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Abstract: The paper summarizes and extends the knowledge of various subsemigroups of Nm
0 (+) (= N0(+)m).

It creates a theoretical basis for further study in this area and applications in other areas, such as the investigation
of context-free languages. The last chapter introduces the notion of pure subsemigroups and presents one con-
struction of a pure subsemigroup to a chosen semisubgroup of Nm

0 (+).
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1  Introduction
This note presents some results on various subsemi-
groups of Nm

0 (+) (= N0(+)m). The results show-
cased in this article may encompass both new find-
ings and components of previously published results.
However, consolidating them into a singular output is
a theoretical basis for further research.

The motivation for investigating such problems
stems from several parts of mathematics. Holes in
subsemigroups of Nm

0 (+) (if A is a subsemigroup
of Nm

0 (+) then an element h of the pure subsemi-
group generated by A is said to be a hole in A if
h /∈ A) were applied to transportation problems in
[1]. There also is a close connection with the the-
ory of semirings. For example, the problem whether

every commutative parasemifield (i.e., an algebraic 
structure with two commutative and associative bi-
nary operations such that the multiplication is a group 
and distributes over addition) finitely generated as a 
semiring is additively idempotent was in [2] affirma-
tively answered in 2-generated case by transferring
the problem to subsemigroups of N0

m(+) with special 
properties; this method was further developed in [3], 
[4]. It also seems that the investigation of finitely 
generated cones could be useful in the investigation 
of context-free languages (see e.g. [5], [6], [7]).

2 Preliminaries (a)
The following notation will be used throughout the 
note:
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N ... the semiring of positive integers;

N0 ... the semiring of non-negative integers;

Z ... the ring of integers;

Q+ ... the parasemifield of positive rationals;

Q+
0 ... the semifield of non-negative rationals;

R+
0 ... the semifield of non-negative reals.

Throughout this section, letm ∈ N and let A be a
subset of Qm (the ring of ordered m-tuples of ratio-
nals, where the operations of addition and multipli-
cation are defined componentwise), where we denote
0 = (0, . . . , 0) ∈ Qm (no confusion can arise). We
put

conv(A) =
=

{∑n
i=1 qiai

∣∣n ∈ N, ai ∈ A, qi ∈ Q+,
∑
qi = 1

}
and cone(A) =

{∑n
i=1 qiai

∣∣ n ∈ N, ai ∈ A, qi ∈ Q+
0

}
.

Lemma 1.1. (i) A ⊆ conv(A).
(ii) conv(conv(A)) = conv(A).
(iii) If A ⊆ (Q+

0 )
m then conv(A) ⊆ (Q+

0 )
m and,

moreover, 0 ∈ conv(A) if and only if 0 ∈ A.
(iv) If A ⊆ (Q+)m then conv(A) ⊆ (Q+)m and
0 /∈ conv(A).

Proof. The assertions (i), (iii) and (iv) are quite easy.
As concerns (ii), take a ∈ conv(conv(A)). Then
a =

∑n
i=1 qiai, n ∈ N, ai ∈ conv(A), qi ∈ Q+ and∑

i qi = 1. Furthermore, ai =
∑ki

j=1 qijaij , ki ∈ N,
aij ∈ A, qij ∈ Q+ and

∑
j qij = 1, and hence

a =
∑

i

∑
j qiqijaij . However,

∑
i

∑
j qiqij =∑

i(qi
∑

j qij) =
∑

i qi = 1. Thus a ∈ conv(A).

Lemma 1.2. (i) A ⊆ conv(A) ⊆ cone(A) =
conv(B), where B = { qa | a ∈ A, q ∈ Q+

0 }.
(ii) If A 6= ∅ then 0 ∈ cone(A).
(iii) cone(cone(A)) = conv(cone(A)) =
cone(conv(A)) = cone(A).
(iv) If A ⊆ (Q+

0 )
m then cone(A) ⊆ (Q+

0 )
m.

Proof. It is easy.

Lemma 1.3. cone(A) = A if and only if conv(A) =
A and qA ⊆ A for every q ∈ Q+

0 .

Proof. It is easy.

Lemma 1.4. If A 6= ∅ then cone(A) is just the sub-

semimodule of the Q+
0 -semimodule Qm generated by

the set A.

Proof. It is easy.

Lemma 1.5. cone(A) = A if and only if eitherA = ∅
or A is a subsemimodule of the Q+

0 -semimodule Qm.

Proof. See 1.3 and 1.4.

Lemma 1.6. Letn ∈ N, n ≥ m+2, q1, . . . , qn ∈ Q+
0 ,

a1, . . . , an ∈ Qm and a =
∑
qiai. Then there are

r1, . . . , rn ∈ Q+
0 such that a =

∑
riai and ri1 = 0

for at least one i1, 1 ≤ i1 ≤ n.

