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Abstract: - The oriented set notion is the elementary fundamental concept of the theory of changeable sets. In turn, 
the changeable set theory is closely related to Hilbert's sixth problem. From the formal point of view, any oriented set 
is a simple relational system with a single reflexive binary relation. Such mathematical structure is the simplest 
construction, within the framework of which it is possible to give a mathematically strict definition of the time 
concept. In this regard, the problem of the existence of time with given properties on an oriented set is very 
interesting. In the present paper, we establish the necessary and sufficient condition for the existence of one-point 
time on an oriented set. From the intuitive point of view, any one-point time is the time related to the evolution of a 
system, which consists of a single object (for example, from a single material point). The main result of the paper 
provides that the one-point time exists on the oriented set if and only if this oriented set is a quasi-chain. Also, using 
the obtained result, we solve the problem of describing all possible images of linearly ordered sets, which naturally 
arises in the theory of ordered sets. 
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1  Introductory Remarks 
The subject of this article is closely related to the 
theory of changeable sets. In turn, this theory is 
connected with the famous sixth Hilbert problem, that 
is the problem of mathematically strict formulation for 
the fundamentals of theoretical physics. The last 
problem was posed in 1900, but it remains very 
relevant today, [1], [2], [3], [4], [5], [6], [7]. From the 
intuitive point of view, changeable sets can be 
interpreted as sets of objects, which can be in the 
process of permanent transformations. Namely, these 
objects can change their properties, appear or 
disappear, break down into several parts or, 
conversely, unite into a single unit. Moreover, the 
evolution picture of a changeable set may depend of 
the area of observation or reference frame. The 
problem of the creation the mathematical theory of 
changeable sets (that is the “sets” possessing the 
properties listed above) emerged in particular in the 
papers [8], [9], [10], [11], [12], [13]. In the papers of 
the author of this article the theory of changeable sets 
was developed on the mathematically strict level. The 
most complete and systematic presentation of this 
theory can be found in the preprint, [14]. For more 

information about scientific papers in peer-reviewed 
journals, where the foundations of the changeable set 
theory were first published, see the reference list in the 
end of preprint. 

The notion of oriented set is the basic most 
elementary concept of the theory of changeable sets. 
Oriented sets were introduced in [15], as the most 
simple abstract models of the collections of evolving 
objects in the framework of one (fixed) reference 
frame ([14], Section 1). Moreover, in the 
aforementioned papers it was introduced the concept 
of time on oriented sets. As well in the article [15], (in 
Theorem 4.1) the sufficient condition of existence of 
one-point time for oriented sets is established ([14], 
Theorem 1.3.1). Note that from the intuitive point of 
view, one-point time should be understood as the time 
associated with the evolution of a system consisting of 
only one object (for example, from one material 
point). Emphasize that Theorem 4.1 from [15], gives 
only sufficient conditions for the existence of 
one-point time. That is why in the paper [14], 
(Problem 1.3.1) the problem of detection of necessary 
and sufficient conditions for existence of one-point 
time on an oriented set is posed. Below in this paper, 
the solution of the above problem is presented. 
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Namely, we specify the properties for the oriented set 
to be able to define the one-point time on it. Using the 
obtained result, we solve the problem of describing all 
possible images of linearly ordered sets. Such a 
problem naturally arises in the theory of ordered sets. 

 
 

2 On Oriented Sets and   

 One-point Time  
Definition 1. Let, 𝑀 be any nonempty set 

(𝑀 ≠ ∅). 

An arbitrary reflexive binary relation ⊲ on 

𝑀 (that is a relation satisfying ∀𝑥 ∈ 𝑀  𝑥 ⊲ 𝑥) we 

name an orientation, and the pair ℳ = (𝑀,⊲) we 

call an oriented set. In this case the set 𝑀 is named 

the basic set or the set of all elementary states of the 

oriented set ℳ  and it is denoted by 𝔅𝔰(ℳ). The 

relation ⊲ we name the directing relation of changes 

(transformations) of ℳ, and denote it by ←
ℳ

. 
In the case where the oriented set ℳ  is known in 
advance we use the notation ← instead of ←

ℳ
. For the 

elements 𝑥, 𝑦 ∈ 𝔅𝔰(ℳ) the record 𝑦 ← 𝑥 should be 
understood as “the elementary state 𝑦 is the result of 

transformations (or the transformation offspring) of 

the elementary state 𝑥”. 
Let ℳ be an oriented set.  
Definition 2. The nonempty subset 𝑁 ⊆

𝔅𝔰(ℳ) is referred to as transitive in ℳ if for any 

𝑥, 𝑦, 𝑧 ∈ 𝑁 such, that 𝑧 ← 𝑦 and 𝑦 ← 𝑥 we have 

𝑧 ← 𝑥. 

