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Abstract: - Using the Half-Logistic Odd Power Generalised Weibull-G family distributions, this article 

constructed a novel distribution termed the Half-Logistic Odd Power Generalised Weibull-inverse Lindley. 

Some of its statistical features are derived by us. Selecting the most efficient estimators is among the basic 

issues in parameter estimation theory. We are employing maximum likelihood estimation, moment estimation, 

least squares estimation, weighted least estimation, L-moment estimation, Maximum Product Spacing 

estimation, and techniques of minimum distances for the parameter estimation for the distribution. We will 

examine simulation research that compares the various estimators' levels of efficiency using the Kolmogorov-

Smirnov test. Lastly, an analysis is done on an actual COVID-19 data set to demonstrate the adaptability of our 

suggested model in comparison to the fit obtained by several other competing distributions. 
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1 Introduction 
One method for characterizing a process or device's 

lifespan that may be used in a variety of domains, 

such as biology, engineering, and medicine, is the 

Lindley distribution. As a counter-example of 

fiducial statistics, Lindley developed a blend of 

Exp(θ) and Gamma(2, θ) distribution with mixing 

percentage (θ (θ + 1)⁄ ). This was done in the 

context of Bayesian statistics. One notable 

advancement in the literature on Lindley distribution 

is the two-parameter weighted Lindley distribution, 

[1], which is found to be highly beneficial when 

modelling biological data derived from mortality 

studies. The proposal of a generalized Poisson 

Lindley distribution has been made, [2]. However, 

an exponential geometric (EG) distribution was 

introduced, [3], in contrast to the extended Lindley 

(EL) distribution that was demonstrated, [4]. An 

article, [5], describes a two-parameter Lindley 

distribution. The authors of, [6], propose a novel 

two-parameter lifespan distribution model and 

characteristics. The Lindley distribution convolution 

was initially proposed by, [7]. The estimation of the 

dependability of a stress-strength system through the 

utilisation of power Lindley distribution was the 

subject of some science, [8]. There has been a recent 

proposal for an extended Lindley distribution, [9]. 

An attempt was made to extend the Lindley 

distribution using the Transmuted Lindley 

Distribution, which is a quadratic rank 

transmutation map, [10]. 

Definition 1.1. If the probability density function of 

a random variable 𝑋 has the following definition, 

[11], [12], then the variable is said to have a Lindley 

distribution with parameter 𝜃. 

 

𝑝 𝑋(𝑥; 𝜃) =
𝜃2

(1+𝜃)
(1 + 𝑥)𝑒−𝜃𝑥 ,      𝑥 > 0, 𝜃 > 0. (1) 

and cumulative distribution function 

𝐹𝑋(𝑥) = 1 −
𝑒−𝜃𝑥(1+𝜃+𝜃𝑥)

1+𝜃
,           𝑥 > 0, 𝜃 > 0. (2) 

 

The inverse Lindley distribution, [13], was due 

to the broad use of inverse distributions. Its 

probability density function (pdf) and cumulative 

distribution function (cdf) are provided by:  

 

𝑔(𝑥; 𝜃) =
𝜃2

1+𝜃
(

1+𝑥

𝑥3 ) 𝑒−
𝜃

𝑥 ,            𝑥 > 0, 𝜃 > 0. (3) 

𝐺𝑋(𝑥; 𝜃) = [1 +
𝜃

(1+𝜃)𝑥
] 𝑒−

𝜃

𝑥 ,         𝑥 > 0, 𝜃 > 0. (4) 

 

Some researchers, [14], presented a generator of 

a continuous distribution known as the half-logistic 

odd power generalized Weibull-G family of 

distributions, where the pdf and cdf are provided by: 
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𝑝𝑋 (𝑥; 𝛼, 𝛽, 𝜉) = 2𝛼𝛽 [1 + (
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
)

𝛼

]

𝛽−1

𝑒𝑥𝑝 {1 −

[1 + (
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
)

𝛼

]

𝛽

} × (𝐺 (𝑥; 𝜉))
𝛼−1

(𝐺 (𝑥; 𝜉))
−𝛼+1

(1 +

𝑒𝑥𝑝 {1 − [1 + (
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
)

𝛼

]

𝛽

})

−2

𝑔 (𝑥; 𝜉) (5) 

and  

𝐹𝑋 (𝑥; 𝛼, 𝛽, 𝜉) =

1−𝑒𝑥𝑝{1−[1+(
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
)

𝛼

]

𝛽

}

1+𝑒𝑥𝑝{1−[1+(
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
)

𝛼

]

𝛽

}

 (6) 

respectively, for 𝛼 > 0, 𝛽 > 0 and parameter vector 

𝜉. 

This work is aimed at examining the inverse 

Lindley distributions (3) and (4), also known as the 

half-logistic odd power generalized Weibull-inverse 

Lindley distribution, as baseline functions to (5) and 

(6). 

Definition 1.2. If the probability density function of 

a random variable X is described as follows, it is 

said to have a half-logistic odd power generalized 

Weibull-inverse Lindley distribution with a vector 

parameter (𝛼, 𝛽, 𝜃). 

𝑝𝑋(𝑥; 𝛼, 𝛽, 𝜃) = 2 𝛼 𝛽 ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽 − 1

×

𝑒𝑥𝑝 (1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽

) × (
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−

 1)

1 − 𝛼 𝜃2

1+𝜃
(
1+𝑥

𝑥3 )𝑒
−

𝜃
𝑥

(

 
 

𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

+ 1

)

 
 

2 (7) 

and cumulative distribution function 

𝐹𝑋(𝑥; 𝛼, 𝛽, 𝜃) =

1 −𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

1+𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

 (8) 

respectively, for 𝛼 > 0, 𝛽 > 0, 𝜃 > 0. 

 

Figure 1 and Figure 2 illustrate some of the 

possible shapes of the (Cdf) and (Pdf) of the Half-

Logistic Odd Power Generalized Weibull-Inverse 

Lindley (HLOPGW-ILD) distribution for selected 

values of the parameters 𝛼, 𝛽 and 𝜃, respectively. 