Proof. Clearly, there are s1, . . . , sn−1 ∈ Q such that∑n−1
i=1 si(ai − an) = 0 and si0 6= 0 for at least one

i0, 1 ≤ i0 ≤ n − 1. Then
∑n

i=1 siai = 0, where
sn = −s1 − · · · − sn−1, and we have

∑
si = 0.

Consequently, the set J = { j | sj > 0 } is a non-
empty subset of the set {1, . . . , n} and we find j0 ∈
J such that t = qj0/sj0 ≤ qj/sj for every j ∈ J .
Clearly, t ∈ Q+

0 . Now, put ri = qi − tsi for all
i = 1, . . . , n. Then ri ∈ Q+

0 and rj0 = 0. Finally,∑
riai = a.

Lemma 1.7. cone(A) =
⋃
cone(B), B ⊆ A, |B| ≤

m+ 1.

Proof. Let a =
∑n

i=1 qiai, n ∈ N, qi ∈ Q+
0 , ai ∈ A.

If n is the smallest possible number with this property
then n ≤ m+ 1 by 1.6. The rest is clear.

Lemma 1.8. cone(A) = {
∑m+1

i=1 qiai | ai ∈ A, qi ∈
Q+

0 }.

Proof. See 1.7.

Lemma 1.9. Assume that A is a subsemigroup of
Qm(+) that is generated by a non-empty setB. Then
cone(A) = cone(B).

Proof. Since B ⊆ A, we have cone(B) ⊆ cone(A).
On the other hand, cone(B) is a subsemigroup of
Qm(+) by 1.4, and hence A ⊆ cone(B). Conse-
quently, cone(A) ⊆ cone(cone(B)) = cone(B) by
1.2(iii).

Lemma 1.10. Assume that A is a subsemigroup of
Qm(+). Then:
(i) For every a ∈ cone(A), a 6= 0, there is k ∈ N with
ka ∈ A (⊆ conv(A)).
(ii) Either 0 /∈ A and cone(A) = {0} ∪

⋃
k∈NA/k or

0 ∈ A and cone(A) =
⋃

k∈NA/k.

Proof. We have a =
∑n

i=1 qiai, n ∈ N, ai ∈ A,
qi ∈ Q+. If k ∈ N is such that kqi ∈ N for every i
then ka =

∑
kqiai ∈ A.

Lemma 1.11. If A is a subsemigroup ofQm(+) then
cone(A) = {0} ∪

⋃
k∈N conv(A/k).

Proof. See 1.10.

Lemma 1.12. Assume that A is a subsemimodule of
the Q+-semimodule Qm. Then:
(i) If 0 ∈ A then conv(A) = cone(A) = A.
(ii) If 0 /∈ A then conv(A) = A and cone(A) = A ∪
{0}.
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Proof. It is easy.

Lemma 1.13. If cone(A) = Qm then 0 ∈ conv(A).

Proof. There are n ∈ N, ai ∈ A and qi, ri ∈ Q+
0

such that (−1, 0, . . . , 0) =
∑
qiai, (1, 0, . . . , 0) =∑

riai, q =
∑
qi ∈ Q+ and r =

∑
ri ∈ Q+. Now,

0 =
∑

(qi+ri)ai, and so
∑ qi+ri

q+r ai = 0 as well. But∑ qi+ri
q+r = 1 and it follows easily that 0 ∈ conv(A).

Lemma 1.14. Let A be a subsemigroup of Qm(+)
and let a ∈ A, b ∈ Qm and k, l ∈ N0, k + l ≥ 1,
be such that kb − la ∈ A (A ∪ {0}, resp.). Then
(k − 1)a+ kb ∈ A (A ∪ {0}, resp.).

Proof. We have (k − 1)a + kb = (kb − la) + (k +
l − 1)a ∈ A.

Lemma 1.15. Let a1, . . . , an ∈ conv(A), n ∈ N.
Then (a1 + · · ·+ an)/n ∈ conv(A).

Proof. It is easy.

3 Preliminaries (b)

For a = (q1, . . . , qn) ∈ Qm, we put ||a|| =
√∑

q2i ∈
R+
0 .

Remark 2.1. Let ε = {e1, . . . , em} be a basis of
the vector Q-space Qm. For every a ∈ Qm there
are uniquely determined πi(a) ∈ Q such that a =∑
πi(a)ei. Then πi : Qm → Q are projections of

the vectorQ-spaces and these projections are continu-
ous. Consequently, for every q ∈ Q+ there is t ∈ Q+

such that |πi(a)| < q for all i = 1, . . . ,m, whenever
a ∈ Qm is such that ||a|| < t.

Lemma 2.2. Let a0, . . . , am ∈ Qm be such that
the elements a1 − a0, . . . , am − a0 are linearly Q
independent (then they form a basis of Qm). Take
q0, . . . , qm ∈ Q+ such that

∑m
j=0 qj = 1 and put

a =
∑

j qjaj . Then there is t ∈ Q+ such that

a + b ∈ conv({a0, . . . , am}) for every b ∈ Qm with
||b|| < t.