The transitive subset 𝐿 ⊆ 𝔅𝔰(ℳ) is referred 

to as chain in ℳ if for any 𝑥, 𝑦 ∈ 𝐿 at least one of 

the relations 𝑦 ← 𝑥 or 𝑥 ← 𝑦 is true. 

Oriented set ℳ  is called a chain oriented 

set if the set 𝔅𝔰(ℳ) is the chain of ℳ, that is if the 

relation ←  if transitive on 𝔅𝔰(ℳ)  and for any 

𝑥, 𝑦 ∈ 𝔅𝔰(ℳ) at least one of the conditions 𝑥 ← 𝑦 

or 𝑦 ← 𝑥 is satisfied (note that this is the case, where 

the oriented set ℳ is a linearly quasi-ordered set). 
Recall that a (partially) ordered set is an ordered pair 
of kind 𝕋 = (𝑻,≤) with reflexive, asymmetric and 
transitive binary relation ≤  on 𝑻 . The pair 𝕋  is 
called an linearly ordered set if the following 
additional condition holds:   
(LnO) for every 𝑡, 𝜏 ∈ 𝑻 it is performed at least one 
of the correlations 𝑡 ≤ 𝜏 or 𝜏 ≤ 𝑡.    

Definition 3. Let ℳ be an oriented set and  

𝕋 = (𝑻,≤)  be a linearly ordered set. A mapping 

𝜓:𝑻 → 2𝔅𝔰(ℳ)  is referred to as time on ℳ  if the 

following conditions are satisfied:   

1. For any elementary state 𝑥 ∈ 𝔅𝔰(ℳ) 
there exists an element 𝑡 ∈ 𝑻 such that 𝑥 ∈ 𝜓(𝑡).  

2. If 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) , 𝑥2 ← 𝑥1  and 𝑥1 ≠
𝑥2 , then there exist elements 𝑡1, 𝑡2 ∈ 𝑻  such that 

𝑥1 ∈ 𝜓(𝑡1) , 𝑥2 ∈ 𝜓(𝑡2)  and 𝑡1 < 𝑡2  (this means 

that there is a temporal separateness of successive 

unequal elementary states).  

 In this case:   

• The elements 𝑡 ∈ 𝑻 we call the moments of 

time   

• The pair ℋ = (𝕋,𝜓) = ((𝑻,≤),𝜓)  we 

name by chronologization of ℳ. 
We say that an oriented set ℳ  can be 

chronologized if there exists at least one 
chronologization of ℳ. It turns out that any oriented 
set can be chronologized. To make sure this we may 
consider any linearly ordered set 𝕋 = (𝑻,≤), which 
contains at least two elements and put:  

𝜓(𝑡):= 𝔅𝔰(ℳ),     𝑡 ∈ 𝑻. 
It is easy to verify that the conditions of Definition 3 
for this function 𝜓(⋅) are satisfied. More nontrivial 
methods to chronologize an oriented set were 
considered, in particular, in [15].  

Definition 4. Let ℳ be an oriented set and  

𝕋 = (𝑻,≤) be a linearly ordered set.   

1. The time 𝜓:𝑻 → 2𝔅𝔰(ℳ)  is called quasi 

one-point if for every 𝑡 ∈ 𝑻  the set 𝜓(𝑡)  is a 

singleton.  

2. The time 𝜓  is called one-point if the 

following conditions are satisfied:  

(a) The time 𝜓 is quasi one-point; 

(b) for any 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ)  the conditions 

𝑥1 ∈ 𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) and 𝑡1 ≤ 𝑡2 , lead to 𝑥2 ←
𝑥1.  

