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Abstract: - Despite more than a century of origin and development, the theory of discrete exponential function 

(DEF) systems continues to attract the attention of mathematicians and application specialists in various fields 

of science and technology. One of the most successful applications of the DEF systems is the spectral 

processing of discrete signals based on fast Fourier transform (FFT) algorithms in the DEF bases. The 

construction of structural schemes of FFT algorithms is preceded, as a rule, by the factorization of the DEF 

matrices. The main problem encountered when factorizing DEF matrices is that the elements of such matrices 

are the degrees of phase multipliers, which are complex-valued quantities. In this connection, the computational 

complexity of factorization of DEF matrices may be too large, especially when the number of components of 

the matrix order decomposition is large. In this paper, we propose a relatively simple method of mutually 

unambiguous transition from complex-valued DEF matrices to matrices whose elements are natural numbers 

equal to the degree indices of phase multipliers in the canonical DEF matrices. Through this bijective 

transformation, the factorization of DEF matrices becomes significantly more manageable, streamlining the 

overall process of factorization. 
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1   Introduction 
Discrete exponential function (DEF) systems are a 

fundamental concept that plays a crucial role in 

signal and data processing and analysis. Various 

scientific and technological domains, including 

telecommunications, medical diagnostics, radio 

communications, geophysics, environmental 

research, and many others, widely use DEF systems. 

The genuinely revolutionary role of the DEF 

systems played in the formation and development of 

the theory and practical applications of the discrete 

Fourier transform (DFT), which had a significant 

influence on the formation of algorithmic and 

software of modern information processing tools. 

The initial steps in developing the DEF algorithms 

were at the dawn of the XIX century.  The first 

mentions of the DFT systems appeared in the, [1], 

published in 1801. In his dissertation, Gauss 

outlines a method for computing the DFT, although 

he did not use that name. Another important work 

was a paper by, [2], published in 1815. This paper 

developed a method similar to the DFT and was 

used to solve problems involving probability. 

Undoubtedly, the author made an invaluable 

contribution to the formation of the Fourier 

transform theory of the theory himself (20s of the 

XIX century). However, he concentrated his 

attention on the continuous transformation.  

The first references to DEF systems appeared in 

the works, [3], [4]. In the modern sense, the DEF 

algorithm was formulated and optimized to the Fast 

Fourier Transform (FFT) jointly by, [5]. This work 

remains one of the key publications in FFT and 

eventually became known as the Cooley-Tukey 

Algorithm. Among the numerous areas of 

applications of the FFT algorithms, let us highlight 

spectral signal processing, [6], [7], [8], [9],  

computer vision, [10], data transmission in 

telecommunication systems, [11], medical 

information processing, [12], time series analysis, 

[13], quantum computing, [14], geophysics and 

geodesy, [15], and many others. 

Note that the FFT algorithm applies only to 

such discrete sequences of samples of a continuous 

signal whose sampling volume, denoted by N, is a 

composite number.  The simplicity of the FFT tree 

becomes particularly pronounced when N is a power 

of two, denoted as 2nN  , where n is a natural 
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number. Building an FFT tree in the DEF basis for a 

composite N not equal to degree two can be 

computationally challenging, especially for large 

dimensions N. One effective strategy to solve this 

challenge is to pre-factorize the DEF matrices. 

 However, because the elements of the DEF 

matrices are complex-valued quantities, the positive 

effect of the factorization may not be so impressive.  

The primary purpose of this study is to develop 

a method of mutually unambiguous transition from 

complex-valued representations of the DEF matrices 

to matrices whose elements are natural numbers. 

Achievement of this goal will considerably simplify 

both the construction of FFT trees in the DEF bases 

and the factorization of the DEF matrices of large 

orders.   

 

 

2  Basic Relations 
The non-canonical system of the DEF of N-order is a 

matrix 

 

   ( , ) kt

N e k t  E ,  , 0, 1k t N  ,    (1) 

in which ( , )e k t  are basis functions of the k-order of 

the discrete argument (time) t, and 

 

2
exp j

N

 
   

 
                    (2)                                                        

— phase multiplier (PM).  

Taking into account the periodicity of FM (2), 

you can reduce the matrix (1) to the canonical form 

 

   ( )( , ) N
kt

N e k t  E , , 0, 1k t N  ,    (3)                                

 

where ( )mx  is a modular arithmetic function equal 

to the value of the number x  modulo m . 