Proof. Put q = min({ qj/m | j = 0, 1, . . . ,m }) ∈
Q+. By 2.1, where ε = {a1 − a0, a2 − a0, . . . , am −
a0}, there is t ∈ Q+ such that |πi(b)| < q for all
i = 1, . . . ,m, whenever b ∈ Qm is such that ||b|| <
t. Moreover, if we put π0(b) = −

∑m
i=1 πi(b) then

b =
∑m

j=0 πj(b)aj , |π0(b)| < q,
∑m

j=0 πj(b) = 0,∑m
j=0(qi + πj(b)) = 1 and qj + πj(b) > 0 for every

j = 0, 1, . . . ,m. Thus a+b =
∑m

j=0(qj+πj(b))ai ∈
conv({a0, . . . , am}).

Lemma 2.3. Let a1, . . . , am ∈ Qm be linearly in-
dependent elements (then they form a basis of Qm).
Take q1, . . . , qm ∈ Q+ and put a =

∑m
i=1 qiai. Then

there is t ∈ Q+ such that a+ b ∈ cone({a1, . . . , am})
for every b ∈ Qm with ||b|| < t.

Proof. First, find r ∈ Q+ such that rq < 1, where
q =

∑m
i=1 qi ∈ Q+, and put a′0 = 0, a′i = ai/r and

q′i = rqi for i = 1, . . . ,m. If q′0 = 1 − rq then q′j ∈
Q+ for every j = 0, 1, . . . ,m,

∑m
j=0 q

′
j = 1 and a =∑m

j=0 q
′
ja

′
j . Now, by 2.2, there is t ∈ Q+ such that

a+b ∈ conv({a′0, a′1, . . . , a′m}) ⊆ cone({a1, . . . , am})
for every b ∈ Qm with ||b|| < t.

Lemma 2.4. Let a1, . . . , am ∈ Qm be linearly in-
dependent and let a =

∑m
i=1 qiai, qi ∈ Q+. Then,

for every b ∈ Qm, there is n ∈ N with na + b ∈
cone({a1, . . . , an}).

Proof. By 2.3, there is t ∈ Q+ such that a +
c ∈ cone({a1, . . . , am}) whenever ||c|| < t. Now,
||b/n|| < t for some n ∈ N, and hence a +
b/n ∈ cone({a1, . . . , am}). Then na + b ∈
cone({a1, . . . , am}).

Lemma 2.5. Let a1, . . . , am ∈ Qm be linearly inde-
pendent and let a =

∑m
i=1 qiai, qi ∈ Q+. Then, for

every b ∈ Qm, there are r, s ∈ Q+ with ra + sb ∈
conv({a1, . . . , am}).

Proof. By 2.4, na+b ∈ cone({a1, . . . , am}) for some
n ∈ N. Our result is clear for na + b 6= 0. If
na + b = 0 6= a then 0 6= (n + 1)a + b ∈
cone({a1, . . . , am}). Finally, if a = 0 = na + b
then b = 0, 0 ∈ conv({a1, . . . , am}) and we can put
r = 1 = s.

4 Preliminaries (c)
In this section, the structure of these subsets is de-
scribed in more detail. Attention is paid to the case
when A is a subsemigroup of Qm(+).

Let A be a subset of Qm,m ∈ N. We put
α(A) = { a ∈ Qm | (∃b ∈ Qm)(∀r, s ∈ Q+)

ra + sb /∈ cone(A) } , β(A) = α(A) ∩ cone(A),
γ(A) = α(A) ∩ conv(A) and δ(A) = α(A) ∩A.

Lemma 3.1. The following conditions are equivalent
for a ∈ Qm:

(i) a ∈ α(A).

(ii) There is at least one c ∈ Zm such that ra+ sc /∈
cone(A) for all r, s ∈ Q+.

(iii) There is at least one d ∈ Qm such that ra+sd /∈
conv(A) for all r, s ∈ Q+.

(iv) There is at least one e ∈ Zm such that ra+ se /∈
conv(A) for all r, s ∈ Q+.
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Proof. Clearly, the conditions (i) and (ii) are equiva-
lent, the conditions (iii) and (iv) are equivalent and (i)
implies (iii). It remains to show that (iii) implies (i).
Assume first that ra+sd ∈ cone(A) and ra+sd 6= 0.
Then there are n ∈ N, ai ∈ A and qi ∈ Q+ such
that ra + sd =

∑n
i=1 qiai and

∑
qi = q ∈ Q+.