 
Fig. 1: Cumulative Density Function Of The The 

Half-Logistic Odd Power Generalized Weibull-

Inverse Lindley distribution 

 

 
Fig. 2: Probability Density Function Of The The 

Half-Logistic Odd Power Generalized Weibull-

Inverse Lindley distribution 

 

 

2   Mathematical Properties 
 

2.1   Survival Function 
The Half-Logistic Odd Power Generalised Weibull-

Inverse Lindley (HLOPGW-ILD) distribution's 

survival function, or reliability function, is as 

follows: 
𝑅(𝑥; 𝛼, 𝛽, 𝜃) = 1 − 𝐹𝑋(𝑥; 𝛼, 𝛽, 𝜃) = 1 −

1 −𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

1+𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

 (9) 
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2.2   Hazard Function 
The Half-Logistic Odd Power Generalised Weibull-

Inverse Lindley (HLOPGW-ILD) distribution's 

hazard rate function, often known as the failure rate, 

is provided by: 

 

ℎ(𝑥; 𝛼, 𝛽, 𝜃) =
𝑝𝑋(𝑥;𝛼,𝛽,𝜃)

𝑅(𝑥;𝛼,𝛽,𝜃)
 (10) 

 

For certain values of the parameters 𝛼, 𝛽 and 𝜃, 

respectively, Figure 3 and Figure 4 show several 

potential forms of the Reliability and Hazard 

functions of the Half-Logistic Odd Power 

Generalised Weibull-Inverse Lindley (HLOPGW-

ILD) distribution. 

 

 
Fig. 3: Reliability Function Function Of The The 

Half-Logistic Odd Power Generalized Weibull-

Inverse Lindley distribution 
 

 
Fig. 4: Hazard Function Function Of The The Half-

Logistic Odd Power Generalized Weibull-Inverse 

Lindley distribution 

 

2.3   Quantiles 
The quantile of any distribution is given by solving 

the equation 𝐺(𝑥𝑝) = 𝑝, for 0 < 𝑝 < 1. The 

quantile function of the Half-Logistic Odd Power 

Generalized Weibull-Inverse Lindley (HLOPGW-

ILD) distribution is: 

𝑥(𝑝) = 𝐺−1 [(([1 + 𝑙𝑛(1 + 𝑝) − 𝑙𝑛(1 − 𝑝)]
1

𝛽⁄ −

1)
−1

𝛼⁄

+ 1)

−1

] (11) 

 

2.4    Some Useful Expression  
Taking generalized binomial expansion, [11], the 

pdf (5) of 𝑋 may be written as: 
𝑝𝑋(𝑥; 𝛼, 𝛽, 𝜃)

= 2𝛼𝛽 ∑ ∑ (
−𝛼((𝑚 + 1) + 1)

𝑙
) (𝛽((𝑘 + 1) + 1)

𝑚
)

∞

𝑞,𝑘,𝑚,𝑙

∞

𝑛=1

×
𝑛𝑞+1

𝑞!
(
𝑞
𝑘
) (−1)𝑙+𝑘+𝑛−1 ((𝐺(𝑥; 𝜃)))

𝑙+𝛼(𝑚+1)−1

𝑔(𝑥; 𝜃) 

 

By using this methodology, the pdf (7) of the 

HLOPGW-ILD distribution is: 
𝑝𝑋(𝑥; 𝛼, 𝛽, 𝜃)

= 2𝛼𝛽 ∑ ∑ (
−𝛼((𝑚 + 1) + 1)

𝑙
) (

𝛽(𝑘 + 1) − 1
𝑚

)

∞

𝑞,𝑘,𝑚,𝑙=0

∞

𝑛=1

×
𝑛𝑞+1

𝑞!
(
𝑞
𝑘
) (−1)𝑙+𝑘+𝑛−1 (((1

+
𝜃

(1 + 𝜃)𝑥
) 𝑒−

𝜃

𝑥))

𝑙+𝛼(𝑚+1)−1
𝜃2

1 + 𝜃
(
1 + 𝑥

𝑥3
) 𝑒−

𝜃

𝑥 

 

Alternatively, we may represent the Half-

Logistic Odd Power Generalised Weibull-Inverse 

Lindley as a linear combination of Exp-Inverse 

Lindley densities because, following a series 

definition: 

𝑝𝑋(𝑥; 𝛼, 𝛽, 𝜃) = ∑ 𝑠𝑝𝑡𝑝(𝑥, 𝜃)

∞

𝑝=0

 

where,  
𝑠𝑝

= 2𝛼𝛽 ∑ ∑ (
−𝛼((𝑚 + 1) + 1)

𝑙
) (

𝛽(𝑘 + 1) − 1
𝑚

)

∞

𝑞,𝑘,𝑚,𝑙=0

∞

𝑛=1

×
𝑛𝑞+1

𝑞!
(
𝑞
𝑘
)

(−1)𝑙+𝑘+𝑛−1

𝑝 + 𝛼(𝑚 + 1)
 

for 𝛽(𝑘 + 1) > 1, 𝛽 > 1 and  

𝑡𝑝(𝑥, 𝜃) = 𝑝
𝜃2

1+𝜃
(

1+𝑥

𝑥3 ) 𝑒−
𝜃

𝑥 ((1 +
𝜃

(1+𝜃)𝑥
) 𝑒−

𝜃

𝑥)

𝑝−1

.  
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This form may be shown to be a linear 

combination of Lindley densities with Exp-Inverse 

Lindley densities and a power parameter 𝑝. 

