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Abstract: - A method, advanced as the fractional Euler finite difference method (FEFDM), a general method for 
the finite difference discretization of fractional initial value problems (IVPs) for 0 < 𝛼 ≤ 1 for the Caputo 
derivative, is shown to be valid only for 𝛼 = 1. This is accomplished by establishing, through a recently 
proposed generalized difference quotient representation of the fractional derivative, that the FEFDM is valid 
only if a property of the Mittag-Leffler function holds that has only been shown to be valid only for 𝛼 = 1. It is 
also shown that the FEFDM is inconsistent with the exact discretization of the IVP for the Caputo fractional 
relaxation equation. The generalized derivative representation is also used to derive a modified generalized 
Euler’s method, its nonstandard finite difference alternative, their improved Euler versions, and to recover a 
recent result by Mainardi relating the Caputo and conformable derivatives. 
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1   Introduction 
The Caputo fractional derivative (FD) is defined, 
[1], as  

𝐷𝑡
𝛼

0
𝐶 (𝑓(𝑡)) =

1

Γ(1−𝛼)
∫ (𝑡 − 𝑥)−𝛼 𝑑

𝑑𝑥
𝑓(𝑥)𝑑𝑥

𝑡

0
   (1) 

for 0 < 𝛼 ≤ 1, with which this paper is concerned. 
It is one of the classical fractional derivatives, [2], 
upon which most theory on the subject has been 
developed by various authors and it has been widely 
applied across many areas of science and 
engineering, [3], and references therein for 
example). 

Since most fractional differential equations 
systems do not have exact analytic solutions, 
numerical approximation methods must be 
developed. Among the many numerical methods, 
[4], [5], [6], [7], [8], [9], that have been proposed to 
solve initial value problems (IVPs) for differential 
equations with the Caputo FD,  

𝐷𝑡
𝛼𝑦(𝑡) = 𝑓(𝑡; y(𝑡)), 𝑦(𝑡0) = 𝑦0, 𝑎 ≤ 𝑡 ≤ 𝑏  (2) 

the finite difference method 

 𝑦𝑘+1 − 𝑦𝑘 =
1

Γ(𝛼+1)
ℎ𝛼𝑓(𝑡𝑘 , 𝑦(𝑡𝑘)), 0 ≤ 𝑡 ≤ 𝑁, 

where ℎ =
𝑏−𝑎

𝑁
,           (3) 

was proposed in, [5], which has been widely cited.  
Method (3), which we will refer to as the fractional 
Euler finite difference method (FEFDM) (and is 
often referred to as the generalized Euler method), 
has been used in direct applications, [10], [11], [12], 
[13], as well as in developing other methods, [14], 
[15], [16], [17], [18], for the discretization of the 
fractional IVP (2).  It is justified by applying 
Taylor’s expansion for the Caputo FD, which is 
proposed in, [19], and is used to develop an 
algorithm (4) below for solving the IVP (2):  

𝑦(𝑡𝑘) =
ℎ𝛼

Γ(𝛼+2)
((𝑘 − 1)𝛼+1 − (𝑘 − 𝛼 −

1)𝑘𝛼)𝑓(𝑡0, 𝑦(𝑡0))+ 𝑦(𝑡0)  

+
ℎ𝛼

Γ(𝛼+2)
∑ ((𝑘 − 𝑖 + 1)𝛼+1 − 2(𝑘 − 𝑖)𝛼+1 +𝑘−1

𝑖=1

(𝑘 − 𝑖 − 1)𝛼+1)𝑓(𝑡𝑖, 𝑦(𝑡𝑖))  

+
ℎ𝛼

Γ(𝛼+2)
𝑓 (𝑡𝑘, 𝑦(𝑡𝑘−1) +

ℎ𝛼

Γ(𝛼+1)
𝑓(𝑡𝑘−1, 𝑦(𝑡𝑘−1))),

               (4) 

which will be referred to as the Odibat-Momani 
finite difference method (OMFDM). 

The purpose of this article is to show that the 
FEFDM, method (3), as a model for (2) is valid only 
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for 𝛼 = 1. Therefore, any algorithm based on it, 
such as the OMFM (4) wherein the FEFDM (3) is 
used as a predictor and a modified trapezoidal rule 
as corrector, is consequently valid only at 𝛼 = 1. A 
modified fractional Euler finite difference method 
(MFEFDM 

𝑦𝑘+1 − 𝑦𝑘 =
1

𝛼
(𝐸𝛼(−𝑡𝑘

𝛼)/

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)) ((𝑡𝑘+1)𝛼 − 𝑡𝑘

𝛼)𝑓(𝑡𝑘 , 𝑦(𝑡𝑘)),   

(5) 

as well as its improved Euler counterpart, are 
proposed, where 𝐸𝛼(. ) and 𝐸𝛼,𝛽(. ) are respectively 
the one- and two-parameter Mittag-Leffler (ML) 
functions. This modification is accomplished using 
the expression (6) below, recently proposed in, [20], 
of the Caputo FD in terms of the ML function: 

𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡) = lim

ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

𝜇(ℎ,𝑡,𝛼)
,  

where 𝜇(ℎ, 𝑡, 𝛼) = (1 −
E𝛼(− (𝑡+ℎ)𝛼)

E𝛼(−𝑡𝛼)
)    (6) 

The rest of this article is organized as follows. In 
the next section, the ESDDFD method for difference 
quotient representations for non-integer derivatives, 
generalized fractional derivatives, and subsequent 
Euler method extensions are recalled. Section 3 
recalls the derivation of the FEM from, [1], and it is 
shown that it is valid only for 𝛼 = 1. In Section 4, 
the ESDDFD method difference quotient 
representations and generalized fractional 
derivatives for the Caputo FD, and subsequent Euler 
method extensions are presented. Numerical 
experiments are presented in Section 5 assessing the 
accuracy, against analytic solutions, of the FEFDM 
and MFEFDM for two examples. A discussion in 
Section 6 of the theoretical and experimental results 
presented, as well as recommendations based on 
those results, concludes the article. 

 
 

2  ESDDFD Difference Quotient 

Representation  
The exact spectral derivative discretization finite 
difference (ESDDFD) method was introduced in, 
[20], in which it is generally assumed that the IVP 
(2) is being discretized on intervals of the form 
[0, 𝑏] and the following were presented. 

Definition 2.1. For a given definition of an FD, let 
℧(𝑡, 𝛼; 𝑦0) denote the analytic solution of IVP for 
the fractional relaxation equation (FRE): 

 

𝐷𝑡
𝛼𝑦(𝑡) = −𝑦(𝑡), 𝑦(0) = 𝑦0,   

0 ≤ 𝑡 ≤ 𝑏;  0 < 𝛼 ≤ 1.      (7) 

 

Then a corresponding difference quotient 
representation (DQR) of the Caputo type consistent 
with that derivative is 

∆𝑡
𝛼

0
𝐺𝐶 [𝑦(𝑡)] =

𝑦(𝑡+ℎ)−𝑦(𝑡)

(1−℧(𝑡+ℎ,𝛼;𝑦0)/℧(𝑡,𝛼;𝑦0))
  

Taking the limit as ℎ → 0 in the equation above 
yields the following alternative definition of the 
derivative associated with ℧(𝑡, 𝛼; 𝑦0): 

Definition 2.2. Given a real-valued function on 
[0, ∞), the generalized fractional derivative (GFD) 
associated with ℧(𝑡, 𝛼; 𝑦0) has the following 
alternative definition: 

𝐷𝑡
𝛼

0
𝐺𝐶 [𝑓(𝑡)] ≡ lim

ℎ→0
∆𝑡

𝛼
0

𝐺𝐶 [𝑦(𝑡)], 

where 𝐷𝑡
𝛼

0
𝐺𝐶 [𝑓(0)] is understood to mean 

𝐷𝑡
𝛼

0
𝐺𝐶 [𝑓(0)] = lim

𝑡→0+
𝐷𝑡

𝛼
0

𝐺𝐶 [𝑓(𝑡)]. 
 

The identifications  

𝑡 ⟶ 𝑡𝑘 , 𝑡 + ℎ ⟶ 𝑡𝑘+1,  

𝑦(𝑡 + ℎ) ⟶ 𝑦𝑘+1, 𝑦(𝑡) ⟶ 𝑦𝑘      (8) 

applied in Definitions 2.1 and 2.2 yields the 
following discretization rule for 𝐷𝑡

𝛼𝑦(𝑡) as a 
corollary. 

Corollary 2.1. Let ℧(𝑡, 𝛼; 𝑦0) be as in Definitions 
2.1. Then the following are consistent discrete Euler 
and nonstandard finite difference (NSFD) 
representations of 𝐷𝑡

𝛼
0

𝐺𝐶 𝑦(𝑡): 

Generalized Fractional Euler:  

𝐷𝑡
𝛼

0
𝐺𝐶 𝑦(𝑡) ⟶

𝑦𝑘+1−𝑦𝑘

lim
ℎ→0

𝜇(ℎ,𝑡𝑘,𝛼)
,   

Generalized Fractional NSFD: 

𝐷𝑡
𝛼

0
𝐺𝐶 𝑦(𝑡) ⟶

𝑦𝑘+1−𝑦𝑘

𝜇(ℎ,𝑡𝑘,𝛼)
, 

where 𝜇(ℎ, 𝑡𝑘 , 𝛼) is defined as follows: 