Now, (r/q)a + (s/q)d =
∑

(qi/q)ai,
∑
qi/q = 1

and (r/q)a+(s/q)d ∈ conv(A), a contradiction with
(iii). Consequently, if ra + sd 6= 0 for all r, s ∈ Q+

then ra+ sb /∈ cone(A) and a ∈ α(A).
Next, assume that r1a+s1d = 0 for some r1, s1 ∈

Q+. Then 0 /∈ conv(A), d = (−r1/s1)a and ra +
sd = (r − ((r1s/s1))a /∈ conv(A) for all r, s ∈ Q+.
If a ∈ cone(A), a 6= 0, then r2a ∈ conv(A) for suit-
able r2 ∈ Q+ and, setting r = r2 + (r1s/s1), we get
ra+sd = r2a ∈ conv(A), a contradiction. It follows
that a ∈ (Qm \ cone(A)) ∪ {0}.

If a /∈ cone(A) then, setting b = 0, we get ra +
sb = ra /∈ cone(A) for all r, s ∈ Q+ and a ∈ α(A).
Finally, if a = 0 then, choosing b ∈ Qm \ cone(A)
(see 1.13), we get ra + sb = sb /∈ cone(A) for all
r, s ∈ Q+. Again, we obtain a ∈ α(A).

Lemma 3.2. (i) qα(A) ⊆ α(A) and qβ(A) ⊆ β(A)
for every q ∈ Q+.
(ii) For every a ∈ β(A), a 6= 0, there is r ∈ Q+ with
ra ∈ γ(A).

Proof. It is easy.

Lemma 3.3. The following conditions are equiva-
lent:

(i) 0 ∈ α(A).

(ii) 0 ∈ β(A).

(iii) β(A) 6= ∅.

(iv) α(A) 6= ∅.

(v) cone(A) 6= Qm.

Proof. Clearly, (i) implies (ii), (ii) implies (iii), (iii)
implies (iv) and (iv) implies (v). If b /∈ cone(A) then
r0 + sb = sb /∈ cone(A) for all r, s ∈ Q+. Thus
0 ∈ α(A) and (v) implies (i).

Lemma 3.4. If A ⊆ (Q+)m then 0 ∈ β(A).

Proof. We have cone(A) ⊆ (Q+
0 )

m and 0 ∈ β(A) by
3.3.

Lemma 3.5. α(A) = (Qm \ cone(A)) ∪ β(A).

Proof. If a /∈ cone(A) then ra /∈ cone(A) for every
r ∈ Q+, and hence a ∈ α(A).

Lemma 3.6. Let a1, . . . , am ∈ Qm be linearly in-
dependent and let a =

∑m
i=1 qiai, qi ∈ Q+. Then

a /∈ α(A).

Proof. See 2.4 (or 2.5).

Lemma 3.7. (i) α(cone(A)) = α(A).
(ii) β(cone(A)) = γ(cone(A)) = δ(cone(A)) =
β(A).

Proof. The equalities follow easily from the defini-
tions of the sets involved and from 1.2(iii).

Lemma 3.8. Assume that A is a subsemigroup of
Qm(+). Then for every a ∈ β(A), a 6= 0, there is
k ∈ N with ka ∈ δ(A).

Proof. We have a =
∑

i qiai for some ai ∈ A, qi ∈
Q+, i = 1, . . . , n, n ∈ N. Choosing k ∈ N such that
kqi ∈ N for every i, we get ka ∈ A. But ka ∈ β(A)
by 3.2(i), and hence ka ∈ δ(A).

Corollary 3.9. If A is a subsemigroup of Qm(+)
then β(A) =

⋃
k∈N δ(A)/k or β(A) = {0} ∪⋃

k∈N δ(A)/k.

Lemma 3.10. Assume that A is a subset of (Q+
0 )

m.

Then Qm \ (Q+
0 )

m ⊆ α(A).

Proof. We have cone(A) ⊆ (Q+
0 )

m, and hence Qm \
(Q+

0 )
m ⊆ α(A) by 3.5. On the other hand, if a =

(q1 . . . , qm) ∈ (Q+
0 )

m\(Q+)m then qi = 0 for at least
one i and, setting b = (0, . . . , 0,−1, 0, . . . , 0) where
−1 is the i-th coordinate, we have ra+ sb /∈ (Q+

0 )
m

for all r, s ∈ Q+. Thus a ∈ α(A).

Lemma 3.11. Let a1, . . . , am ∈ Qm be linearly in-
dependent and let a =

∑m
i=1 qiai, qi ∈ Q+. Then

a /∈ α({a1, . . . , am}).

Proof. See 2.5.

Lemma 3.12. The following conditions are equiva-
lent for a ∈ Qm:

(i) a /∈ α(A).

(ii) For every b ∈ Qm there are k, l ∈ N with ka +
lb ∈ cone(A).

Moreover, ifA is a subsemigroup ofQm(+) with 0 ∈
A then these two conditions are equivalent to

(iii) For every b ∈ Qm there are k1, l1 ∈ N with
k1a+ l1b ∈ A.