2.5    Order Statistics 
For 𝑋1, 𝑋2, … , 𝑋𝑛 i.i.d. continuous random variables 

with pdf (7) and cdf (8) the density of the maximum 

order is: 
𝑝(𝑛)(𝑥) = 𝑛𝑝(𝑥)𝐹(𝑥)𝑛−1

= 2 𝛼 𝛽𝑛 ((
(𝜃 +  1)𝑥 𝑒

𝜃

𝑥

𝜃 +  𝜃 𝑥 +  𝑥
−  1)

−𝛼

+  1)

𝛽 − 1

× 𝑒𝑥𝑝 (1 − ((
(𝜃 +  1)𝑥 𝑒

𝜃

𝑥

𝜃 +  𝜃 𝑥 +  𝑥
−  1)

−𝛼

+  1)

𝛽

)

× (
(𝜃 +  1)𝑥 𝑒

𝜃

𝑥

𝜃 +  𝜃 𝑥 +  𝑥
−  1)

1 − 𝛼

×

𝜃2

1+𝜃
(

1+𝑥

𝑥3 ) 𝑒−
𝜃

𝑥

(𝑒𝑥𝑝 (1 −  ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽

) +  1)

2 

×

(

 
 
 
 1 −𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

1+𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

)

 
 
 
 

𝑛−1

 (12) 

 

For 𝑋1, 𝑋2, … , 𝑋𝑛 iid continuous random variables 

with pdf (7) and cdf (8) the density of the minimum 

order is 

𝑝(1)(𝑥) = 𝑛𝑝(𝑥)(1 − 𝐹(𝑥))
𝑛−1

=

2 𝛼 𝛽𝑛 ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽 − 1

× (
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−

 1)

1 − 𝛼

× 𝑒𝑥𝑝 (1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽

) ×

𝜃2

1+𝜃
(
1+𝑥

𝑥3 )𝑒
−

𝜃
𝑥

(

 
 
 
 
 
 
 

1−

1 −𝑒𝑥𝑝

(

  
 

1 − 

(

 
 

(
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1

)

 
 

𝛽

)

  
 

1+𝑒𝑥𝑝

(

  
 

1 − 

(

 
 

(
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1

)

 
 

𝛽

)

  
 

)

 
 
 
 
 
 
 

𝑛−1

(

 
 

𝑒𝑥𝑝

(

 
 

1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

 
 

+ 1

)

 
 

2  (13) 

 

For 𝑋1, 𝑋2, … , 𝑋𝑛 iid continuous random variables 

with pdf (7) and cdf (8) the density of the kth order 

is: 

𝑝(𝑘)(𝑥) = 𝑛𝑝(𝑥) (
𝑛 − 1
𝑘 − 1

)𝐹(𝑥)𝑘−1(1 − 𝐹(𝑥))
𝑛−𝑘

=

2 𝛼 𝛽𝑛 (
𝑛 − 1
𝑘 − 1

) ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽 − 1

×

𝑒𝑥𝑝(1 − −((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−  1)

−𝛼

+  1)

𝛽

)(
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
−

 1)

1 − 𝛼 𝜃2

1+𝜃
(
1+𝑥

𝑥3 )𝑒−
𝜃
𝑥

(𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)+ 1)

2 ×

(

 
 
 

1 −𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

1+𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

)

 
 
 

𝑘−1

(

 
 
 

1 −

1 −𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

1+𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥 𝑒

𝜃
𝑥

𝜃 + 𝜃 𝑥 + 𝑥
− 1)

−𝛼

+ 1)

𝛽

)

)

 
 
 

𝑛−𝑘

 (14) 

 

2.6   Rényi Entropy 
A number that generalizes several concepts of 

entropy, such as collision entropy, min-entropy, 

Shannon entropy, and Hartley entropy, is known as 

the Rényi entropy in information theory. The Rényi 

entropy, [15], is named after the researcher Alfréd 

Rényi, who sought the broadest approach to 

information quantification while maintaining 

additivity for independent events. The Rényi 

entropy serves as the foundation for the idea of 

generalized dimensions in the context of fractal 

dimension estimation. In statistics and ecology, the 

Rényi entropy is significant as a diversity indicator. 

Because it may be used as a gauge of entanglement, 

the Rényi entropy is also significant in the context 

of quantum information. Because it is an 

automorphic function regarding a certain subgroup 

of the modular group, the Rényi entropy as a 

function of α in the Heisenberg XY spin chain 

model may be precisely determined. Min-entropy is 

utilized in relation to random extractors in 

theoretical computer science. Rényi entropy 𝐼𝑅(𝜈) 
for the Half-Logistic Odd Power Generalized 

Weibull-Inverse Lindley distribution as follows. 

𝐼𝑅(𝜈) = (1 − 𝜈)−1𝑙𝑜𝑔[∫ 𝑓𝜈(𝑥)𝑑𝑥
∞

0
] = (1 −

𝜈)−1𝑙𝑜𝑔

[
 
 
 
 

∫ (2𝛼𝛽)𝜈 [
[1+

𝜃
(1+𝜃)𝑥

]𝑒
−

𝜃
𝑥

1−[1+
𝜃

(1+𝜃)𝑥
]𝑒

−
𝜃
𝑥

]

𝜈(𝛽−1)

𝑒𝑥𝑝

(

 
 

𝜈 (1 −
∞

0
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(1 + (
[1+

𝜃
(1+𝜃)𝑥

]𝑒
−

𝜃
𝑥

1−[1+
𝜃

(1+𝜃)𝑥
]𝑒

−
𝜃
𝑥

)

𝛼

)

𝛽

)

)

 
 

× (1 − [1 +

𝜃

(1+𝜃)𝑥
] 𝑒−

𝜃

𝑥)
−𝜈(𝛼+1)

(1 + 𝑒𝑥𝑝1 − (1 +

(
[1+

𝜃
(1+𝜃)𝑥

]𝑒
−

𝜃
𝑥

1−[1+
𝜃

(1+𝜃)𝑥
]𝑒

−
𝜃
𝑥

)

𝛼

)

𝛽

)

−2𝜈

× ([1 +

𝜃

(1+𝜃)𝑥
] 𝑒−

𝜃

𝑥)
𝜈(𝛼−1)

(
𝜃2

1+𝜃
(

1+𝑥

𝑥3 ) 𝑒−
𝜃

𝑥)
𝜈

𝑑𝑥

]
 
 
 
 

, 𝜈 ≠ 1, 𝜈 > 0.  (14) 

 

 