𝜇(ℎ, 𝑡𝑘 , 𝛼) = (1 − ℧(𝑡𝑘+1, 𝛼; 𝑦0)/℧(𝑡𝑘 , 𝛼; 𝑦0))  

The denominator function 𝜇(ℎ, 𝑡𝑘 , 𝛼) in Corollary 
2.1 is a complex function of both the step size ℎ =
𝑡𝑘+1 − 𝑡𝑘 and lattice point 𝑡𝑘, and is described in 
[20], as a fractional generalization of the 
nonstandard finite difference (NSFD) denominator, 
[21].  
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Clear corollaries to the foregoing are the 
following Euler discretization rules for the IVP (2), 
which provide justified extensions of the Euler 
method to the GFD: 

Corollary 2.2. The following discrete 
representations are fractional generalizations of the 
Euler finite difference method for the GFD valid for 
𝛼 ∈ (0, 1]:  

Generalized FEFDM:   
𝑦𝑘+1−𝑦𝑘

lim
ℎ→0

𝜇(ℎ,𝑡𝑘,𝛼)
= 𝑓(𝑡𝑘 , 𝑦𝑘)    

Generalized Fractional NSFD Method:  
𝑦𝑘+1−𝑦𝑘

𝜇(ℎ,𝑡𝑘,𝛼)
= 𝑓(𝑡𝑘, 𝑦𝑘)   

 
The following alternate definition of the 

conformable fractional derivative (CFD), [22], 
given in, [23], will be used to arrive at the 
MFEFDM (5).  It can be obtained by setting 
℧(𝑡, 𝛼) = exp (−

1

𝛼
𝑡𝛼), in Definitions 2.1 and 2.2 

above. 
 

Definition 2.3. Given a real-valued function on 
[0, ∞), the conformable fractional derivative has the 
following alternative definition: 

𝑇𝑡
𝛼

0
𝐶 [𝑓(𝑡)] ≡ lim

ℎ→0
∆𝑡

𝛼
0

𝐶𝐹𝐷 [𝑦(𝑡)]

= 𝛼lim
ℎ→0

𝑦(𝑡 + ℎ) − 𝑦(𝑡)

[(𝑡 + ℎ)𝛼 − 𝑡𝛼] 
 

 
where 𝑇𝑡

𝛼
0
𝐶 [𝑓(0)] is understood to mean 

𝑇𝑡
𝛼

0
𝐶 [𝑓(0)] = lim

𝑡→0+
𝑇𝑡

𝛼
0
𝐶 [𝑓(𝑡)]. 

The following, which gives the relationship 
between the integer derivative and NIDs, will also 
be used to arrive at the MFEFDM, given by (5).   
 

Proposition 2.1  If 𝑓(𝑡) and ℧(𝑡0, 𝑡, 𝑦0) are both 
first-order differentiable, then the following also 
holds:  

 𝐷𝑡
𝛼

0
𝐺𝐶 [𝑓(𝑡)] = −𝜆℧(𝑡0, 𝑡, 𝑦0)

1
𝑑℧(𝑡0,𝑡,𝑦0)

𝑑𝑡

𝑑𝑓(𝑡)

𝑑𝑡
  

Proof 

The proof follows directly from Definitions 2.1 and 
2.2:  

𝐷𝑡
𝛼

0
𝐺𝐶 [𝑓(𝑡)] = lim

ℎ→0

𝑓(𝑡+ℎ)−𝑓(𝑡)
1

𝜆
(1−℧(𝑡0,𝑡+ℎ,𝑦0)/℧(𝑡0,𝑡,𝑦0))

=

lim
ℎ→0

𝑓(𝑡+ℎ)−𝑓(𝑡)
1

𝜆
[(

℧(𝑡0,𝑡,𝑦0)−℧(𝑡0,𝑡+ℎ,𝑦0)

℧(𝑡0,𝑡,𝑦0)
)]

  

= −℧(𝑡0, 𝑡, 𝑦0)lim
ℎ→0

1
1

𝜆

℧(𝑡0,𝑡+ℎ,𝑦0)−℧(𝑡0,𝑡,𝑦0)

ℎ

𝑓(𝑡+ℎ)−𝑓(𝑡)

ℎ
=

−𝜆℧(𝑡0,𝑡,𝑦0)

℧′(𝑡0,𝑡,𝑦0)

𝑑𝑓(𝑡)

𝑑𝑡
  

 

 

3 The Generalized Fractional Euler 

Finite Difference Method (FEFDM) 
In this section, justification of the generalized 
fractional Euler finite difference method is recalled, 
and proof is presented of its limited validity. 
 