Proof. Clearly, (iii) implies (ii) and (ii) implies (i). If
a /∈ α(A) then ra+sb ∈ cone(A) for some r, s ∈ Q+

and we have tra + tsb ∈ cone(A), where t ∈ N is
such that tr, ts ∈ N. Finally, if A is a subsemigroup
ofQm(+) and 0 ∈ A then (ii) implies (iii) by 1.10(i).

Lemma 3.13. If b ∈ Qm \ α(A), a ∈ A and q ∈ Q+
0

then qa+ b /∈ α(A).
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Proof. The result follows easily from 3.12(ii).

Lemma 3.14. Assume that A is a subsemigroup of
Qm(+). Then either δ(A) = A or A \ α(A) is a
subsemigroup of Qm(+).

Proof. If δ(A) 6= A then A * α(A) and B = A \
α(A) 6= ∅. Now, the fact that B is a subsemigroup of
Qm(+) follows from 3.13.

Lemma 3.15. Assume that A is a subsemigroup of
Qm(+). Then, for all a ∈ A and b ∈ Qm \ α(A),
there is n ∈ N with (n− 1)a+ nb ∈ A.

Proof. By 3.12(iii), k1b − l1a ∈ A ∪ {0} for some
k1, l1 ∈ N (notice that cone(A) = cone(A∪{0})) and
α(A) = α(A∪{0}). Now, by 1.14, (n− 1)a+nb ∈
A ∪ {0} for some n ∈ N. If (n− 1)a+ nb = 0 then
(2n− 1)a+ 2nb = a ∈ A.

5 Subsemigroups of N m
0 (+) (a)

In this section, let A be a subsemigroup of Nm
0 (+).

We denote by ε(A) the set of the elements a ∈ A such
that b − a ∈ A, whenever b ∈ A and b − a ∈ Nm

0 .
Equivalently, ε(A) = { a ∈ A |A+ a = (Nm

0 + a)∩
A }.

Lemma 4.1. The following conditions are equiva-
lent:

(i) 0 ∈ A.

(ii) 0 ∈ ε(A).

(iii) ε(A) 6= ∅.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). It
remains to show that (iii) implies (i). If a ∈ ε(A) then
a = a+ 0, and so a ∈ (Nm

0 + a)∩A = A+ a. Then
a = b+ a for some b ∈ A and, of course, b = 0.

Lemma 4.2. Either 0 /∈ A and ε(A) = ∅ or 0 ∈
ε(A) ⊆ A and ε(A) is a subsemigroup of A.

Proof. It is easy (use 4.1).

In the rest of the section, we will assume that 0 ∈
A (see 4.1 and 4.2).

Lemma 4.3. (i) If b, a ∈ ε(A) are such that b − a ∈
Nm
0 then b− a ∈ ε(A).

(ii) (ε(A)− ε(A)) ∩ Nm
0 = ε(A).

(iii) ε(ε(A)) = ε(A).

Proof. (i) Since a ∈ ε(A) and b ∈ A, we have b−a ∈
A. Now, if c ∈ A is such that c−(b−a) = (c+a)−b ∈
Nm
0 then c+a ∈ A and c−(b−a) ∈ A, since b ∈ ε(A).

Thus b− a ∈ ε(A).
(ii) and (iii). Use (i).

Lemma 4.4. ε(A)− ε(A) ⊆ Zm and ε(A)− ε(A) is
just the difference (sub)group of the (sub)semigroup
ε(A).

Proof. It is easy.

Lemma 4.5. IfA+a ∈ ε(A) for at least one a ∈ Nm
0

then ε(A) = A.

Proof. First, a = 0 + a ∈ a + A ⊆ ε(A), and so
a ∈ ε(A). Now,A = ((A+a)−a)∩Nm

0 ⊆ (ε(A)−
ε(A)) ∩ Nm

0 = ε(A) by 4.3(ii). Thus ε(A) = A.

Corollary 4.6. If ε(A) 6= A then for every a ∈ Nm
0

there is at least one b ∈ A such that a+b /∈ ε(A).

For every a ∈ A, put ϕ(A, a) = { b ∈ Nm
0 | a +

b ∈ A }, ψ(A, a) = { c ∈ Nm
0 | (n − 1)a + nc ∈

A for some n ∈ N } and ξ(A, a) = ϕ(A, a) ∩
ψ(A, a).

Lemma 4.7. (i) A ∪ {0} ⊆ ξ(A, a).
(ii) Nm

0 \ α(A) ⊆ ψ(A, a).
(iii) Nm

0 ∩Qa ⊆ ψ(A, a).

Proof. (i) It is obvious.
(ii) This is ensured by 3.15.
(iii) We can assume that a 6= 0. Take b ∈ Nm

0 ∩ Qa,
b 6= 0. We have b = ra/b for some r ∈ Z, s ∈ N,
and hence sb = ra and we conclude easily that r ∈
N. Now, sb − ra = 0 and (s − 1)a + sb ∈ A (see
1.14).