Using the relation (3), let us compose, as an 

example, the six-order canonical DEF matrix 

0 0 0 0 0 0

0 1 2 3 4 5

0 2 4 0 2 4

6 0 3 0 3 0 3

0 4 2 0 4 2

0 5 4 3 2 1

0 1 2 3 4 5

0

1

2
.

3

4

5

t

k

      
 
      
      

  
      
      
 
       

E   (4) 

We will number the rows and columns of the 

matrices (and the numbering of the elements of 

basic functions) by natural numbers starting from 

zero. 

From the complex-valued matrix (4), we easily 

pass to a matrix with integer non-negative elements. 

For this purpose, it is enough to keep in its rows 

only the values of the degree indices of the phase 

multipliers. As a result of the proposed reduction, 

we arrive at the matrix 

 

 (1)

6

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4
( , ) ,

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

t

e k t

k

 
 
 
 

   
 
 
 
  

E  (5) 

 

which is isomorphic to the matrix (4). The 

isomorphism arises from the bijective mapping 
q

q  , where q is a natural number. Elementary 

analysis of the matrix (5) leads to the relation 

   ( , ) ( ) , , 0, 1Ne k t k t k t N   ,        (6) 

which we will call the generalized basis of the DEF 

in the isomorphic image space. 

 

 

3 Synthesis of Symmetric DEF 

Systems 
The synthesis of symmetric DEF systems represents 

an essential aspect of the theory and practice of 

signal processing and control systems. Discrete 

exponential functions are widely used to analyze 

and model dynamic systems. Symmetric DEF 

systems have specific mathematical properties that 

make them particularly attractive for several 

applications. Symmetry in the context of DEF 

systems means that their characteristics are 

preserved for particular operations, such as 

reflection or rotation. This property facilitates the 

analysis and control of such systems, making them 

more predictable and stable. 

You can obtain symmetric DEF systems 

through specific arrangements of matrix row 

permutations (6), which we will hereafter refer to as 

the mother matrices. Let us take into account that 
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you cannot rearrange the upper row of the mother 

matrix (the zero-order basis function) to any other 

row to any other row since it leads to the loss of 

symmetry of the matrix. Consequently, there are (N-

1)! different ways of permutations of basic functions 

( , )e k t , some of which (let us denote their number 

by 
NL ) lead to the formation of the symmetric DEF 

systems.   
Let us introduce some simple terminological 

definitions applicable to further presentation of the 

material. 

Definition 1. A primitive is called such a basis 

function ( , )e k t  of an N-order DEF matrix in the 

isomorphic image space that contains a complete 

system of deductions modulo N, i.e., a set of non-

negative integers from zero to N-1.   

For example, the basic functions (1, )e t  (5, )e t  

are primitive in the matrix (5).  

Definition 2. The basis function ( , )e k t , located 

in the first line of the DEF system, will be called the 

forming (generating) function of the system.  

The constitutive function of the DEF mother 

system is the function (1, )e t .  

Definition 3. All symmetric DEF systems that 

are not mother systems will be called daughter DEF 

systems.  

The definitions formulated above form the basis 

of the following fundamental proposition. 

Statement 1. Only primitive basis functions can 

serve as the forming functions of the symmetric 

systems DEF.  

Proof. Consider the mother system of the fourth-

order DEF, whose matrix in the image space has the 

form  

(1)

4

0 1 2 3

0 0 0 0 0

1 0 1 2 3
.

2 0 2 0 2

3 0 3 2 1

t

k

 
 
 
 
 
 

E              (7)   

Let us illustrate the outcomes obtained when we 

try to apply as a forming basis function the only one 

of the three non-zero functions of the matrix (7) that 

is not primitive, i.e., the function 

(2, ) (0, 2, 0, 2).e t  Due to the inherent symmetry of 

matrices, where the elements in columns align with 

those in the corresponding rows, we can deduce the 

following intermediate result 

0 1 2 3

0 0 0 0 0

1 0 2 0 2
.

2 0 0

3 0 2

t

k

 
 
 
 
 
 

 

The line highlighted by the arrow does not 

correspond to any of the basic functions of the 

matrix (7). Any basis function of N-order that is not 

primitive leads to a similar situation (two zeros in 

any row of the matrix), which completes the proof 

of Statement 1. 