We say that an oriented set ℳ  can be 

chronologized quasi one-point / one-point if there 

exists at least one chronologization ℋ = ((𝑻,≤), 𝜓) 
of ℳ  with quasi one-point /one-point time 𝜓 

(correspondingly). In this case we name the 

chronologization ℋ  as quasi one-point /one-point 

(correspondingly).  
Example 1. Let us consider an arbitrary 

mapping 𝑓: ℐ → ℝ𝑑  (𝑑 ∈ ℕ), where ℐ ⊆ ℝ is some 
connected subset of Real axis ℝ. This mapping can be 
interpreted as equation of motion of a single material 
point in the space ℝ𝑑. This mapping 𝑓 generates the 
oriented set ℳ𝑓 = (𝔅𝔰(ℳ𝑓), ←

ℳ𝑓

) , where 
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𝔅𝔰(ℳ𝑓) = ℜ(𝑓) = {𝑓(𝑡) | 𝑡 ∈ ℐ} ⊆ ℝ𝑑  and for 
𝑥, 𝑦 ∈ 𝔅𝔰(ℳ𝑓), the correlation 𝑦 ←

ℳ𝑓

𝑥 is valid if and 

only if there exist 𝑡1, 𝑡2 ∈ ℐ  such, that 𝑥 = 𝑓(𝑡1) , 
𝑦 = 𝑓(𝑡2)  and 𝑡1 ≤ 𝑡2 . Consider the following 
set-valued mapping:  

𝜓𝑓(𝑡) = {𝑓(𝑡)} ⊆ 𝔅𝔰(ℳ),     𝑡 ∈ ℐ.  
It is easy to verify, that the mapping 𝜓𝑓(∙)  satisfies 
the conditions of Definition 3 and Definition 4 
(item 2). Consequently 𝜓𝑓(∙) is an one-point time on 
ℳ𝑓. 

Example 1 makes clear the definition of 
one-point time. It is evident, that any one-point time is 

quasi one-point. Examples contained in the paper 
[15], show that the inverse statement is not true in the 
general case ( [14], Example 1.3.2).  

Theorem 1. (ZF+LO, [15]). Any oriented set 

can be quasi one-point chronologized. 
Note that proof of Theorem 1 can be found 

also in [14] (see Theorem 1.3.2).  
Remark 1. Proof of Theorem 1 uses the 

Linear Ordering principle (LO) in addition to 
Zermelo–Fraenkel axiomatic system (ZF). This 
principle asserts that any set can be linearly ordered. It 
is evident that the above principle follows from the 
famous well-ordering Zermelo’s theorem, and 
therefore, from the axiom of choice (AC). But it is 
known that LO-principle also follows from Ultrafilter 
theorem of Tarski (UFT) and, moreover, it is logically 
weaker than this theorem and therefore than the axiom 
of choice, [16]. On the relationship between LO and 
AC see, also, [17].  

Theorem 2 (ZF+LO, [15]). Any chain 

oriented set can be one-point chronologized.  
Note that the proof of Theorem 2 can be also 

found in [14]. It turns out that Theorem 2 is not 
reversible. And the next example demonstrates the 
existence of non-chain oriented sets, which can be 
one-point chronologized.  

Example 2. Consider the function 
f0: [0,2π] → ℝ2, defined by the formula:  

𝒇0(𝑡) = (cos𝑡, sin𝑡)        (𝑡 ∈ [0,2𝜋]). 
According to Example 1, using this function, we may 
construct the oriented set ℳ𝒇0. This oriented set can 
be one-point chronologized by means of the time:  

𝜓𝒇0
(𝑡) = {𝒇0(𝑡)}        (𝑡 ∈ [0,2𝜋]). 

At the same time, this oriented set is not a chain, 
because the binary relation 

ℳ𝒇0

←   is not transitive on 

𝔅𝔰(ℳ𝒇0) . Indeed, consider the points: 𝑥1: =

(0,−1) = 𝒇0 (
3

2
𝜋) ,  𝑥2: = (1,0) = 𝒇0(0) =

𝒇0(2𝜋),  𝑥3:= (0,1) = 𝒇0 (
𝜋

2
). For these points we 

have: 𝑥1, 𝑥2, 𝑥3 ∈ ℜ(𝒇0) = 𝔅𝔰(ℳ𝒇0)   and  𝑥2

ℳ𝒇0

←  𝑥1 , 𝑥3
ℳ𝒇0

←  𝑥2    but the correlation  𝑥3
ℳ𝒇0

←  𝑥1 

is false.  
The above facts generate the following 

problem:  
Problem 1. Find necessary and sufficient 

conditions of existence of one-point chronologization 

for oriented set. 
Note that Problem 1 was also posed in [14], 

(Problem 1.3.1). The main aim of the present paper is 
to give the solution of Problem 1. 