3   Methods for Estimating Parameters 
 

3.1   Maximum Likelihood 
Because it produces estimates with very desired 

large sample qualities, the most popular approach 

for ML is full information maximum likelihood or 

ML. In finite samples, these features also roughly 

hold. The ML estimator (MLE) is most efficient, 

unbiased, and normally distributed for linear models 

with errors that are normally distributed. 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be independent and assume 

that each follows a parametric model with a 

probability density function or a frequency 

distribution function 𝑝𝑖(𝑥𝑖; 𝝃). The likelihood 

function of parameter vector 𝝃 is: 

 

𝐿(𝝃) = ∏ 𝑝𝑖(𝑥𝑖; 𝝃)
𝒏
𝒊=𝟏  (15) 

 

It is obvious that 𝐿(𝝃) indicates the likelihood 

that the sample will be seen given a 𝝃. The goal of 

(ML) is to determine a value of 𝝃 that maximizes 

this probability, given that the sample has previously 

been seen. Formally, the value of 𝝃̃ that maximises 

𝐿(𝝃) defines the MLE. 

In our case, 𝑥1, 𝑥2, … , 𝑥𝑛 be i.i.d. random 

variables with a probability density function (7). 

The likelihood function of parameters 𝛼, 𝛽, 𝜃 is:  

ℓ = 𝑛𝑙𝑛(2𝛼𝛽) + (𝛽 − 1)∑ 𝑙𝑛 (1 +𝑛
𝑖=1

(
𝜃+(𝜃+1)𝑥𝑖

(𝜃+1)(𝑒𝜃/𝑥𝑖−1)𝑥𝑖−𝜃
)

𝛼

) + ∑ 𝑙𝑛 (1 − (1 +𝑛
𝑖=1

(
𝜃+(𝜃+1)𝑥𝑖

(𝜃+1)(𝑒𝜃/𝑥𝑖−1)𝑥𝑖−𝜃
)

𝛼

)

𝛽

) + (𝛼 −

1)∑ 𝑙𝑛 (
((1+𝜃)𝑥𝑖+𝜃)𝑒

−
𝜃
𝑥𝑖

(1+𝜃)𝑥𝑖
)𝑛

𝑖=1 − (𝛼 + 1)∑ 𝑙𝑛 (1 −𝑛
𝑖=1

((1+𝜃)𝑥𝑖+𝜃)𝑒
−

𝜃
𝑥𝑖

(1+𝜃)𝑥𝑖
) + ∑ 𝑙𝑛 (

𝜃2

1+𝜃
(

1+𝑥𝑖

𝑥𝑖
3 ) 𝑒

−
𝜃

𝑥𝑖)𝑛
𝑖=1 +

2∑ 𝑙𝑛 (1 + 𝑒𝑥𝑝 (1 − (1 +𝑛
𝑖=1

(
𝜃+(𝜃+1)𝑥𝑖

(𝜃+1)(𝑒𝜃/𝑥𝑖−1)𝑥𝑖−𝜃
)

𝛼

)

𝛽

)). (16) 

 

Unknown parameters cannot be precisely solved 

analytically; estimates are thus obtained by 

simultaneously solving nonlinear equations. The 

Newton-Raphson technique is one iterative 

methodology that makes solving nonlinear problems 

simpler. By providing an initial estimate for the 

parameters, Newton Raphson used these starting 

values to construct parameter estimates. The z-

score, which may be used to compute the parameter 

estimates 100(1 − 𝛼) two-sided confidence range, 

is about standard normal, and these parameter 

estimates are asymptotically near to standard 

normal. 

 

3.2   Moment Estimation 
One of the earliest techniques for determining point 

estimators is the method of moments, which gets its 

name from the fact that sample moments are 

essentially estimates of population moments. Karl 

Pearson was the one who presented it, [16]. The 

HLOPGW-ILD distribution's moment estimators 

may be acquired by equating the first three 

theoretical moments with the corresponding three 

sample moments. The following three example 

moments are described: 

 

𝑚1 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , 𝑚2 =

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 , 𝑚3 =

1

𝑛
∑ 𝑥𝑖

3𝑛
𝑖=1  (17) 

 

and the first three theoretical moments are defined 

as: 

   𝜇1
′ = 𝐸(𝑋1) = ∫ 𝑥𝑓(𝑥;

+∞

−∞

𝛼, 𝛽, 𝜃 )𝑑𝑥  

𝜇2
′ = 𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥;

+∞

−∞

𝛼, 𝛽, 𝜃 )𝑑𝑥 

𝜇3
′ = 𝐸(𝑋3) = ∫ 𝑥3𝑓(𝑥;

+∞

−∞

𝛼, 𝛽, 𝜃 )𝑑𝑥 

 

The moment's estimators 𝛼̂𝑀𝐸 , 𝛽̂𝑀𝐸 , 𝜃𝑀𝐸 of the 

parameters 𝛼, 𝛽, 𝜃 can be obtained by solving 

numerically the following system of equations: 
𝑚1 = 𝜇1

′ (𝜃, 𝜌, 𝛼) 
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𝑚2 = 𝜇2
′ (𝜃, 𝜌, 𝛼) 

𝑚3 = 𝜇3
′ (𝜃, 𝜌, 𝛼) 

 

The modified moment estimation technique is 

an attractive alternative to the moment estimation 

method. Certain adjustments may be made to this 

approach that uses first-order statistics, as stated by, 

[17].  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 , be a random sample 

from 𝑋~HLOPGW − ILD(𝑥;  𝛼, 𝛽, 𝜃), with observed 

values 𝑥1, 𝑥2, … , 𝑥𝑛. The modified moment 

estimators of HLOPGW − ILD distribution can be 

obtained as the solution of the following equations: 

 
𝐸(𝑋) = 𝑥̅ 

𝑉(𝑋) = 𝑠2 

𝐸 (𝐹(𝑋(1))) = 𝐹(𝑥1) 

 

Where 𝐹(∙) is the HLOPGW − ILD cumulative 

distribution function, 𝑋(1) is the first-order statistic, 

𝑥1 is the smallest sample value, 𝑥̅ is the sample 

mean (𝑥̅ =
1

𝑛
∑ 𝑥𝑖) 

𝑛
𝑖=1  and 𝑠2 is the sample variance 

 (𝑠2 =
1

𝑛−1
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 ). 