We give the following statement (quite obvious 

and not requiring proof) to support the 

systematization of the presentation of the material. 

Statement 2: Any primitive basis function of the 

DEF system placed in the first row of the 

synthesizable matrix, uniquely determines the order 

of the basic functions placed in all other rows of the 

DEF matrix.  

Let us illustrate the application of Statement 2 

by using the synthesis of the six-order daughter 

matrix of the DEF. Let us choose for this purpose 

from the mother system (5) the primitive basis 

function (5, ) (0, 5, 4, 3, 2,1)e t  . Placing in the 

second row and the second column of the matrix (5) 

instead of the elements of the function (1, )e t  the 

elements of the function (5, )e t , we obtain such an 

incomplete matrix 

(2)

6

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 5 4 3 2 1

2 0 4
.

3 0 3

4 0 2

5 0 1

t

k

 
 
 
 

  
 
 
 
  

E        (8) 

Filling the empty cells of the matrix 
(2)

6E  in (8) 

becomes a trivial problem, allowing two solution 

variants. In the first of them, you replace the 

underdetermined rows of the daughter matrices with 

the corresponding rows of the mother system. The 

second variant assumes the direct calculation of 
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missing elements ,k ta  in the rows of the daughter 

matrix by the formula 

, ( )k t Na kt ,   2, 1t N  , 

where k is the value of the right element of the 

row of the daughter matrix. 

And to conclude the paragraph, we will also 

conclude with an unproven statement 

Statement 3. The number 
NL  of the symmetric 

DEF systems coincides with the value of the Euler 

function from the order N of the DEF matrices, i.e., 

( ).NL N   
 

 

4   Interrelation of DEF Systems 
The totality of mother and daughter symmetric 

systems of the DEF of N-order are structurally 

interconnected. That is, if the structural form of at 

least one DEF system (matrix) is known, we 

calculate the structural forms of the other systems 

uniquely. 

Definition 4. By the structural form of the DEF 

systems, we will understand the sequence of order 

basis functions in the DEF matrices. 

A simple relation defines the relationship 

between the mother system of the DEF and the 

daughter system. Let a  be the value of the first 

element of the first-order basis function of the DEF 

daughter system and let ( , )e k t  and ( , )d k t  be the 

basis functions of the mother and daughter systems, 

respectively. Then, as empirically established,  

 

( , ) (( ) , )Nd k t e ak t , , 0, 1k t N  , 

 

and the coefficient 1a   is mutually simple with N. 

In total, there are only three groups of the DEF 

systems consisting of a mother and one daughter 

matrix. These are the systems whose order N is 3, 4, 

and 6, and the numbers a  correspond to the values 

2, 3, and 5 respectively, i.e., 1a N   .   

If the order N of the systems DEF is a prime 

number, then N-1 symmetric DEF matrices 

correspond to each. In particular, Fig. 1 shows the 

transition algorithm between the DEF systems of 

simple seven-order      

 
Fig. 1: Interconnection graph of the seven-order 

DEF systems 

 

Fig. 2 shows the interconnection of composite-

order DEF systems 9N  . 

 
Fig. 2: Interconnection graph of the ninth-order DEF 

systems 

 

Similarly, you can establish the interconnection 

of the DEF systems of arbitrary order. 

 

 

5   Factorization of the DEF Matrices 
The necessity to perform the procedure of 

factorization of the DEF matrices is related to the 

problem of constructing algorithms (structural 

schemes) of FFT on a given basis. Only matrices 

whose order N is a composite number can be 

factorized, i.e., provided that 

1

i

k
l

i

i

N n


 ,                            (9) 

where in  are prime numbers, k is the number of 

different prime factors forming the composite 

number N, and the degree il  are natural numbers 

that determine the multiplicity of the prime numbers 

in .  

The representation (9) corresponds to the 

factorized DEF matrix of N-order 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.99 Anatoly Beletsky, Dmytro Poltoratskyi

E-ISSN: 2224-2880 907 Volume 22, 2023



1

k

N i

i

E F .                       (10) 

Matrices 
iF  by analogy with simple numbers we 

will call simple matrices.  

A remarkable feature of 
iF  matrices is that they 

include many zero elements. Such matrices are 

called strongly sparse matrices. 

