(µ

∗ − µ̄) −
(y − y∗)>(Ξ⊗ Id)((∇g(y))>µ̄− (∇g(y∗))>µ∗).

By rearranging these terms, it follows that

ω = +(µ∗)>(Ξ⊗ Id)((∇g(y∗))>(y − y∗)− g(y))

− µ̄>(Ξ⊗ Id)((∇g(y))>(y − y∗)− g(y)).
(26)

By adding and subtracting g(y∗) in (26), one has

ω = (µ̄∗)>(Ξ⊗ Id)((∇g(y∗))>(y − y∗)

+ g(y∗)− g(y))− (µ̄∗)>(Ξ⊗ Id)g(y
∗)

− µ̄>(Ξ⊗ Id)((∇g(y))>(y − y∗)

+ g(y∗)− g(y)) + µ̄>(Ξ⊗ Id)g(y
∗)

(27)

where the convex property of g(y) and the
nonnegative property of µ̄ and µ∗ are used in the first
and third term. It follows from Lemma 4 that y∗ is
an optimal solution to the optimization problem (3).
This makes it easy to verify that g(y∗) ≤ 0,
µ̄>(Ξ⊗ Id)g(y

∗) ≤ 0, and (µ̄∗)>(Ξ⊗ Id)g(y
∗) = 0.

Hence, what we can gain from the above analysis is
that

V̇ ≤ −‖(Ξ⊗ Id)
1

2 µ̇‖2 − (m+ αλ2)‖y − y∗‖2

≤ 0.
(28)
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Due to V̇ is continuous and negative for any
α > 0, V (t) is bounded, then we can conclude
that y(t), µ(t) and η(t) are bounded. This
together with the Lipschitz condition of fi and
gi, which imply that ∇fi and ∇gi are bounded,

then −(Z−1
N ⊗ Id)∇f(y) − (∇g(y))>µ̄ − α(L ⊗

Id)y − (L ⊗ Id)η is also bounded, and denotes
σ, σ > 0 as its upper bound. Furthermore, we have
that ‖x(t)‖ ≤ ‖x0‖e−t + (1 − e−t)σ ≤ ‖x0‖ + σ
according to the expression of ẋ(t), so x(t) is also
bounded. For the reason that V is radially unbounded,
then by using LaSalle Invariance Principle, it can be
found that limt→∞ yi(t) = y∗, for i = 1, . . . , N .

Next, we discuss the asymptotical stability of the
terms g(t, θ) and v(t).

From [16], there exist two positive constants %1
and ι1 such that max|ξ−1

i − (zii)
−1| ≤ %1e

−ι1t holds.
Thus, g(t, θ) satisfies the inequality

‖g(t, θ)‖ = ‖((Ξ−1 − Z−1
N )⊗ Id)(∇f(y)−∇f(y∗))‖

≤ max|ξ−1
i − (zii)

−1| · ‖∇f(y)−∇f(y∗)‖
≤ M%1e

−ι1t‖y − y∗‖.
(29)

v(t) satisfies

‖v(t)‖ = ‖((Ξ−1 − Z−1
N )⊗ Id)∇f(y∗)‖

≤ max|ξ−1
i − (zii)

−1| · ‖∇f(y∗)‖
≤ %1‖∇f(y∗)‖e−ι1t.

(30)

In light of (29), (30), it is evident that
limt→∞ g(t, θ) = 0 and limt→∞ v(t) = 0. As
already indicated above, one has θ(t) asymptotically
converges to θ∗ as t → ∞, which means that the
proposed algorithm is effective for solving the
problem (3). This completes the proof.

5 Numerical Examples
Two numerical examples are provided to

demonstrate the effectiveness of the presented
algorithm in this section.

Example 1 We consider a heterogeneousmulti-agent
system consisting of six agents inR2 inspired by [23],

where A1 = A2 =

[
1 0
1 1

]
, A3 = A4 =

[
0 1
−2 1

]
,

A5 = A6 =

[
1 1 0
0 1 1
1 0 2

]
, B1 = B2 =

[
−1
2

]
, B3 =

B4 =

[
1
−1

]
, B5 = B6 =

[
1
0
2

]
, C1 = C2 = [1 1],

C3 = C4 = [3 1], C5 = C6 =
[
1
2 −1 0

]
. The

local objective functions referred to [11] and the local
convex inequality functions of six agents are given by

f1(y1) =
1

2
y211 +

1

2
y212,

f2(y2) =
1

2
(y21 + 1)2 +

1

2
y222,

f3(y3) =
1

2
y231 +

1

2
(y32 + 1)2,

f4(y4) =
1

2
(y41 + 1)2 +

1

2
(y42 + 1)2,

f5(y5) =
1

4
y451 +

1

4
y452,

f6(y6) =
1

4
(y61 + 1)4 +

1

4
y462,

gi(yi) = (y1 − 2)2 + (y2 − 2)2 − 5, i = 1, . . . , 6.