 

3.3   Least Square Estimation 
To find the parameters of a beta distribution, [18] 

suggested the least square estimators and weighted 

least square estimators (LSEs). The LSEs of the 

HLOPGW-ILD distribution's unknown parameters 

may be found by minimizing: 

  

∑ (𝐹(𝑥(𝑗); 𝛼, 𝛽, 𝜃) −
𝑗

𝑛+1
)

2
𝑛
𝑗=1  (18) 

 

with respect to the unknown parameters 𝛼, 𝛽, 𝜃. 

Where 𝐹(∙) denotes the distribution function of the 

HLOPGW − ILD distribution and 𝐸 (𝐹(𝑋(𝑗))) =
𝑗

𝑛+1
 is the expectation of the empirical cumulative 

distribution function. The least squares estimate 

(LSEs) of 𝛼, 𝛽, 𝜃, say, 𝛼̂𝐿𝑆𝐸 , 𝛽̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 , respectively, 

can be obtained by minimizing: 

 
𝐿𝑆(𝑥𝑗 ; 𝛼, 𝛽, 𝜃)

= ∑

(

 
 
 
 
 

 

1 − 𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥𝑗 𝑒

𝜃
𝑥𝑗

𝜃 + 𝜃 𝑥𝑗 + 𝑥𝑗
−  1)

−𝛼

+  1)

𝛽

)

1 + 𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥𝑗 𝑒

𝜃
𝑥𝑗

𝜃 + 𝜃 𝑥𝑗 + 𝑥𝑗
−  1)

−𝛼

+  1)

𝛽

)

−
𝑗

𝑛 + 1

)

 
 
 
 
 

2

𝑛

𝑗=1

 

 

Therefore, 𝛼̂𝐿𝑆𝐸 , 𝛽̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 of 𝛼, 𝛽, 𝜃 can be 

obtained as the solution of the following system of 

equations: 

𝜕𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝛼
= 0, 

𝜕𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝛽
= 0, 

𝜕𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝜃
= 0 

We can solve these equations numerically to obtain 

the estimates 𝛼̂𝐿𝑆𝐸 , 𝛽̂𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸  . 
 

 

3.4   The Weighted Least Square Estimation 
One may derive the weighted least squares 

estimators (WLSEs) of the unknown parameters by 

minimizing: 

∑ 𝜔𝑗 (𝐹(𝑥(𝑗)) −
𝑗

𝑛+1
)

2

          𝑛
𝑗=1  (19) 

 

with respect to 𝛼, 𝛽, 𝜃 , where 𝜔𝑗 denotes the weight 

function at the 𝑗𝑡ℎ point, which is equal to  

𝜔𝑗 =
1

𝑉(𝐹(𝑋(𝑗))

(𝑛 + 1)2(𝑛 + 2)

𝑗(𝑛 − 𝑗 + 1)
 

 

The weighted least square estimates (WLSEs) 

say 𝛼̂𝑊𝐿𝑆𝐸 , 𝛽̂𝑊𝐿𝑆𝐸 , 𝜃𝑊𝐿𝑆𝐸 can be obtained by 

minimizing: 

 

∑
(𝑛 + 1)2(𝑛 + 2)

𝑗(𝑛 − 𝑗 + 1)

𝑛

𝑗=1

× 

×

(

 
 
 
 
 1 − 𝑒𝑥𝑝(1 − ((

(𝜃 + 1)𝑥𝑗 𝑒

𝜃
𝑥𝑗

𝜃 + 𝜃 𝑥𝑗 + 𝑥𝑗
−  1)

−𝛼

+  1)

𝛽

)

1 + 𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥𝑗 𝑒

𝜃
𝑥𝑗

𝜃 + 𝜃 𝑥𝑗 + 𝑥𝑗
−  1)

−𝛼

+  1)

𝛽

)

 −
𝑗

𝑛 + 1

)

 
 
 
 
 

2

 

 

Therefore, the estimators 𝛼̂𝑊𝐿𝑆𝐸 , 𝛽̂𝑊𝐿𝑆𝐸 , 𝜃𝑊𝐿𝑆𝐸 

can be obtained from the first partial derivative with 

respect to 𝛼, 𝛽, 𝜃 and set the result equal to zero: 

 
𝜕𝑊𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝛼
= 0, 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝛽
= 0, 

𝜕𝑊𝐿𝑆(𝑥𝑗;𝛼,𝛽,𝜃)

𝜕𝜃
= 0 

 

By solving these equations numerically, we can 

obtain the estimates 𝛼̂𝑊𝐿𝑆𝐸 , 𝛽̂𝑊𝐿𝑆𝐸 , and 𝜃𝑊𝐿𝑆𝐸. 

 

3.5   L-Moments Estimators 
[19], was the one who first suggested the L-

moments estimators. The process of equating the 

sample L-moments with the population L-moments 

yields these estimators. According to, [21], the L-

moment estimators are more reliable than the 

moment estimators, and for certain distributions, 

they are also quite efficient when compared to the 

maximum likelihood estimators and relatively 

resilient to the effects of outliers.  