Definition 5. To strongly sparse matrices 
iF , 

generated by factorization of the DEF matrices in 

isomorphic space and corresponding to prime 

numbers 
in , we will refer to matrices, each row, and 

each column, which contain 
in  non-zero elements. 

Later in this paragraph, we will clarify how the 

term "non-zero element" should be understood. 

Let x  be the vector column of the input signal 

values, 
NE  be the transformation matrix, and y  be 

the vector column of output signals, i.e.,  

Ny E x .                            (11) 

Regarding spectral analysis, we can expect that 

the spectrum of the discrete signal x  is on the basis

NE . Taking into account factorization (10), let us 

represent the spectrum (11) in the form  

1

k

i

i

 
  
 
y F x .                       (12)  

Suppose that we organize the procedure of 

matrix transformations (12) to exclude operations of 

calculating products on zero elements of matrices 

.iF In this case, the determination of the vector y  

by formula (12) is more efficient than the 

calculation by formula (11), and the effectiveness 

increases rapidly with increasing matrix size N and 

the number of its zero elements. 

 There are many ways of factorization of 

composite matrices, [16], which lead to different 

structural schemes of FFTs. We will mainly follow 

the work of, [17], relying on isomorphic 

representations of the DEF matrices. From now on, 

we give practical techniques for the factorization of 

composite DEF matrices considered in the order of 

increasing their dimensionality N.  
 So, let's turn to the fourth-order DEF mother 

system. 

(1)

4

0 0 0 0

0 1 2 3

0 2 0 2

0 3 2 1

 
 
 
 
 
 

E .                (13)    

Let us make some clarifications concerning 

matrix (13). You should consider that the zero 

elements of this (as well as all subsequent) the DEF 

matrices are not zero in the usual sense. These zero 

means that in the place of these elements, there are 

numbers, corresponding to the values of the phase 

multipliers   in the zero degree. Naturally, this 

number is one. When in the factorized matrix, there 

should be an arithmetic zero in place of an element 

to eliminate possible ambiguity, we will put a dash 

in this place. 

 Let's write the matrix (1)

4E  as a product of 

(1)

4 1 2E F F .                          (14) 

Matrices 
1F  and 

2F  correspond to numbers 2, 

which are elements of the decomposition of order N 

of the matrix (13) equal to four. 

 Let's choose the elements of the left half of the 

matrix rows (13) as the elements of the matrix 
1F . 

In the matrix 
1F , we keep the initial position of the 

selected elements of the mother system 
(1)

4E  for 

even rows (the numbering of matrix rows is 

performed from top to bottom by a sequence of 

numbers from 0 to N-1) and shift the elements of 

odd rows to the right by / 2N , i.e., by two positions. 

We make such shifts so that each row and each 

column of the matrix 
1F  (according to Definition 5) 

contains two non-empty elements. We arrive at the 

matrix 

1

0 0

0 1

0 2

0 3

  
 
 
 
  
 
  

F .                (15) 

The matrix 2F  should formed in such a way that 

the equality (14) holds. As we can see from the 

upper line of matrix (15), we obtain the zero-order 

basis function of the system 
(1)

4E  in (13) by 

selecting these the first two lines of the matrix 
2F  

0 0 0

1 0 0

  
 
  

.                    (16) 

Obviously, by multiplying the zero row of the 

matrix (15) by the matrix (16), and the matrix 

elements marked with a dash do not participate in 

the multiplication operation, we obtain the zero-

order basis function of the system 
(1)

4E . 

 Here, it is appropriate to remind you that in the 

isomorphic mapping, we formally perform the 
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matrix product operation using the same rules as in 

the usual matrix calculus. Only needs to replace the 

operation of elementwise product with the operation 

of elementwise addition modulo N. Let us explain 

the method of such replacement by the following 

example. Let N = 4 and 

1

0 1

0 2

0 3

a b   
 
 
 
  
 
  

M ;   
2

c d

e f

  
  

  
M  . 

Then, the process of forming the upper row of 

the product of matrices 
1M  and 

2M  (in isomorphic 

space) reduces to calculating the four elements 

using the formulas 

4 4 4 4( ) ; ( ) ; ( ) ; ( )a c b e a d b f    . 

To obtain the first-order basis function of the 

system 
(1)

4E , you can multiply (according to the 

scheme described above) the first row of the matrix 

(13) by the matrix 

2 0 2

3 0 2

  
 
  

,                  (17)  

containing the second and third rows of the matrix 

2F . 