3.1 Justification of the FEFDM 
The FEFDM, given by (3), for the IVP (2), is 
obtained in, [5], by considering a Caputo FD power 
series expansion, [19], as follows. It is assumed that 
for each 𝑡 there exists 𝑐1 so that the following is 
true: 

𝑦(𝑡) − 𝑦(𝑡0) =
1

Γ(𝛼+1)
𝑡𝛼(𝐷𝑡

𝛼𝑦)(𝑡0) +
1

Γ(2𝛼+1)
𝑡2𝛼(𝐷𝑡

2𝛼𝑦)(𝑐1).        (9) 

 
Letting 𝑦(𝑡𝑘+1) − 𝑦(𝑡𝑘) ⟶ 𝑦𝑘+1 − 𝑦𝑘 and 
substituting (𝐷𝑡

𝛼𝑦)(𝑡𝑘) = 𝑓(𝑡𝑘 , 𝑦𝑘) into (9) results 
in 

𝑦𝑘+1 − 𝑦𝑘 =
1

Γ(𝛼+1)
ℎ𝛼𝑓(𝑡𝑘 , 𝑦𝑘) +

1

Γ(2𝛼+1)
ℎ2𝛼(𝐷𝑡

2𝛼𝑦)(𝑐1),  

or, equivalently 

Γ(𝛼 + 1)
𝑦𝑘+1−𝑦𝑘

ℎ𝛼 = 𝑓(𝑡𝑘, 𝑦𝑘) +
Γ(𝛼+1)

Γ(2𝛼+1)
ℎ𝛼(𝐷𝑡

2𝛼𝑦)(𝑐1).    

   (10) 

For ℎ small enough, ignoring the second term 
on the right-hand side of (10) yields the fractional 
Euler finite difference method (FEFDM) given in 
Eqn. (3): 

𝑦𝑘+1 − 𝑦𝑘 =
1

Γ(𝛼+1)
ℎ𝛼𝑓(𝑡𝑘 , 𝑦𝑘),   

which reduces to the usual Euler’s method for 𝛼 =
1. 
 
3.2   Limited Validity of the FEFDM 
Next, the following is proved: 
 
Proposition 3.1 The FEFDM as given by Eqn. (3) is 
valid only for 𝛼 = 1.  
 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.91 Dominic P. Clemence-Mkhope, Zachary Denton

E-ISSN: 2224-2880 833 Volume 22, 2023



 

Proof 

Substituting ℧(𝑡0, 𝑡, 𝑦0) = E𝛼(−𝑡𝛼), the solution of 
the FRE for the Caputo FD, into Definition 2.2 
results in the generalized representation: 

𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) = lim

ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

(1−℧(𝑡0,𝑡+ℎ,𝑦0)/℧(𝑡0,𝑡,𝑦0))
=

lim
ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

[1−E𝛼(− (𝑡+ℎ)𝛼)/E𝛼(−𝑡𝛼)]
.      (11) 

 
For ℎ small enough, therefore, and making the 

identifications (8) in Eqn. (11), or using Corollary 
2.1, results in the following discrete representation 
of the Caputo FD, 𝐷𝑡

𝛼
0
𝐶 𝑦(𝑡): 

𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) = lim

ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

(1−E𝛼(− (𝑡+ℎ)𝛼)/E𝛼(−𝑡𝛼))
→

𝑦𝑘+1−𝑦𝑘

lim
ℎ→0

(1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼))

.    

 
Now, if the FEFDM is valid, then we have the 

following two equivalent discrete representations of 
the IVP (7) with Caputo FD 𝐷𝑡

𝛼
0
𝐶 𝑦(𝑡):  

𝑦𝑘+1−𝑦𝑘

1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼) 

= −𝑦𝑘 and  

Γ(𝛼 + 1)
𝑦𝑘+1−𝑦𝑘

ℎ𝛼 = −𝑦𝑘.       (12) 

 
Therefore, from the equivalence of the left-hand 
sides in (12) above we conclude the following: 

𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) →

𝑦𝑘+1−𝑦𝑘

lim
ℎ→0

(1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼))

=

Γ(𝛼 + 1)lim
ℎ→0

𝑦𝑘+1−𝑦𝑘

ℎ𝛼
.       (13) 

 
However, the only way that Eqn. (13) holds that the 
following identity holds, 

lim
𝑣→0

[1 −
E𝛼(− (𝑢+𝑣)𝛼)

E𝛼(−𝑢𝛼)
] = lim

𝑣→0
[1 − E𝛼(−𝑣𝛼)],  

(14) 

so that there follows  

lim
ℎ→0

[1 −
E𝛼(− (𝑡𝑘+ℎ)𝛼)

E𝛼(−𝑡𝑘
𝛼)

] = lim
𝑣→0

[1 − E𝛼(−ℎ𝛼)] =
1

Γ(𝛼+1)
lim
𝑣→0

 ℎ𝛼.     