(31)

Obviously, all of the local objective functions
and inequality functions are continuously
differentiable. Due to the strong convexity of

function f(y) =
∑N

i=1 fi(yi), the global minimizer
y∗ is unique. And the minimum value f(y) = 5.2347
and the optimal solution y∗ = [0.2945, 0.5539]>

can be acquired through some simple and easy
calculations.

In addition, the feedback gain matrixes of each
agent can be selected by γ1 = γ2 = [−2 −1],
γ3 = γ4 = [−1 2], γ5 = γ6 = [1 −1 2].
Ψ1 = Ψ2 = [−1], Ψ3 = Ψ4 =

[
1
2

]
, Ψ5 = Ψ6 = [2].

The initial states of xi(0), ηi(0) ∈ R2 are chosen
randomly and the initial value µi(0) = 0 is set.

The communication network among these six
agents is unbalanced and depicted in Figure 2
(Appendix) setting the weight of all edges as 1.

Let α1 = 7 and α2 = 10, the state trajectories
of these agents by executing algorithm (6) are given
in Figure 3(Appendix), it can be seen that the
outputs of all agents converge uniformly to the
global optimal solution y∗ of optimization problem
2. Meanwhile, compared with the two subplots in
Figure 3 (Appendix), we can see that, the curve
corresponding to gain parameter α = 7 converges
around t = 20 s and the curve corresponding to α =
10 converges around at the time t = 15 s, namely,
the convergence rate is improved when α is increased
from 7 to 10. This indicates that the convergence
rate can be faster by choosing larger constant control
parameters.

Example 2 In this example, we also consider a
system consisting of six agents inR2. Assume that the
coefficient matrixes and the feedback gain matrixes
are the same as that chosen in Example 1, so is
the communication graph. Each agent i has the
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following objective function fi, i = 1, . . . , 6 and
convex inequality function gi, i = 1, . . . , 6.

f1(y1) =
y211

ln(y211 + 6)
,

f2(y2) =
1

2
(y21 + 1)2 ln(y211 + 3) + y222,

f3(y3) =
y231√
y231 + 1

+
1

5
y232,

f4(y4) = y441 + 2y242 + 5,

f5(y5) =
1

10
y251 + e

1

10
y52 ,

f6(y6) =
1

2
e−

1

2
y61 +

2

5
e

3

10
y62 ,

gi(yi) = (y1 − 3)2 + (y2 − 5)2 − 4, i = 1, . . . , 6.

(32)

Besides, configuring the initial states of
xi(0), ηi(0) ∈ R2 randomly and setting the initial
value to µi(0) = 0, αi(0) = 10. Figure 4 (Appendix)
depicts the evolution trajectories of the six agents
by executing algorithm (6), and it is clear to
observe that the output decision of each agent also
effectively converges to the exact optimal value
y∗ = [1.606, 3.566]>.

6 Conclusion
To handle the distributed optimization problem

with inequality constraints of heterogeneous linear
multi-agent systems over weight-unbalanced
digraphs, a distributed continuous-time optimization
algorithm is presented. Additionally, a variable is
designed to evaluate the left eigenvector associated
with the zero eigenvalue of the Laplacian matrix,
which removes the imbalance of the communication
graph. When the local cost functions are assumed to
be strongly convex with global Lipschitz gradients
and the local constraint functions are assumed to be
convex, by resorting to the Lyapunov stability, it is
proved that the state of agents will asymptotically
converge consensus at an optimal solution of the
given optimization problem.

In the future, we will focus on the
nonsmooth constrained optimization problems
with communication delays and practical safety
constraints of each agent against a collision.
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Figure 1: The controller to solve the optimization problem (3).

Figure 2: Communication graph among six agents.
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Figure 3: The state trajectories of output variable yi with respect to time t for different values of α by executing
algorithm (6).
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Figure 4: The state trajectories of output variable yi respect to time t by executing algorithm (6).
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