 Combining matrices (16) and (17), we obtain 

2

0 0 0

1 0 0
.

2 0 2

3 0 2

  
 
 
 
  
 
  

F              (18) 

It is easy to check that the product of the 

matrices (15) and (18) leads to the matrix (13), 

which completes the factorization procedure of the 

fourth-order DEF mother system. 

We proceed to factorization of the six-order DEF 

matrix 

(1)

6

0 0 0 | 0 0 0

0 1 2 | 3 4 5

0 2 4 | 0 2 4

0 3 0 | 3 0 3

0 4 2 | 0 4 2

0 5 4 | 3 2 1

 
 
 
 

  
 
 
 
  

E .        (19) 

We decompose the order 1 2 6N n n    of this 

matrix into two simple factors 2 and 3, and their 

order in the product determines the type of factored 

matrices 1F  and 2F , forming the matrix 

(1)

6 1 2E F F .                         (20) 

Assuming 
1 3n   and 

2 2n  , then in the matrix 

1F , each row should contain three consecutive 

significant elements, and if 
1 2n  , then in the 

matrix 
1F , each row should contain two consecutive 

significant elements. The matrix 
2F  is constructed 

depending on the form of the matrix 
1F . 

Consequently, there are at least two variants of 

factorization of the six-order DEF matrix. Let us 

consider both of these variants. 

 So, let us assume 
1 3n  . That means that in each 

row of the matrix 
1F , it is necessary to place the 

first three elements of the corresponding basis 

functions of the system 
(1)

6E . These elements are in 

the left part relative to the dashed line in the matrix 

(19). In addition, recall that the significant elements 

of odd rows (odd-order basis functions) should shift 

by three positions to the right. We obtain 

1

0 0 0

0 1 2

0 2 4

0 3 0

0 4 2

0 5 4

   
 
  
 
   

  
   
   
 
    

F .            (21) 

To satisfy the equality (20), the matrix 
2F  should 

have the form 

2

0 0

0 0

0 0

0 3

0 3

0 3

    
 
   
 
    

  
    

    
 
     

F .             (22) 

Multiplying matrices (21) and (22), we obtain the 

matrix (19), which is evidence of the correctness of 

the factorization procedure of the six-order DEF 

matrix 
(1)

6E . 

 Matrices similar to the matrix (21) are called 

row-factorized matrices. Their distinctive feature is 

that the significant elements densely fill some parts 

of the rows of this matrix. Matrices similar to the 

matrix (22) will be called diagonal-factorized 

matrices. Their distinctive feature is that the 

significant elements of this matrix densely fill some 

of its diagonals. 
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Now, let us turn to the second variant of 

factorization of the six-order DEF matrix. In this 

variant 
1 2n   and 

2 3n  . This ranking of prime 

numbers
in  means that in the matrix 

1F , each row 

and each column must contain two significant 

elements, and the elements of the rows are 

composed of the first two elements of the 

corresponding basis functions of the system (1)

6E . 

The matrix corresponds to the formulated conditions 

1

0 0

0 1

0 2

0 3

0 4

0 5

    
 
   
 
    

  
    

    
 
     

F .             (23) 

From comparing matrices (23) and (19), we 

easily arrive at the algorithm for forming a matrix 

1F . The elements of the rows of the matrix 
1F  are 

formed from the elements of the first two columns 

of the matrix 
(1)

6E  due to their shift to the right by 

two positions (for the first and fourth rows) and four 

positions (for the second and fifth rows). 

 Since the matrix 
2F  corresponds to a prime 

number 2 3n  , each row and each column of the 

six-order matrix 2F  must contain three significant 

elements. As follows from the form of the upper 

row of the matrix (23), in to form the zero-order 

basis function of the system 
(1)

6E , the first two rows 

of the matrix 2F  should give the form of  

0 0 00

1 0 0 0

   
 
    

.              (24) 

Indeed, by multiplying the zero row of the matrix 

(23) successively by the columns of the matrix (24), 

we obtain the required zero basis function of the 

system 
(1)

6E  in (19).   