 
Since the left-hand side of the first representation 

in (12) is an exact discretization of the RE for the 
Caputo FD for 0 < 𝛼 ≤ 1, it is consistent with the 
representation of the Caputo FD for 0 < 𝛼 ≤ 1. 
Since the identity (14) has been shown by example, 

[24], to not hold for 𝛼 ≠ 1, we conclude therefore 
that (13) also holds only for 𝛼 = 1. From the 
preceding statements, we conclude therefore that the 
right-hand side (RHS) of (13) is consistent with the 
representation of the Caputo FD only for 𝛼 = 1, and 
hence that the FEFDM, since it derives from the 
RHS of (13), is valid only for 𝛼 = 1. 
 

 

4 Alternative Definition of the 

Caputo FD and Justification of the 

MFEM 
In this section, an alternative definition of the 
Caputo derivative is presented and used to derive a 
modified fractional Euler finite difference method 
(MFEFDM). 
 
4.1   Alternative Definition of the Caputo FD 
The derivation of a modified FEFDM is based on 
the exact discretization of the initial value problem 
for the FRE, obtained from using the solution of the 
FRE for the Caputo FD, ℧(𝑡0, 𝑡, 𝑦0) = E𝛼(−𝑡𝛼) in 
Definitions 2.1 and 2.2, and leads to the following 
DQR and GFD for the Caputo FD: 
 
Definition 4.1. The Caputo fractional derivative has 
the following difference quotient representation 
(DQR): 

∆𝑡
𝛼

0
𝐶 [𝑦(𝑡)] =

𝑦(𝑡+ℎ)−𝑦(𝑡)

𝜇(ℎ,𝑡,𝛼)
, where 𝜇(ℎ, 𝑡, 𝛼) =

(1 −
E𝛼(− (𝑡+ℎ)𝛼)

E𝛼(−𝑡𝛼)
) 

 
and associated generalized Caputo derivative as 
given by (6): 

𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡) = lim

ℎ→0
∆𝑡

𝛼
0
𝐶 [𝑦(𝑡)] = lim

ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

𝜇(ℎ,𝑡,𝛼)
.    

 The following result about the basic properties of 
𝐷𝑡

𝛼
0
𝐶  is a particular case of Theorem 2.1.6 of, [20]. 
 

Theorem 4.1. Let 𝛼 ∈ (0, 1] and the functions 𝑓, 𝑔 
be 𝛼-differentiable at a point  𝑡 ∈ [0, ∞). Then, for 
all real-valued constants 𝐴, 𝐵, 𝐾, 𝑝, the following 
properties hold: 
(1).  𝐷𝑡

𝛼
0
𝐶 [𝐴𝑓 + 𝐵𝑔] = 𝐴 𝐷𝑡

𝛼
0
𝐶 [𝑓] + 𝐵 𝐷𝑡

𝛼
0
𝐶 [𝑔] 

(2).  𝐷𝑡
𝛼

0
𝐶 [𝑓𝑔] = 𝑔 𝐷𝑡

𝛼
0
𝐶 [𝑓] + 𝑓 𝐷𝑡

𝛼
0
𝐶 [𝑔] 

(3).  𝐷𝑡
𝛼

0
𝐶 [

𝑓

𝑔
] =

1

𝑔2 [𝑔 𝐷𝑡
𝛼

0
𝐶 [𝑓] − 𝑓 𝐷𝑡

𝛼
0
𝐶 [𝑔]] 

(4).  𝐷𝑡
𝛼

0
𝐶 [𝑡𝑝] =

𝐸𝛼(−𝑡𝛼)

𝐸𝛼,𝛼(−𝑡𝛼)
𝑝𝑡𝑝−𝛼 

(5). 𝐷𝑡
𝛼

0
𝐶 [𝐾] = 0 

(6). If 𝑓(𝑡) is first-order differentiable, then the 
following also holds: 
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 𝐷𝑡
𝛼

0
𝐶 [𝑓(𝑡)] =

𝐸𝛼(−𝑡𝛼)

𝐸𝛼,𝛼(−𝑡𝛼)
 𝑡1−𝛼 𝑑𝑓(𝑡)

𝑑𝑡
 

Proof (of (6)) 

The proofs are elementary proofs that are omitted 
here: 1,2,3,5 follow directly from Definition 3.1 
while 4),6) follow directly from Proposition 2.1, 
with  ℧(𝑡0, 𝑡, 𝑦0) = E𝛼  (−𝑡𝛼) and use of the identity 
𝑑E𝛼 (−𝑡𝛼)

𝑑𝑡
= −𝑡𝛼−1E𝛼𝛼, (−𝑡𝛼) 

Remark: The formula in Theorem 4.1 (6) is the 
same as that recently obtained by, [25], from 
consideration of the relationship between relaxation 
equations of integer order and those of fractional 
order. The ESDDFD therefore offers, through 
Proposition 2.1, a generalization of the Mainardi 
result as well as the relationship between the Caputo 
FD and the integer derivative. 
 