Lemma 4.8. If a ∈ ε(A) then both ϕ(A, a) and
ξ(A, a) are subsemigroups of Nm

0 (+).

Proof. First, if a+ b1 ∈ A and a+ b2 ∈ A for some
b1, b2 ∈ Nm

0 then 2a + b1 + b2 ∈ A and a + b1 +
b2 ∈ Nm

0 . Since a ∈ ε(A), we get a + b1 + b2 ∈ A.
Similarly, if c1, c2 ∈ ξ(A, a) then (n−1)a+nci ∈ A
for some n ∈ N, n ≥ 3, (2n− 2)a+ n(c1 + c2) ∈ A
and, since a ∈ ε(A), we conclude that (n − 1)a +
n(c1 + c2) ∈ A.

6 Subsemigroups of N m
0 (+) (b)

Define a relation ≤ on Nm
0 by a ≤ b if and only if

b− a ∈ Nm
0 . Clearly, the relation≤ is reflexive, anti-

symmetric and transitive, and hence it is an ordering.
This ordering is stable under both addition and multi-
plication. Notice that it satisfies the descending chain
condition, but not the ascending one.

Lemma 5.1. There is no infinite set of pair-wise in-
comparablem-tuples in Nm

0 .

Proof. The assertion is clear for m = 1 and we pro-
ceed by induction form ≥ 2.

LetA be a set of pair-wise incomparable elements

from Nm
0 . For k ∈ N0, put Bk = { b ∈ Nm−1

0 | a ≤
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(b, k) for at least one a ∈ A }. Then B0 ⊆ B1 ⊆
B2 ⊆ . . . and all the sets Bk are filters of the ordered
set Nm−1

0 . Then B =
⋃
Bk is a filter and we denote

by C the set of minimal elements of B. The elements
of C are pair-wise incomparable, and hence C is a
finite set by induction. Consequently, C ⊆ Bk0

for
some k0 and it follows that Bk0

= Bk0+1 = · · · =
B. Now, if a = (b1, k1) ∈ A, b1 ∈ Nm−1

0 , k1 ∈
N0, then b1 ∈ Bk1

⊆ B = Bk0
, and therefore a1 ≤

(b1, k0) for some a1 ∈ A. If k0 ≤ k1 then a1 ≤
a, and hence a1 = a and k1 = k0. It means that
k1 ≤ k0 anyway. Furthermore, if Ci denotes the set
of minimal elements from Bi, i = 0, 1, . . . , k0, then
Ci is a finite set (andCk0

= C). Since b1 ∈ Bk1
, there

is c1 ∈ Ck1
with c1 ≤ b1 and (c1, k1) ≤ a. According

to the definition of Bk1
, we can find a2 ∈ A such that

a2 ≤ (c1, k1). Then a2 ≤ a, and therefore a2 = a and

b1 = c1. We have proved that A ⊆
⋃k0

i=0(Ci × {i})
and it follows immediately that A is finite.

Example 5.2. Put m = 2. Then An =
{(0, n), (1, n − 1), . . . , (n − 1, 1), (n, 0)} (⊆ N2

0 ),
n ∈ N0, is a set of incomparable elements and |An| =
n+ 1.

Proposition 5.3. Let A1 be a non-empty finite subset
of Nm

0 and let A be a subsemigroup of Nm
0 (+) such

that A1 ⊆ A ⊆ cone(A1). Then A is a finitely gener-
ated semigroup.

Proof. Let A1 = {a1, . . . , an}, n ∈ N, and B =
{
∑n

i=1 qiai | qi ∈ Q+
0 , qi ≤ 1 } ∩Nm

0 . Clearly, A1 ⊆
A ⊆ cone(A1) ∩ Nm

0 and B is a finite subset of Nm
0 .

If a ∈ A then a =
∑
riai, ri ∈ Q+

0 , and we have

ri = li + si for suitable li ∈ N0 and si ∈ Q+
0 , si ≤ 1.

From this, a = b1 +
∑
liai, where b1 =

∑
siai.

Since a ∈ Nm
0 and

∑
liai ∈ Nm

0 , we get b1 ∈ B.
Moreover, either

∑
liai = 0 or

∑
liai ∈ A.

For every b ∈ B, put Nb = { (k1, . . . , kn) ∈
Nn
0 | b +

∑
kiai ∈ A }. Then Nb is a filter of the or-

dered set Nm
0 (see 5.1 and its proof) and the setMb of

minimal elements from Nb is finite. Of course, Nb =
{ d ∈ Nm

0 | c ≤ d for some c ∈ Mb } and the set
C = {a1, . . . , an}∪

⋃
b∈B { b+ kiai | (k1, . . . , kn) ∈

Mb } is a finite subset of A. Taking into account the
preceding steps, one sees easily that the semigroup A
is generated by the finite subset C.