The first row of the matrix (23), which has the 

form ( 0 1 )    , can form the first-order basis 

function of the system 
(1)

6E  only as a result of its 

multiplication by the columns of the second and 

third rows of the matrix 2F since only the second 

and third elements of the first row of the matrix (23) 

are significant. You can easily see that you should 

choose these rows (second and third) of the matrix 

2F  as follows 

02 2 4

3 0 2 4

   
 
    

.              (25) 

Finally, to form the second-order basis function 

of the system (1)

6E , it suffices to multiply the second 

row of the matrix (23), i.e., the row 

( 0 2),    by the fourth and fifth rows of the 

matrix 
2F , which should be of the form 

04 4 2

4 0 4 2

   
 
    

.               (26) 

Combining matrices (24)  (26), we obtain  

2

0 0 0

0 0 0

0 2 4

0 2 4

0 4 2

0 4 2

   
 
  
 
   

  
   
   
 
    

F .            (27) 

As it is easy to check, the product of matrices 

(23) and (27) modulo 6N   leads to the matrix (19). 

Thus, we confirm that the second variant of the 

factorization of the system 
(1)

6E  is also correct. 

The acquired experience of factorization of DEF 

matrices can transfer to the solution of problems of 

factorization of matrices of eighth and higher orders. 

Let us formulate the basic empirical rules of 

factorization of the DEF matrices of arbitrary order, 

taking as an example the mother system of DEF of 

the eighth order, which in the isomorphic 

representation has the form: 

(1)

8

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 2 4 6 0 2 4 6

0 3 6 1 4 7 2 5

0 4 0 4 0 4 0 4

0 5 2 7 4 1 6 3

0 6 4 2 0 6 4 2

0 7 6 5 4 3 2 1

 
 
 
 
 
 
 
 
 
 
 
  

E .      (28) 

STEP 1. Display the composite number N, 

determining the order of the DEF matrix, as a 

product of prime numbers in , arranging them from 

left to right in ascending order of indices  

1 2 ... kN n n n , 

where k is the number of multipliers. 
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For the eighth order of the matrix (28), we have 

1 2 3 2n n n   . 

STEP 2. Let us represent the order of the matrix 

N as a product of  

kN n n  ,                           (29) 

where 
1 2 1... kn n n n  . 

The format (29) makes it possible to factorize the 

matrix (1)

8E  in this sequence. According to (29), let 

us write the number 8 as a product of the factors 4 

and 2. To number 4 corresponds to a partially 

factored matrix, which we denote F , and to number 

2 corresponds to a matrix, which we denote 
3F . The 

product of the matrices F  and 
3F  must be equal to 

the matrix (28), i.e., 
(1)

8 3 E F F . 

Since the matrix F  corresponds to the number

4n   , it means that each line of the matrix contains 

the four first significant elements of the 

corresponding basis functions of the system (28), 

and the odd lines should shift four positions to the 

right, and the vacated elements should fill with 

dashes. After performing the above operations, we 

arrive at the matrix 

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 1

0 4 0 4

0 5 2 7

0 6 4 2

0 7 6 5

    
 
   
 
    
 
    
    
 
    
    
 
     

F .       (30) 

Concerning the matrices F , 3F  and 
(1)

8E , we 

can make the following considerations. First, since 

the matrix 3F  corresponds to the multiplier 3 2n  , 

it means that all rows and columns of the matrix 

contain two significant elements each, and you must 

space these elements diagonally. Second, since the 

first four elements in the upper row of the matrix F  

are substantial, the first four rows of the matrix 3F , 

whose form is uniquely determined by the relation  

0 0 0

1 0 0

2 0 0

3 0 0

      
 
     
 
      
 
      

.          (31) 

Finally, the first-order basis function of the 

system (1)

8E  can formed by multiplying the first row 

of the matrix (30) by the column of the matrix 

composed of the last four rows of the matrix 
3F . 

These rows should look as follows 

4 0 4

5 0 4

6 0 4

7 0 4

      
 
     
 
      
 
      

.        (32) 

The union of rows of the matrices (31) and (32) 

forms a diagonal factorized matrix 

3

0 0

0 0

0 0

0 0

0 4

0 4

0 4

0 4

      
 
     
 
      
 
      
      
 
      
      
 
       

F .         (33) 

It is easy to check that the product of matrices 

(30) and (33) leads to matrix (28), as it should.  

STEP 3. Since the matrix F  corresponds to the 

composite number 4n  , you can represent in the 

form of factors 

1 2n n n , 

and 1 2 2n n  . 