From Definition 4.1, we have the following: 

 
Corollary 4.2.  The Caputo derivative has the 
following generalized fractional derivative (GFD): 

 𝐷𝑡
𝛼

0
𝐶 [𝑓(𝑡)] = lim

ℎ→0

𝑦(𝑡+ℎ)−𝑦(𝑡)

𝜓(ℎ;𝛼,𝑡)
,  

where 𝜓(ℎ; 𝛼, 𝑡) is defined as follows: 
𝜓(ℎ; 𝛼, 𝑡) = 

1

𝛼
(𝐸𝛼,𝛼(−𝑡𝛼)/𝐸𝛼(−𝑡𝛼)) [ (𝑡 + ℎ)𝛼 −  𝑡𝛼]. 

 
Proof  

The proof follows directly from Theorem 4.1 (6), 
noting that 

 𝐸𝛼(−𝑡𝛼)

𝐸𝛼,𝛼(−𝑡𝛼)
 𝑡1−𝛼 𝑑𝑓(𝑡)

𝑑𝑡
=

𝐸𝛼(−𝑡𝛼)

𝐸𝛼,𝛼(−𝑡𝛼)
 𝑇𝑡

𝛼
0
𝐶 [𝑓(𝑡)],   

where 𝑇𝑡
𝛼

0
𝐶  denotes the CFD, and the use of the 

alternate definition of the CFD given in Definition 
2.3. 
 
4.2  Modification of the FEFDM and Its 

NSFD Alternative 
The proposed modification of the FEFDM and its 
alternative follow directly from the GFD in 
Corollary 4.2 and the DQR in Definition 4.1, with 
the identifications in Eqn. (8), which yields the 
following possible discretizations for the Caputo 
FD: 

Caputo FEFDM:  

𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) → 𝛼

𝐸𝛼(−𝑡𝑘
𝛼)

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)

𝑦𝑘+1−𝑦𝑘

((𝑡𝑘+1)𝛼−(𝑡𝑘)𝛼)
  

Caputo FNSFD: 𝐷𝑡
𝛼

0
𝐶 𝑦(𝑡) →

𝑦𝑘+1−𝑦𝑘

1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼)

 

  
Since the OMFDM may be viewed as a two-step 
improved version of the FEFDM, an improved 
version of the MFEFDM may be constructed for 
comparison. A corollary to the foregoing, and given 
Corollary 2.2, are the following Euler discretization 
rules for the IVP (2) for the Caputo FD, which 
justifies the modified FEFDM (MFEFDM) and its 
NSFD alternative as extensions of the Euler method 
to the Caputo FD: 
 
Corollary 4.3. The following discrete 
representations are generalizations of the (forward) 
Euler method and its two-step improved versions for 
the Caputo FD valid for 𝛼 ∈ (0, 1] 
 
Modified FEFDM (MFEFDM):  

 𝛼
𝐸𝛼(−𝑡𝑘

𝛼)

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)

𝑦𝑘+1−𝑦𝑘

(𝑡𝑘+1)𝛼−(𝑡𝑘)𝛼 = 𝑓(𝑡𝑘 , 𝑦𝑘)  

Improved Modified FEFDM (IMFEFDM):
 𝛼

𝐸𝛼(−𝑡𝑘
𝛼)

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)

𝑦𝑘+1−𝑦𝑘

(𝑡𝑘+1)𝛼−(𝑡𝑘)𝛼 =
1

2
[𝑓(𝑡𝑘, 𝑦𝑘) +

𝑓(𝑡𝑘+1, 𝑦𝑘+1
∗ )]  

Fractional NSFD (FNSFD):  

  𝑦𝑘+1−𝑦𝑘

[1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼)]

= 𝑓(𝑡𝑘 , 𝑦𝑘)  

Improved Fractional NSFD (IFNSFD):: 
 𝑦𝑘+1−𝑦𝑘

[1−E𝛼(− (𝑡𝑘+1)𝛼)/E𝛼(−𝑡𝑘
𝛼)]

=
1

2
[𝑓(𝑡𝑘 , 𝑦𝑘) +

𝑓(𝑡𝑘+1, 𝑦𝑘+1
∗ )] 

 
 

5  Numerical Experiments  
To further demonstrate that the FEFDM is not a 
viable extension of the Euler method to the Caputo 
FD for 𝛼 ∈ (0, 1) and to validate the suggested 
alternatives, two examples are presented. 
 