Theorem 5.4. The following conditions are equiva-
lent for a subsemigroup A of Nm

0 (+):

(i) A is a finitely generated semigroup.

(ii) cone(A) = cone(A1) for a non-empty finite sub-
set A1 of A.

(iii) cone(A) = cone(A2) for a non-empty finite sub-

set A2 of (Q+
0 )

m.

Proof. (i) implies (ii) by 1.9, (ii) implies (iii) trivially
and (ii) implies (i) by 5.3. It remains to show that (iii)
implies (ii).

Since A2 is a finite subset of cone(A), there is
a finite subset A1 of A such that A2 ⊆ cone(A1).
Then cone(A) = cone(A2) ⊆ cone(cone(A1)) =
cone(A1) ⊆ cone(A). Thus cone(A) =
cone(A1).

Corollary 5.5. LetA be a finitely generated subsemi-
group of Nm

0 (+). Then every subsemigroup A′ of
Nm
0 (+) such that A ⊆ A′ ⊆ cone(A) is finitely gen-

erated. In particular, cone(A) ∩Nm
0 is a finitely gen-

erated subsemigroup of Nm
0 (+).

Remark 5.6. It is easy to see that 5.4 remains true for
subsemigroups of (Q+

0 )
m(+). Indeed, letB be such a

subsemigroup and assume that cone(B) = cone(B1)
for a non-empty finite subsetB1 ofB. We haveB1 =
{k1/l1, . . . , kn/ln} for some n ∈ N, ki ∈ N0 and
li ∈ N. If l = l1 · · · ln thenA = lB is a subsemigroup
of Nm

0 (+) and cone(A) = cone(B) = cone(B1) =
cone(A1), where A1 = lB1. By 5.4, A is a finitely
generated semigroup and the same is true forB, since
the mapping a 7→ a/l, a ∈ A, is an isomorphism of
A onto B.

7 Pure subsemigroups of N m
0 (+)

In this section, let A be a subsemigroup of Nm
0 (+).

Lemma 6.1. The following conditions are equiva-
lent:

(i) nA = A ∩ nNm
0 for every n ∈ N.

(ii) If a ∈ Nm
0 and n ∈ N are such that na ∈ A then

a ∈ A.

(iii) If a ∈ Nm
0 and q ∈ Q+ are such that qa ∈ A

then a ∈ A.

Proof. It is easy.

If these equivalent conditions are satisfied then A
is called pure subsemigroup of Nm

0 (+). In the re-
maining part of this section(except for 6.12), we will
assume that A is a pure subsemigroup.

Lemma 6.2. A ∪ {0} is a pure subsemigroup of
Nm
0 (+).

Proof. It is easy.

Lemma 6.3. If 0 ∈ A then ε(A) is a pure subsemi-
group of Nm

0 (+).
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Proof. By 4.2, ε(A) is a subsemigroup ofA. Let a =
nb, where n ∈ N, a ∈ ε(A) and b ∈ Nm

0 . Since A is
pure, we have b ∈ A. Moreover, if c ∈ A is such that
c − b ∈ Nm

0 then nc − a = n(c − b) ∈ Nm
0 , and so

n(c − b) ∈ A, since a ∈ ε(A). Using again the fact
that A is pure, we get c− b ∈ A. Thus b ∈ ε(A) and
ε(A) is pure.

Lemma 6.4. Let n ∈ N, a1, . . . , an ∈ A and
q1, . . . , qn ∈ Q+ be such that a =

∑
qiai ∈ Nm

0 .
Then a ∈ A.

Proof. We have qi = ri/si for some ri, si ∈ N. If
s = s1 · · · sn then sqi ∈ N, bi = sqiai ∈ A and
sa =

∑
bi ∈ A. Now, a ∈ A by 6.1.

Lemma 6.5. If a ∈ Nm
0 and a /∈ α(A) then a ∈ A.

Proof. By 3.3, a 6= 0. If b ∈ A then there are
r, s ∈ Q+ with ra − sb ∈ cone(A) and we get ra ∈
cone(A) + sb ⊆ cone(A). Thus a ∈ cone(A) ∩ Nm

0

and a ∈ A by 6.4.

Proposition 6.6. (i) cone(A) ∩ Nm
0 = A ∪ {0}.

(ii) If 0 ∈ A then A = cone(A) ∩ Nm
0 .

(iii) If cone(A) = (Q+
0 )

m then A ∪ {0} = Nm
0 .

(iv) α(A) ∩ Nm
0 = (Nm

0 \A) ∪ δ(A).
(v) Nm

0 = (α(A) ∩ Nm
0 ) ∪A.

(vi) ξ(A, a) = ψ(A, a) for every a ∈ A.