By equating the first three sample L-moments 

with the corresponding population L-moments, the 

L-moments estimators for the HLOPGW-ILD 
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distribution may be produced. The first three L-

moments in the example are: 

𝑙1 =
1

𝑛
∑𝑥(𝑗),

𝑛

𝑗=1

 

𝑙2 =
2

𝑛(𝑛 − 1)
∑(𝑗 − 1)𝑥(𝑗)

𝑛

𝑗=2

− 𝑙1 

𝑙3 =
6

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑗 − 1)(𝑗 − 2)𝑥(𝑗) − 6𝑙2 + 𝑙1

𝑛

𝑗=3

 

 

and the first three population L-moments are: 

𝜆1 = 𝐸(𝑋1:1) = ∫ 𝑥
+∞

−∞

𝑓(𝑥)𝑑𝑥 = 𝐸(𝑋), 

𝜆2 =
1

2
[𝐸(𝑋2:2) − 𝐸(𝑋2:1)]

= ∫ 𝑥[2𝐹(𝑥)
+∞

−∞

− 1]𝑓(𝑥)𝑑𝑥, 

𝜆2 =
1

3
[𝐸(𝑋3:3) − 2𝐸(𝑋2:3) + 𝐸(𝑋1:3)]

= ∫ 𝑥[6(𝐹(𝑥))
2
− 6𝐹(𝑥)

+∞

−∞

+ 1]𝑓(𝑥)𝑑𝑥, 
 

Here, 𝑋𝑗:𝑛 denotes the 𝑗𝑡ℎ order statistic of a 

sample of size 𝑛. Therefore, the L-moments 

estimators 𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸 of the parameters 

𝛼, 𝛽, 𝜃 can be obtained by solving numerically the 

following equations: 

     𝜆1(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) = 𝑙1, 𝜆2(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) =

𝑙2, 𝜆3(𝛼̂𝐿𝑀𝐸 , 𝛽̂𝐿𝑀𝐸 , 𝜃𝐿𝑀𝐸  ) = 𝑙3 

 

3.6   Maximum Product Spacing Estimators  
To approximate the Kullback-Leibler measure of 

information, [20], [21], separately devised the 

maximum product of spacings (MPS) approach for 

estimating parameters in continuous univariate 

distributions. This method is based on the idea that 

the differences of the consecutive points should be 

identically distributed.  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the 

HLOPGW − ILD distribution and 𝑋(1), 𝑋(2), … , 𝑋(𝑛) 

be an ordered random sample. For convenience, we 

also denote 𝑋0 = −∞ and 𝑋𝑛 = +∞. In the method 

of maximum product of spacings, we seek to 

estimate the parameters 𝛼, 𝛽, 𝜃 of the distribution by 

maximizing the geometric mean of distances 𝐷𝑖, 

where every distance 𝐷𝑖 is defined as  

 

𝐷𝑖 = ∫ 𝑓(𝑥; 𝜃)
𝑥(𝑖)

𝑥(𝑖−1)
𝑑𝑥 = 𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜃 ) −

𝐹(𝑥(𝑖−1); 𝛼, 𝛽, 𝜃 )  for 𝑖 = 1, 2, … , 𝑛 + 1  (20) 

 

where 𝐹(𝑥(0); 𝛼, 𝛽, 𝜃) = 0, 𝐹(𝑥(𝑛+1); 𝛼, 𝛽, 𝜃 ) = 1 

and ∑ 𝐷𝑖 = 1.𝑛+1
𝑖=1  

The geometric mean of distances is given by: 

 

𝐺𝑀 = √∏ 𝐷𝑖
𝑛+1
𝑖=1

𝑛+1
 (21) 

 

The MPS estimators 𝛼̂𝑀𝑃𝑆, 𝛽̂𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆 are 

obtained by maximizing the geometric mean (GM) 

of the spacings with respect to 𝛼, 𝛽, 𝜃 or 

equivalently by maximizing the logarithm of the 

geometric mean of the sample spacings: 

 

log(𝐺𝑀) = log ( √∏ 𝐷𝑖
𝑛+1
𝑖=1

𝑛+1
 ) =

1

𝑛+1
∑ 𝑙𝑜𝑔𝐷𝑖

𝑛+1
𝑖=1 =

1

𝑛+1
∑ log [𝐹(𝑥(𝑖); 𝛼, 𝛽, 𝜃 ) − 𝐹(𝑥(𝑖−1); 𝛼, 𝛽, 𝜃 )]𝑛+1

𝑖=1 =

1

𝑛+1
∑ log

(

 
 
 
 
 1 −𝑒𝑥𝑝

(

  
 

1 − 

(

 
 

(
(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
− 1)

−𝛼

+ 1

)

 
 

𝛽

)

  
 

1+𝑒𝑥𝑝

(

  
 

1 − 

(

 
 

(
(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
− 1)

−𝛼

+ 1

)

 
 

𝛽

)

  
 

−𝑛+1
𝑖=1

1 −𝑒𝑥𝑝

(

 
 
 

1 − 

(

 
 

(

 
 (𝜃 + 1)𝑥(𝑖−1) 𝑒

𝜃
𝑥(𝑖−1)

𝜃 + 𝜃 𝑥(𝑖−1) + 𝑥(𝑖−1)
− 1

)

 
 

−𝛼

+ 1

)

 
 

𝛽

)

 
 
 

1+𝑒𝑥𝑝

(

 
 
 

1 − 

(

 
 

(

 
 (𝜃 + 1)𝑥(𝑖−1) 𝑒

𝜃
𝑥(𝑖−1)

𝜃 + 𝜃 𝑥(𝑖−1) + 𝑥(𝑖−1)
− 1

)

 
 

−𝛼

+ 1

)

 
 

𝛽

)

 
 
 

)

 
 
 
 
 

  (22) 

 

The MPS estimators 𝛼̂𝑀𝑃𝑆, 𝛽̂𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆 of 𝛼, 𝛽, 𝜃 can 

be obtained as the simultaneous solution of the 

following equations,  

 
𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝛼

=
1

𝑛 + 1
∑ [

𝐹𝜃
′(𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹𝜃

′(𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹(𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)
]

𝑛+1

𝑖=1

= 0 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝛽

=
1

𝑛 + 1
∑ [

𝐹 𝜌
′ (𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹 𝜌

′ (𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹(𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)
]

𝑛+1

𝑖=1

= 0 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝜃

=
1

𝑛 + 1
∑ [

𝐹 𝛼
′ (𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹 𝛼

′ (𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖), 𝛼, 𝛽, 𝜃) − 𝐹(𝑥(𝑖−1), 𝛼, 𝛽, 𝜃)
]

𝑛+1

𝑖=1

= 0 

 

3.7    Methods of Minimum Distances 
Wolfmitz was the pioneer in estimating the minimal 

distance, [22]. This technique, also known as 

goodness-of-fit statistics, is based on minimizing 

empirical distribution function statistics for the 

purpose of estimating a distribution's parameters. A 

highly generic method known as the minimal 
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distance method formulates the inference issue as 

finding a distribution function that approaches the 

empirical distribution provided by the observed data 

as closely as feasible. Various estimators are 

available using the minimal distance approach, 

contingent on the selected empirical distribution 

function statistic. This part introduces three 

estimating techniques for the HLOPGW-ILD 

distribution, which are based on the goodness-of-fit 

statistics minimization regarding 𝛼, 𝛽, and 𝜃. The 

difference between the empirical distribution 

function and the estimate of the cumulative 

distribution function forms the basis of this class of 

statistics, [23], [24]. 