Example 1 

𝐷𝑡
𝛼𝑦(𝑡) = −𝑦(𝑡), 𝑦(0) = 1, 0 ≤ 𝑡 ≤ 1;  0 < 𝛼 ≤ 1.

  

Example 1 is used to justify the FEFDM in, [5], 
and to validate the OMFDM in, [26], and those 
results are in agreement with those of, [27]. The 
OMFM model for Example 1, 

𝑦(𝑡𝑘) = 1 −
ℎ𝛼

Γ(𝛼+2)
((𝑘 − 1)𝛼+1 − (𝑘 − 𝛼 − 1)𝑘𝛼)  

−
ℎ𝛼

Γ(𝛼+2)
∑ ((𝑘 − 𝑖 + 1)𝛼+1 − 2(𝑘 − 1)𝛼+1 +𝑘−1

𝑖=1

(𝑘 − 𝑖 − 1)𝛼+1)𝑦(𝑡𝑖)  
+

ℎ𝛼

Γ(𝛼+2)
(

ℎ𝛼

Γ(𝛼+1)
− 1) 𝑦(𝑡𝑘−1),     (15) 
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is compared to the, respectively, FEFDM, 
MFEFDM, IMFEFDM, FNSFD, and IFNSFD 
models: 

𝑦𝑘+1 = (1 −
1

Γ(𝛼+1)
ℎ𝛼) 𝑦𝑘      (16) 

𝑦𝑘+1 = (1 −
1

𝛼

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)

𝐸𝛼(−𝑡𝑘
𝛼)

[(𝑡𝑘+1)𝛼 − (𝑡𝑘)𝛼]) 𝑦𝑘  
               (17) 

𝑦𝑘+1 = 𝑦𝑘 −
1

2
(

1

𝛼

𝐸𝛼,𝛼(−𝑡𝑘
𝛼)

𝐸𝛼(−𝑡𝑘
𝛼)

[(𝑡𝑘+1)𝛼 −

(𝑡𝑘)𝛼]) [𝑦𝑘 + 𝑦𝑘+1
∗ ]         (18) 

where  𝑦𝑘+1
∗  is 𝑦𝑘+1 of Eqn. (17);   

𝑦𝑘+1 = (1 − [1 −
E𝛼(− (𝑡𝑘+1)𝛼)

E𝛼(−𝑡𝑘
𝛼)

] ) 𝑦𝑘 =

E𝛼(− (𝑡𝑘+1)𝛼)

E𝛼(−𝑡𝑘
𝛼)

𝑦𝑘           

(19) 
𝑦𝑘+1 = 𝑦𝑘 −

1

2
[1 −

E𝛼(− (𝑡𝑘+1)𝛼)

E𝛼(−𝑡𝑘
𝛼)

] [𝑦𝑘 + 𝑦𝑘+1
∗ ],  

where 𝑦𝑘+1
∗  is 𝑦𝑘+1 of Eqn. (19)       

(20) 
 

With the OMFDM (15) viewed as an improved 
version of the FEFDM (16), comparisons against the 
analytic solutions are presented in Figure 1 and 

Figure 2 below using discrete representations 
obtained from the FEFDM, MFEFDM (17), and 
FNSFD (19), as well as their improved versions 
(respectively, OMFDM, IMFEFDM (18), and 
IFNSFD (20)) 

 

 
         a               b 

  
c              d           e 

   

f           g            i 

  

Fig. 1: Solution profiles for Example 1 when 𝛼 = 0.5 (a. FEFDM, b. OMFDM; (c–e) MFEFDM and 

IFEFDM (c. h=0.1, d. h=0.01, e. h=0.001); (f–i) NSFD and INSFD (f. h=0.1, g. h=0.01, i. h=0.001) 
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a               b 

  
c           d           e 

    
f             g            i 

     
Fig. 2:  Solution profiles for Example 1 when 𝛼 = 0.75. (a. FEFDM, b. OMFDM; (c–e) MFEFDM and 

IFEFDM (c. h=0.1, d. h=0.01, e. h=0.001); (f–i) NSFD and INSFD (f. h=0.1, g. h=0.01, i. h=0.001) 
 
It is clear from Figure 1 and Figure 2 that the 
FEFDM does not perform well for all step sizes; this 
inferior performance persists for all values of 𝛼 ∈
(0,1). While it performs better than the FEFDM, the 
OMFDM is seen to under-perform both the 
MFEFDM and the FNSFD as well as their improved 

versions for all step sizes. The absolute and 
percentage errors for 𝛼 = 0.5 and various step sizes 
are presented in Table 1 below to further quantify 
these performance differences for all the six 
considered method. 

