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Abstract: From particular polynomials, we construct rational solutions to the Burgers' equation as a quotient of a
polynomial of degree n− 1 in x and n− 1−

∣∣n
2

∣∣ in t, by a polynomial of degree n in x and
∣∣n
2

∣∣ in t, |n| being the
greater integer less or equal to n. We call these solutions, solutions of order n.
We construct explicitly these solutions for orders 1 until 20.
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1 Introduction
We consider the Burgers' equation which can be writ-
ten as

ut + uxx + uux = 0 (1)

where the subscripts x and t denote partial deriva-
tives.
In 1915, [1] introduced this equation (1). This
equation appears in different contexts in physics as
in gas dynamics, [2], acoustics, [3], heat conduction,
[4], in soil water, [5], in hydrodynamics turbulence,
[6], [7], [8], in shock waves, [9],...
The first solutions has been constructed, [1] in 1915.
Other types of methods have been used to solve this
equation. We can quote the exp-function method,
[13], the tanh-coth method, [14], the groups actions
on coset bundles, [15], the Cole-Hopf method,
[16, 17, 18], [17], [18], the homotopy perturbation
method, [19],...
We can quote some recent results in connection with
this study as, [10], [11], [12].
Rational solutions to the Burgers' equation are con-
structed in this paper. We give solutions as a quotient
of a polynomial of degree n− 1 in x and n− 1−

[
n
2

]
in t by a polynomial of degree n in x and |[fracn2]
in t, |p|] being the greater integer less or equal to p.

We explicitly build these solutions for orders
between 1 and 20.

2 Rational solutions to the Burger's
equation

We consider the following polynomials defined by

pn(x, t) =
∑n

k=0
xk

k!
(−t)

n−k
2

n−k

2
!(

1−
(
n− k − 2

[
n−k
2

]))
,

for n ≥ 0,
pn(x, t) = 0 for n < 0.

(2)

With the choice of these polynomials, we have the fol-
lowing statement
Theorem
The function vn defined by

vn(x, t) = 2
pn−1(x, t)

pn(x, t)
, (3)

where pn are defined by previous relations (2), is a
solution to the Burgers' equation (1)

ut + uxx + uux = 0.

Remark
In the following, we will call the solution vn, the
solution of order n of the Burgers' equation, (1).

Remark
More explicitly, the previous polynomials can be
written as

p2k(x, t) =
∑n

l=0
x2l

(2l)!
(−t)k−l

k−l! ,

for k ≥ 0,

p2k+1(x, t) =
∑n

l=0
x2l+1

(2l+1)!
(−t)k−l

k−l! ,

for k ≥ 0,
pn(x, t) = 0 for n < 0.
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Proof
The proof is elementary. It is sufficient to evaluate
the expression
A = vt + v2x + vvx.
Taking into account that (pn)x = pn−1 and
(pn)t = −pn−2, we can write
A =

(
2pn−1

pn

)
t
+

(
2pn−1

pn

)
2x

+
(
2pn−1

pn

) (
2pn−1

pn

)
x

= −2pn−3pn+2pn−1pn−2

p2
n

+
(
2pn−2pn−2p2

n−1

p2
n

)
x

+ 2pn−1

pn

(
2pn−2pn−2p2

n−1

p2
n

)
= 1

p3
n

(
−2pn−3p

2
n + 2pn−2pn−1pn

+pn(2pn−3pn + 2pn−2pn−1

−4pn−1pn−2)
−2pn−1(2pn−2pn − 2p2n−1)

+4pn−2pn−1pn − 4p3n−1)
)

The simplifications then give A = 0 and the result.

3 Explicit first order solutions
All these rational solutions are singular. At each or-
der, we see the appearence of curves of singularities.
The patterns of singularities are lines, as in figures [1],
[3], [5], [7], [9], [11], [13], [15], [17], [19], or horseshoe,
as in figures [2], [4], [6], [8], [10], [12], [14], [16], [18],
[20], type depending on the order of the solution, .

3.1 First order solutions
Proposition
The function v defined by

v1(x, t) =
2

x
(4)

is a solution to the Burgers' equation (1).

Figure 1. Solution of order 1 to (1).

3.2 Solutions of order two
Proposition
The function v2 defined by

v2(x, t) =
−4x

−x2 + 2 t
, (5)

is a solution to the Burgers' equation (1).

Figure 2. Solution of order 2 to (1).

3.3 Solutions of order three
Proposition
The function v3 defined by

v3(x, t) = 6
−x2 + 2 t

x (−x2 + 6 t)
, (6)

is a solution to the Burgers' equation (1).

Figure 3. Solution of order 3 to (1).

3.4 Solutions of order four
Proposition
The function v4 defined by

v4(x, t) = −8
x
(
−x2 + 6 t

)
x4 − 12x2t+ 12 t2

, (7)

is a solution to the Burgers' equation (1).
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Figure 4. Solution of order 4 to (1).