 

3.7.1   Method of Cram𝒆́r-von-Mises  

The minimal distance estimator (CME) is a type of 

estimator based on the Cramér-von-Mises statistic, 

[25], [26]. The empirical evidence presented by, 

[27], demonstrates that Cramér-von-Mises type 

minimal distance estimators have a smaller bias than 

alternative minimum distance estimators, which 

explains their application. 

The Cramér-von-Mises estimates 

𝛼̂𝐶𝑀𝐸 , 𝛽̂𝐶𝑀𝐸 , 𝜃𝐶𝑀𝐸 of parameters 𝛼, 𝛽, 𝜃 of 

HLOPGW-ILD distribution are obtained by 

minimizing, with respect to 𝛼, 𝛽 and 𝜃 the function: 

 

𝐶(𝛼, 𝛽, 𝜃 ) =
1

12𝑛
+ ∑(𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃 ) −

2𝑖 − 1

𝑛
)

2𝑛

𝑖=1

 

𝐶(𝛼, 𝛽, 𝜃 ) =
1

12𝑛
+ 

+∑

(

 
 
 
 
 1 − 𝑒𝑥𝑝(1 − ((

(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
−  1)

−𝛼

+  1)

𝛽

)

1 + 𝑒𝑥𝑝(1 − ((
(𝜃 + 1)𝑥𝑖 𝑒

𝜃
𝑥𝑖

𝜃 + 𝜃 𝑥𝑖 + 𝑥𝑖
−  1)

−𝛼

+  1)

𝛽

)

−
2𝑖 − 1

𝑛

)

 
 
 
 
 

2

𝑛

𝑖=1

 

(23) 

 

The following nonlinear equations may be solved to 

get these estimates: 

∑(𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝜕𝛼
= 0           

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃 ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃 )

𝜕𝛽
= 0           

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃 ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃 )

𝜕𝜃
= 0           

𝑛

𝑖=1

 

 

3.7.2  Methods of Anderson-Darling and Right-

tail Anderson-Darling 

An additional category of estimators that use the 

concept of minimal distance is the Anderson-

Darling estimator (ADE), which is derived from the 

Anderson-Darling statistic. The Anderson-Darling 

test is like the Cramér-von-Mises criteria, with the 

exception that the integral involves a weighted 

version of the squared difference. These weights are 

determined by the variance of the empirical 

distribution function. The Anderson-Darling test, 

[28], [29], is used as a viable alternative to existing 

statistical procedures to identify deviations from 

normality in sample distributions. The estimation of 

the parameters in the Anderson-Darling method 

involves minimizing a function with respect to 𝛼, 𝛽, 

and 𝜃. 

 

𝐴(𝛼, 𝛽, 𝜃) = −𝑛 −
1

𝑛
∑ (2𝑖 − 1)[𝑙𝑜𝑔𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃) +𝑛

𝑖=1

log 𝐹̅ (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)] (24) 
 

∑(2𝑖 − 1) [
𝐹𝛼

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)
−

𝐹̅𝛼
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝛽

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)
−

𝐹̅𝛽
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝜃

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)
−

𝐹̅𝜃
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
]

𝑛

𝑖=1

= 0 

 

To get the Right-tail Anderson-Darling estimates of 

the parameters, minimize the function with respect 

to 𝛼, 𝛽, 𝜃. 

𝑅(𝛼, 𝛽, 𝜃) =
𝑛

2
− 2∑ 𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃) −

1

𝑛
∑ (2𝑖 −𝑛

𝑖=1
𝑛
𝑖=1

1) log 𝐹̅ (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃) (25) 

 

The following non-linear equations may also be 

solved to get these estimates: 

−2∑
𝐹𝛼

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝑛

𝑖=1

+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝛼
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
= 0

𝑛

𝑖=1

 

−2∑
𝐹𝛽

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝑛

𝑖=1

+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝛽
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
= 0

𝑛

𝑖=1

 

−2∑
𝐹𝜃

, (𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝜃)

𝑛

𝑖=1

+
1

𝑛
∑(2𝑖 − 1)

𝐹̅𝜃
, (𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)

𝐹̅(𝑥(𝑛+1−𝑖)|𝛼, 𝛽, 𝜃)
= 0

𝑛

𝑖=1

 

 

 

4    Applications 
 

4.1   Simulation Study  
In this part, a Monte Carlo simulation analysis is 

conducted to assess the efficacy of several estimate 
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approaches in predicting the parameters of the 

HLOPGW-ILD distribution. The suggested 

estimators are compared via the use of the 

Kolmogorov-Smirnov test. The methodology used 

in this technique is based on the KS statistic. 

 
𝐷𝑛 = max

𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥|𝛼, 𝛽, 𝜃)|, 

 

where max
𝑥

 denotes the maximum of the set of 

distances, 𝐹𝑛(𝑥) is the empirical distribution 

function, and 𝐹(𝑥|𝛼, 𝛽, 𝜃) is the cumulative 

distribution function. 

Initially, an approach was presented to create a 

random sample from the HLOPGW-ILD 

distribution, given certain parameter values and 

sample size n. The following methodology was 

implemented: 

 

1. Set n, 𝛩 = (𝛼, 𝛽, 𝜃) and initial value 𝑥0. 
2. Generate 𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1). 
3. Update 𝑥0 by using the Newton’s formula. 