Consequently, we can subject the matrix F  to 

deeper factorization and write as a product of 

1 2 F F F , 

where 
1F  is a row-factorized matrix and 

2F  is a 

diagonal-factorized matrix. Each row and each 

column of the eighth-order matrices 1F  and 2F  

contain two significant elements (since they 

correspond to prime factors equal to two).  

Let us compose the matrix 1F , forming it from 

the row elements of the matrix 
(1)

8E , given by 

system (28), or the matrix F , represented by 

relation (30). From the significant elements of the 

rows of the matrix 
(1)

8E  (or F ) in the matrix 1F , we 

will keep only the first two elements, shifting the 

remaining ones to the right by two positions relative 

to the position of the significant elements of the 

previous row. As a result, we come to the matrix 
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1

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

      
 
     
 
      
 
      
      
 
      
      
 
       

F .       (34) 

That is not the only variant of representation of 

the row-factored matrix 
1F . For example, we can 

suggest the following variant  

'

1

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

      
 
     
 
      
 
      
      
 
      
      
 
       

F . 

Let us take the variant (34) as more regular. You 

should construct the matrix 
2F  so that the product 

of the matrices 
1F  and 

2F  equals the matrix F .  It 

is easy to check that this is the matrix 

2

0 0

0 0

0 2

0 2

0 4

0 4

0 6

0 6

      
 
     
 
      
 
      
      
 
      
      
 
       

F .       (35) 

Each row and each column of matrices (34) and 

(35) contain two significant elements, and their 

product is equal to the matrix (30), which completes 

the procedure of factorization of the system 
(1)

8E . 

Let us consider a factorization scheme for an odd 

ninth-order isomorphic DEF matrix 

(1)

9

0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8

0 2 4 6 8 1 3 5 7

0 3 6 0 3 6 0 3 6

0 4 8 3 7 2 6 1 5

0 5 1 6 2 7 3 8 4

0 6 3 0 6 3 0 6 3

0 7 5 3 1 8 6 4 2

0 8 7 6 5 4 3 2 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

E .    (36) 

Following the above methodology, the 

factorization of the ninth-order DEF matrix is 

reduced to the compilation of two sparse matrices 

corresponding to the factors of the composite 

number 9, equal to 
1 3n   and 

2 3n  . The matrix 

1F  is row-factorized, i.e., 

1

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

0 5 1

0 6 3

0 7 5

0 8 7

      
 
     
 
      
 

      
       
 
      
      
 
      
 
      

F .     (37) 

The diagonal-factorized matrix 
2F  has the form 

2

0 0 0

0 0 0

0 0 0

0 3 6

0 3 6

0 3 6

0 6 3

0 6 3

0 6 3

      
 
     
 
      
 

      
       
 
      
      
 
      
 
      

F .     (38) 

The product of matrices (37) and (38) modulo 

9m   leads to the system (36), as it should be. 

Following the above methodology, one can easily 

solve the factorization problem of the DEF systems 

of arbitrary order N. 
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6  Further Research 
At least we can indicate such directions for further 

research: 

 Development of the FFT algorithms in 

composite-order DEF bases for handling 

signals such as audio, images, time series, 

etc. 

 Study the possibility of practical 

applications of the developed algorithm for 

factorization of the DEF matrices in natural 

systems and technologies, such as radio 

communication, medical diagnostics, image 

processing, etc. 

 

 

7  Conclusion 
The computation of the vector-matrix product is the 

basis for many procedures of digital signal 

processing, a classic example of which is the 

operations of determining the spectrum of discrete 

signals in the DEF basis. As the DEF matrices 

comprise complex-valued elements, the 

computational cost of multiplying a vector of 

sampled values from a continuous signal potentially 

complex itself by a complex-valued matrix is 

substantial. The factors outlined herein contribute to 

the computational efficiency realized in this paper. 

First, due to the isomorphic replacement of the DEF 

matrices with complex-valued elements by matrices 

with non-negative integer elements, resulting in a 

transition to real matrices. Secondly, due to the 

factorization of real matrices, i.e., their 

representation is a set of strongly discharged 

matrices multiplier with consecutive multiplication 

of the vector of input signal samples by each of the 

matrices. The reduction in the required 

computational resources for the realization of 

vector-matrix operations by the proposed algorithm 

will increase with the orders of the DEF matrices. 
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