 
 

3  Quasi-chain Oriented Sets and 

Formulation of Main Theorem 
Notation 1.  On any oriented set ℳ we introduce the 

following additional binary relation:   

∎ For every 𝑥, 𝑦 ∈ 𝔅𝔰(ℳ) we note  𝑦 ←
ℳ

+
𝑥  

if and only if:  
𝑦 ←
ℳ
𝑥        and       𝑥 ↚

ℳ
𝑦. 

∎  In the cases where it does not lead to 

misunderstanding we use the notation 𝑦 ←
+
𝑥 instead 

of the record 𝑦 ←
ℳ

+
𝑥.   

Notation 2.  Let 𝑀 be an arbitrary set and  

𝑅1,  𝑅2,  … ,  𝑅𝑛 ⊆ 𝑀2   ( 𝑛 ∈ ℕ ) be any binary 

relations on 𝑀 . Further for 𝑥0, … , 𝑥𝑛 ∈ 𝑀  we use 

the abbreviated notation:  
𝑥0𝑅1𝑥1𝑅2𝑥2…𝑥𝑛−1𝑅𝑛𝑥𝑛 

for indication the fact that:  
(𝑥0𝑅1𝑥1)&(𝑥1𝑅2𝑥2)&…&(𝑥𝑛−1𝑅𝑛𝑥𝑛). 

Assertion 1. Let ℳ be an oriented set, 𝕋 =

(𝑻,≤) be a linearly ordered set and 𝜓: 𝑻 → 2𝔅𝔰(ℳ) 

be an one-point time on ℳ. Then for any 𝑥1, 𝑥2 ∈
𝔅𝔰(ℳ) the conditions:  

𝑥1 ∈ 𝜓(𝑡1),  𝑥2 ∈ 𝜓(𝑡2)   and     𝑥2 ←
+
𝑥1 

lead to the inequality:  
𝑡1 < 𝑡2. 

Proof. Indeed, suppose that ℳ is an oriented 
set, 𝕋 = (𝑻,≤) is a linearly ordered set and 𝜓:𝑻 →

2𝔅𝔰(ℳ) is an one-point time on ℳ. Let the elements 
𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ)  be such that 𝑥1 ∈ 𝜓(𝑡1) , 𝑥2 ∈
𝜓(𝑡2)  and  𝑥2 ←

+
𝑥1 .  Assume the contrary: 𝑡2 ≤

𝑡1. Then, according to Definition 4 (item 2), from the 
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conditions 𝑥1 ∈ 𝜓(𝑡1) , 𝑥2 ∈ 𝜓(𝑡2)  and 𝑡2 ≤ 𝑡1  it 
follows that 𝑥1 ← 𝑥2 . But the last correlation is in 
contradiction to the condition 𝑥2 ←

+
𝑥1 . Hence the 

assumption about 𝑡2 ≤ 𝑡1 is false. Therefore we have 
𝑡1 < 𝑡2.      ∎ 

Definition 5. The oriented set ℳ is called 

quasi-chain if and only if the following conditions are 

satisfied:   

(QL1) For any 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) it holds at 

least one from the correlations 𝑥2 ← 𝑥1 or 𝑥1 ← 𝑥2.  

(QL2) For every 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ 𝔅𝔰(ℳ) the 

condition 𝑥3 ←
+
𝑥2 ← 𝑥1 ←

+
𝑥0  ensures the 

correlation 𝑥3 ←
+
𝑥0 (quasi-transitivity).  

Remark 2. It is easy to prove that the 
transitivity of the binary relation ← on the oriented 
set ℳ implies its quasi-transitivity. It turns out that 
the inverse statement in general is not valid. Example 
2 shows that there exist the oriented set ℳ =ℳf0 
such that the relation ←

ℳ
 is quasi-transitive but not 

transitive. So quasi-chain oriented set must not be 
chain. 