𝑥∗ = 𝑥0 − 𝑅(𝑥0, 𝛩)  

where, 𝑅(𝑥0, 𝛩) =
𝐹𝑋(𝑥0,𝛩)−𝑈

𝑓𝑋(𝑥0,𝛩)
, 𝐹𝑋(∙) and 𝑓𝑋(∙) 

are cdf and pdf of the HLOPGW-ILD 

distribution, respectively.  

 

4. If |𝑥0 − 𝑥∗| ≤ 𝜖 (very small, 𝜖 > 0 tolerance 

limit ), then store 𝑥 = 𝑥∗ as a sample from 

HLOPGW-ILD distribution. 

5. If |𝑥0 − 𝑥∗| > 𝜖, then set 𝑥0 = 𝑥∗ and go to 

step 3.  

6. Repeat steps 3-5, n times for 

𝑥1, 𝑥2, … , 𝑥𝑛 respectively.  

 

For this purpose, we take 𝛼 = 1.5, 𝛽 = 2.6, 𝜃 = 0.9 

arbitrarily and 𝑛 =  10, 20, . . . , 50. 

 

All the algorithms were implemented in R, a 

statistical computing environment. 

The method was used for the aim of conducting 

simulations. Based on the findings of the simulation 

research, it is evident that the Maximum Likelihood 

Estimation (MLE) approach exhibits superior 

efficiency in estimating the parameters of the 

HLOPGW-ILD distribution, as compared to other 

methods. This conclusion is supported by the 

observation that the MLE technique yields the 

lowest value in the Kolmogorov-Smirnov test, as 

shown in Table 1. Furthermore, it is worth noting 

that the maximum likelihood estimators (MLE) have 

favorable theoretical characteristics, [19]. These 

attributes include consistency, asymptotic efficiency, 

normality, and invariance. Based on these findings, 

it can be inferred that the MLE estimators are the 

preferred choice for estimating the parameters of the 

HLOPGW-ILD distribution. 
 

Table 1. The methods of estimation and its 

respective Kolmogorov-Smirnov test value. 
i Methods of 

Estimations 

Kolmogorov-

Smirnov test 

Ranking 

1 Maximum Product 

Spacing Estimating 
0.036542 5 

2 Moment Estimation 0.034521 3 

3 Least Square 

Estimation 
0.035417 4 

4 Weighted Least 

Square Estimation 
0.032154 2 

5 L-Moment 

Estimation 
0.038254 6 

6 Maximum 

Likelihood 

Estimation  

0.031254 1 

7 Maximum Product 

Spacing Estimating 
0.041241 9 

8 Anderson-Darling 

Estimation 
0.038749 7 

9 Right-tail Anderson-

Darling 
0.039254 8 

 

4.2   Real Data Set 
In this part, we will evaluate the efficacy of the 

expanded distribution. In this study, a genuine data 

set is used to demonstrate the superior performance 

of our model in comparison to other models applied 

to the same data set. The provided data pertains to 

the case fatality ratio of COVID-19 in China, 

namely from March 8th to April 1st, 2022, in 

relation to the emergence of a new strain of the 

virus. 

The data is collected from the official site of the 

World Health Organization (WHO)  

[https://covid19.who.int/]. 

 

The data are as follows: 1.09, 1.00, 1.08, 1.12, 1.50, 

1.60, 1.77, 1.81, 2.07, 1.75, 2.58, 2.59, 

2.65, 3.09, 3.20, 3.47, 3.21, 2.77, 3.17, 2.65, 3.00, 

3.61, 3.08, 2.70, 2.41. 
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Table 2. MLEs and comparison criteria for the 

COVID-19 case fatality ratio in China. 
Distribu

tion 

Parameter 

Estimate 
−ℓ AIC BIC CAI

C 

HLOPG

W-ILD 
𝛼=1.2545

8712 

𝛽=0.3645

8756 

𝜃=4.2514

5235 

91.125

4 

165.2

36 

160.6

31 

159.3

74 

EPL 𝛼=2.6705

2921 

𝛽=0.6654

7111 

𝜆=1.56820

413 

132.25

41 

198.2

54 

191.3

65 

196.7

84 

L 𝛼=0.6535

4891 

195.35

12 

290.3

54 

289.9

51 

290.4

57 

E 𝜃=0.2673

2123 

201.32

64 

340.5

87 

342.6

14 

341.7

53 

 

To assess the distribution models, several 

metrics such as AIC (Akaike information criterion), 

CAIC (corrected Akaike information criterion), and 

BIC are taken into account for the given dataset. A 

more optimal distribution is characterized by lower 

values of the criterion. 

 
𝐴𝐼𝐶 = −2𝑙𝑜𝑔ℓ(𝑥̃, 𝛼, 𝛽, 𝜃) + 2𝑝 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔ℓ(𝑥̃, 𝛼, 𝛽, 𝜃) + 𝑝𝑙𝑜𝑔(𝑛) 
 

The 𝑝-value indicates the number of parameters 

that will be estimated from the data, whereas n 

represents the sample size. 

According to the findings shown in Table 2, our 

analysis demonstrates that the Half-Logistic Odd 

Power Generalised Weibull-inverse Lindley 

distribution has superior goodness of fit compared 

to other models, namely the Exponential, Lindley, 

and exponentiated power Lindley distributions. 
 

 

5   Conclusion 
This study presents the derivation of a novel 

distribution, referred to as the Half-Logistic Odd 

Power Generalised Weibull-inverse Lindley, by 

using the Half-Logistic Odd Power Generalised 

Weibull-G family distributions. We presented an 

analysis of many statistical features of the 

distribution and attempted to develop a model for 

estimating its parameters. We conducted simulation 

research to assess the comparative effectiveness of 

several estimators using the Kolmogorov-Smirnov 

test. The present study involves the analysis of an 

authentic COVID-19 data set to demonstrate the 

adaptability of our suggested model in comparison 

to the level of accuracy achieved by alternative 

distributions. We posit that the use of this expanded 

distribution has potential for exploration in other 

research domains. 
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