Proof. (i), (ii) and (iii). Use 6.4.
(iv) and (v). Use 6.5.
(vi) If (n − 1)a + nc ∈ A then n(a + c) ∈ A and
a + c ∈ A. Thus ψ(A, a) ⊆ ϕ(A, a) and ξ(A, a) =
ψ(A, a).

Remark 6.7. Let k ∈ N and a, b1, . . . , bk ∈ Nm
0 be

such that a + bi ∈ A for every i = 1, . . . , k (e.g.,
a ∈ A and bi ∈ ϕ(A, a) ). Furthermore, assume that
there are ni ∈ N such that (ni − 1)a + nibi ∈ A for
every i (e.g., a ∈ A and bi ∈ ψ(A, a) ). If n ∈ N,
n ≥ max(ni) then (n − 1)a + nbi ∈ A for all i.
In particular, if ti ∈ N0 are such that t =

∑
ti ≥

max(ni) then (t − 1)a + tbi ∈ A and (t − 1)a +∑
tibi =

∑
((ti/t)((t−1)a+tbi), (t−1)a+

∑
tibi ∈

Nm
0 . Now, by 6.4, we get (t− 1)a+

∑
tibi ∈ A.

Lemma 6.8. If a ∈ A and b ∈ Nm
0 are such that

a+ b /∈ α(A) then a+ b ∈ A and b ∈ ξ(A, a).

Proof. Since a+ b /∈ α(A), a+ b ∈ A by 6.6(v) and
there are r, s ∈ Q+ such that r(a+b)−sa ∈ cone(A).
We have r = k/n, s = l/n for suitable k, l, n ∈ N
and c/n = r(a+ b)− sa ∈ cone(A), where c = (k−
l)a+ kb. Then c ∈ Zm ∩ cone(A) = Zm ∩ (Q+

0 )
m ∩

cone(A) = Nm
0 ∩ cone(A) = A ∪ {0} (see 6.6(i)), so

that c ∈ A∪{0} and d = (k−1)a+kb = c+(l−1)a ∈
A ∪ {0}. If d 6= 0 then d ∈ A and b ∈ ξ(A, a) (see
6.6(vi)). If d = 0 then b = 0 ∈ ξ(A, a).

Lemma 6.9. Let a ∈ A be such that b ∈ ψ(A, a) for
every b ∈ Nm

0 with a + b ∈ δ(A) (then b ∈ α(A) ).
Then ϕ(A, a) = ψ(A, a) = ξ(A, a).

Proof. We have ψ(A, a) = ξ(A, a) ⊆ ϕ(A, a) by
6.6(vi). If b ∈ ϕ(A, a) then a+ b ∈ A and if a+ b /∈
α(A) then b ∈ ξ(A, a) by 6.8. On the other hand, if
a + b ∈ α(A) then a + b ∈ α(A) ∩ A = δ(A) and
b ∈ ψ(A, a) by assumption.

Lemma 6.10. Let a ∈ A be such that δ(A) ⊆ Qa.
Then ϕ(A, a) = ψ(A, a) = ξ(A, a).

Proof. In view of 6.9, if b ∈ Nm
0 is such that a+ b ∈

δ(A) then a + b ∈ Qa, b ∈ Qa and b ∈ ψ(A, a) by
4.7(iii).

Lemma 6.11. The following conditions are equiva-
lent for all a ∈ A and b ∈ Nm

0 :

(i) b ∈ ψ(A, a) ( b ∈ ξ(A, a), resp.).

(ii) r(a + b) − sa =
∑k

i=1 qiai for some r, s ∈ Q,

k ∈ N, ai ∈ A and qi ∈ Q+.

Proof. See the proof of 6.8.

Construction 6.12. Let A be a subsemigroup of
Nm
0 (+). Put p(A) = Nm

0 ∩
(⋃

n∈NA/n
)
. It is

easy to check that p(A) is a pure subsemigroup of
Nm
0 (+). It is the smallest pure subsemigroup con-

taining A. Clearly, A ⊆ p(A) ⊆ cone(A), and so
cone(p(A)) = cone(A). Now, according to 5.4, p(A)
is finitely generated if and only ifA is so. Finally, no-
tice that Nm

0 ∩
(⋃

n∈N ε(A)/n
)
⊆ ε(p(A)). In partic-

ular, ε(A) ⊆ ε(p(A)), and so ε(p(A)) 6= ∅, provided
that ε(A) 6= ∅.

8 Conclusion
In this paper, the properties of subsemigroups and
pure subsemigroups of Nm

0 (+) (= N0(+)m) are in-
vestigated. A theoretical and reference basis for fur-
ther research in this area has been established. It
can be used for further research of finitely gener-
ated cones, e.g. in connection with the investigation
of context-free languages. Our further research will
be directed to a deeper description of pure subsemi-
groups of Nm

0 for a finitem, in particularm = 2.
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