 
Table 1. Error-values for Example 1 when 𝛼 = 0.5 

h error FEFDM OMFM MFEFDM IMFEFDM FNSFD IFNSFD 
0.1 Abs E 0.415469 0.054394 0.060024 0.002517 0 0.038582 

  % E 97.16684 12.72124 14.03785 0.588624 0 9.023249 
0.01 Abs E 0.427577 0.011239 0.007778 0.000703 0 0.006339 

  % E 99.99852 2.62848 1.819015 0.164483 0 1.482554 
0.001 Abs E 0.427584 0.003192 0.000998 9.15E-05 0 0.00088 

  % E 100 0.746423 0.233314 0.021411 0 0.205787 
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Example 2 

𝐷𝑡
𝛼𝑦(𝑡) = 1 − 𝑦(𝑡) , 𝑦(0) = 0, 0 ≤ 𝑡 ≤ 1;  0 <

𝛼 ≤ 1.   

Example 2 is a slight extension of Example 1. 
Comparisons against the analytic solutions for 
Example 2 are presented in graphical form in Figure 

3 and Figure 4 below using discrete representations 
obtained from the Caputo fractional Euler, modified 
fractional Euler, and ESDDFD-based NSFD Euler 
methods (respectively, FEFDM, MFEFDM, and 
FNSFD), and their improved versions (respectively, 
OMFM, IMFEFDM, and IFNSFD). 

   

 

a.               b 

  

c            d           e 

   
      f           g           i 

    

Fig. 3:  Solution profiles for Example 2 when 𝛼 = 0.5. (a. FEFDM, b. OMFDM; (c–e) MFEFDM and IFEFDM 
(c. h=0.1, d. h=0.01, e. h=0.001); (f–i) NSFD and INSFD (f. h=0.1, g. h=0.01, i. h=0.001) 
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Consistent with the results of Example 1, it is 
seen from Figure 3 above and Figure 4 below that 
the FEFDM under-performs all the other methods 
while the MFEFDM, the FNSFD, and their 
improved versions all outperform the OMFDM.  

The absolute and percentage errors from 
Example 2 for 𝛼 = 0.5 and various step sizes are 
presented in Table 2 below to further quantify the 
performance differences for all the six considered 
methods. 
 

 

 

 

 

 

 

 

 

 

 

 

a.             b. 

  
c            d           e 

    
f           g           i 

   
Fig. 4: Solution profiles for Example 2 when 𝛼 = 0.75. (a. FEFDM, b. OMFDM; (c–e) MFEFDM and 

IFEFDM (c. h=0.1, d. h=0.01, e. h=0.001); (f–i) NSFD and INSFD (f. h=0.1, g. h=0.01, i. h=0.001) 
 

 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.91 Dominic P. Clemence-Mkhope, Zachary Denton

E-ISSN: 2224-2880 839 Volume 22, 2023



Table 2. Error-values for Example 2 when 𝛼 = 0.5 
h error FEFDM OMFM MFEFDM IMFEFDM FNSFD IFNSFD 

0.1 Abs E 0.415469 0.132849 0.060024 0.002517 2.11E-15 0.038582 
  % E 72.58168 23.20846 10.486 0.439691 3.66E-13 6.740186 

0.01 Abs E 0.427577 0.041251 0.007778 0.000703 2.11E-15 0.006339 
  % E 74.69689 7.206459 1.358768 0.122865 3.66E-13 1.107438 

0.001 Abs E 0.427584 0.013144 0.000998 9.15E-05 1.55E-15 0.00088 
  % E 74.69799 2.296192 0.174281 0.015993 2.66E-13 0.153718 

 

 

6   Conclusion 
A discretization method for the fractional initial 
value problem, with the Caputo fractional 
derivative, has been considered that extends the 
integer Euler method and is termed the generalized 
fractional Euler’s method in recent literature; its 
justification using a fractional series expansion is 
recalled. It has been shown that the method is valid 
only for 𝛼 = 1. A modified generalized fractional 
Euler’s method and a corresponding nonstandard 
method are proposed along with their improved 
Euler counterparts. Numerical experiments are 
presented comparing the FEFDM with the Odibat-
Momani algorithm derived from the FEFDM and 
the four suggested alternative fractional Euler and 
improved fractional Euler methods. Graphical 
evidence and tabulation of absolute and percentage 
errors show that the FEFDM has very large errors 
and that the proposed methods outperform both the 
FEFDM and the Odibat-Momani algorithm. The 
proposed methods have the potential to improve the 
numerical simulation of models of the form (2) in 
direct applications (such as in, [10], [11], [12], 
[13]), as well as in developing other methods (such 
as in, [14], [15], [16], [17], [18]). As a next step, the 
authors intend to apply these methods to the 
numerical simulation and analysis of various 
fractional disease models. 
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