3.5 Solutions of order five
Proposition
The function v5 defined by

v5(x, t) = 10
x4 − 12x2t+ 12 t2

x (x4 − 20x2t+ 60 t2)
, (8)

is a solution to the Burgers' equation (1).

Figure 5. Solution of order 5 to (1).

3.6 Solutions of order six
Proposition
The function v6 defined by

v6(x, t) = −12
x
(
x4 − 20x2t+ 60 t2

)
−x6 + 30x4t− 180x2t2 + 120 t3

, (9)

is a solution to the Burgers' equation (1).

Figure 6. Solution of order 6 to (1).

3.7 Solutions of order seven
Proposition
The function v7 defined by v7(x, t) = 14n(x,t)

d(x,t) ,

n(x, t) = (−x6 + 30x4t− 180x2t2 + 120 t3),

d(x, t) = x(−x6 + 42x4t− 420x2t2 + 840 t3)

is a solution to the Burgers' equation (1).

Figure 7. Solution of order 7 to (1).

3.8 Solutions of order eight
Proposition
The function v8 defined by v8(x, t) = −16n(x,t)

d(x,t) ,

n(x, t) = x(−x6 + 42x4t− 420x2t2 + 840 t3),

d(x, t) = x8 − 56x6t + 840x4t2 − 3360x2t3 +
1680 t4,

is a solution to the Burgers' equation (1).

Figure 8. Solution of order 8 to (1).

3.9 Solutions of order nine
Proposition
The function v9 defined by v9(x, t) = 18n(x,t)

d(x,t) ,
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n(x, t) = x8 − 56x6t + 840x4t2 − 3360x2t3 +
1680 t4,

d(x, t) = x(x8 − 72x6t+1512x4t2 − 10080x2t3 +
15120 t4),

is a solution to the Burgers' equation (1).

Figure 9. Solution of order 9 to (1).

3.10 Solutions of order ten
Proposition
The function v10 defined by v10(x, t) = 20n(x,t)

d(x,t) ,

n(x, t) = x(x8− 72x6t+1512x4t2− 10080x2t3+
15120 t4),

d(x, t) = −x10+90x8t−2520x6t2+25200x4t3−
75600x2t4 + 30240 t5,

is a solution to the Burgers' equation (1).

Figure 10. Solution of order 10 to (1).

3.11 Solutions of order eleven
Proposition
The function v11 defined by v11(x, t) = 22n(x,t)

d(x,t) ,

n(x, t) = −x10+90x8t−2520x6t2+25200x4t3−

75600x2t4 + 30240 t5,

d(x, t) = x(−x10 + 110x8t − 3960x6t2 +
55440x4t3 − 277200x2t4 + 332640 t5),

is a solution to the Burgers' equation (1).

Figure 11. Solution of order 11 to (1).

3.12 Solutions of order twelve
Proposition
The function v12 defined by v12(x, t) = n(x,t)

d(x,t) ,

n(x, t) = −24x(−x10 + 110x8t − 3960x6t2 +
55440x4t3 − 277200x2t4 + 332640 t5),

d(x, t) = x12−132 tx10+5940 t2x8−110880 t3x6+
831600 t4x4 − 1995840 t5x2 + 665280 t6

is a solution to the Burgers' equation (1).

Figure 12. Solution of order 12 to (1).

3.13 Solutions of order thirteen
Proposition
The function v13 defined by v13(x, t) = n(x,t)

d(x,t) ,

n(x, t) = 26(x12 − 132 tx10 + 5940 t2x8 −
110880 t3x6 + 831600 t4x4 − 1995840 t5x2 +
665280 t6),
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d(x, t) = x(x12 − 156 tx10 + 8580 t2x8 −
205920 t3x6 + 2162160 t4x4 − 8648640 t5x2 +
8648640 t6)

is a solution to the Burgers' equation (1).

Figure 13. Solution of order 13 to (1).

3.14 Solutions of order fourteen
Proposition
The function v14 defined by v14(x, t) = n(x,t)

d(x,t) ,

n(x, t) = −28x(x12 − 156 tx10 + 8580 t2x8 −
205920 t3x6 + 2162160 t4x4 − 8648640 t5x2 +
8648640 t6),

d(x, t) = −x14 + 182 tx12 − 12012 t2x10 +
360360 t3x8 − 5045040 t4x6 + 30270240 t5x4 −
60540480 t6x2 + 17297280 t7

is a solution to the Burgers' equation (1).

Figure 14. Solution of order 14 to (1).

3.15 Solutions of order fifthteen
Proposition
The function v15 defined by v15(x, t) = n(x,t)

d(x,t) ,

n(x, t) = 30(−x14 + 182 tx12 − 12012 t2x10 +

360360 t3x8 − 5045040 t4x6 + 30270240 t5x4 −
60540480 t6x2 + 17297280 t7),

d(x, t) = x(−x14 + 210 tx12 − 16380 t2x10 +
600600 t3x8 − 10810800 t4x6 + 90810720 t5x4 −
302702400 t6x2 + 259459200 t7)

is a solution to the Burgers' equation (1).

Figure 15. Solution of order 15 to (1).

3.16 Solutions of order sixteen
Proposition
The function v16 defined by v16(x, t) = n(x,t)

d(x,t) ,

n(x, t) = −32x(−x14 + 210 tx12 − 16380 t2x10 +
600600 t3x8 − 10810800 t4x6 + 90810720 t5x4 −
302702400 t6x2 + 259459200 t7),

d(x, t) = x16 − 240 tx14 + 21840 t2x12 −
960960 t3x10 + 21621600 t4x8 − 242161920 t5x6 +
1210809600 t6x4−2075673600 t7x2+518918400 t8

is a solution to the Burgers' equation (1).

Figure 16. Solution of order 15 to (1).

3.17 Solutions of order seventeen
Proposition
The function v17 defined by v17(x, t) = n(x,t)

d(x,t) ,
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n(x, t) = 34(x16 − 240 tx14 + 21840 t2x12 −
960960 t3x10 + 21621600 t4x8 − 242161920 t5x6 +
1210809600 t6x4 − 2075673600 t7x2 +
518918400 t8),

d(x, t) = x(x16 − 272 tx14 + 28560 t2x12 −
1485120 t3x10+40840800 t4x8−588107520 t5x6+
4116752640 t6x4 − 11762150400 t7x2 +
8821612800 t8)

is a solution to the Burgers' equation (1).

Figure 17. Solution of order 17 to (1).

3.18 Solutions of order eighteen
Proposition
The function v18 defined by v18(x, t) = n(x,t)

d(x,t) ,

n(x, t) = −36x(x16 − 272 tx14 + 28560 t2x12 −
1485120 t3x10+40840800 t4x8−588107520 t5x6+
4116752640 t6x4 − 11762150400 t7x2 +
8821612800 t8),

d(x, t) = −x18 + 306 tx16 − 36720 t2x14 +
2227680 t3x12 − 73513440 t4x10 +
1323241920 t5x8 − 12350257920 t6x6 +
52929676800 t7x4 − 79394515200 t8x2 +
17643225600 t9

is a solution to the Burgers' equation (1).

Figure 18. Solution of order 18 to (1).

3.19 Solutions of order nineteen
Proposition
The function v19 defined by v19(x, t) = n(x,t)

d(x,t) ,

n(x, t) = 38(−x18 + 306 tx16 −
36720 t2x14 + 2227680 t3x12 − 73513440 t4x10 +
1323241920 t5x8 − 12350257920 t6x6 +
52929676800 t7x4 − 79394515200 t8x2 +
17643225600 t9),

d(x, t) = x(−x18 + 342 tx16 − 46512 t2x14 +
3255840 t3x12 − 126977760 t4x10 +
2793510720 t5x8 − 33522128640 t6x6 +
201132771840 t7x4 − 502831929600 t8x2 +
335221286400 t9)

is a solution to the Burgers' equation (1).

Figure 19. Solution of order 19 to (1).

3.20 Solutions of order twenty
Proposition
The function v20 defined by v20(x, t) = n(x,t)

d(x,t) ,

n(x, t) = −40x(−x18 + 342 tx16 −
46512 t2x14 + 3255840 t3x12 − 126977760 t4x10 +
2793510720 t5x8 − 33522128640 t6x6 +
201132771840 t7x4 − 502831929600 t8x2 +
335221286400 t9),

d(x, t) = x20 − 380 tx18 + 58140 t2x16 −
4651200 t3x14 + 211629600 t4x12 −
5587021440 t5x10 + 83805321600 t6x8 −
670442572800 t7x6 + 2514159648000 t8x4 −
3352212864000 t9x2 + 670442572800 t10

is a solution to the Burgers' equation (1).
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Figure 20. Solution of order 20 to (1).

4 Conclusion
We have given an expression of rational solutions to
the Burgers' equation involving particular polynomi-
als.
In particular, we have constructed explicit solutions
to the Burgers' equation for the orders n = 1 until
n = 20.
All these solutions are singular. We can classify them
by the pattern of their singulatities.
The singularities of these solutions depend on the or-
ders of the solutions. When we consider odd order
solutions we have always the line x = 0 of singular-
ities. In the case of even order solutions n = 2p, the
singularities form horseshoe patterns with p branches.
It will be interesting to construct solutions of this
equation depending on some real parameters.
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