The main result of this paper is the following 
theorem.  

Theorem 3 (ZF+UFT). An oriented ℳ set 

can be one-point chronologized if and only if it is a 

quasi-chain.  
Remark 3. We emphasize that proof of the 

necessity for Theorem 3 does not require the 
Ultrafilter Tarski theorem (UFT). This theorem is 
needed only for the proof of sufficiency of the 
condition, pointed out in Theorem 3. 

The proof of Theorem 3 is divided into two 
main lemmas. Lemma 1 in the next section assures the 
necessity for Theorem 3, whereas Lemma 2 (see 
below) provides the sufficiency. 

 
 

4  Proof of Necessity for 

Theorem 3 
Lemma 1. If the oriented set ℳ can be one-point 

chronologized then it is a quasi-chain.  
Proof. Let 𝕋 = (𝑻,≤) be a linearly ordered 

set and 𝜓 :  𝑻 → 2𝔅𝔰(ℳ) be an one-point time on the 
oriented set ℳ. 

≡> 1. First we will validate the condition 
(QL1).  Chose any 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ). By Definition 3 
the time points 𝑡1, 𝑡2 ∈ 𝑻 must exist such, that 𝑥1 ∈
𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) . Since 𝕋 = (𝑻,≤)  is a linearly 

ordered set then for 𝑡1, 𝑡2 ∈ 𝑻  at least one of the 
inequalities must be fulfilled 𝑡1 ≤ 𝑡2 or 𝑡2 ≤ 𝑡1. In 
Accordance with Definition 4, in the case 𝑡1 ≤ 𝑡2 we 
obtain 𝑥2 ← 𝑥1 . Similarly in the case 𝑡2 ≤ 𝑡1  we 
deduce 𝑥1 ← 𝑥2. 

≡>  2. Now we validate the condition 
(QL2).  Consider any elements  𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈

𝔅𝔰(ℳ)  such, that 𝑥3 ←
 

+
𝑥2 ← 𝑥1 ←

 

+
𝑥0 . Consider 

any 𝑡0, 𝑡3 ∈ 𝑻  such, that 𝑥0 ∈ 𝜓(𝑡0) , 𝑥3 ∈ 𝜓(𝑡3) 
(by Definition 3 such 𝑡0, 𝑡3  exist). Since 𝑥2 ← 𝑥1 , 
then, according to Definition 3 the time points 𝑡1, 𝑡2 ∈
𝑻 must exist such that 𝑥1 ∈ 𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) and 
𝑡1 ≤ 𝑡2 . Taking into account the correlations 𝑥0 ∈
𝜓(𝑡0), 𝑥1 ∈ 𝜓(𝑡1) and 𝑥1 ←

+
𝑥0, as well as Assertion 

1, we obtain, 𝑡0 < 𝑡1. Similarly from the correlations 
𝑥2 ∈ 𝜓(𝑡2) , 𝑥3 ∈ 𝜓(𝑡3)  and 𝑥3 ←

+
𝑥2  we deduce 

𝑡2 < 𝑡3 . Therefore the following inequalities are 
performed:  

𝑡0 < 𝑡1 ≤ 𝑡2 < 𝑡3. 
That is why 𝑡0 < 𝑡3. Thus we have:  

∀ 𝑡0, 𝑡3 ∈ 𝑻 ((𝑥0 ∈ 𝜓(𝑡0))&(𝑥3 ∈

𝜓(𝑡3)) ⇒ (𝑡0 < 𝑡3)).                    
(1) 

  
In accordance with the statement, proven in the 

item 1, at least one from the correlations 𝑥0 ← 𝑥3 or 
𝑥3 ← 𝑥0 must hold. Assume, that 𝑥0 ← 𝑥3. Then, by 
Definition 3 the elements �̃�0, �̃�3 ∈ 𝑻 must exist such 
that 𝑥0 ∈ 𝜓(�̃�0) , 𝑥3 ∈ 𝜓(�̃�3)  and �̃�3 ≤ �̃�0 . But the 
last inequality is in a contradiction to (1). Hence, the 
correlation 𝑥0 ← 𝑥3  is impossible. Thus the only 
possible one it remains the correlation 𝑥3 ←

 

+
𝑥0, that it 

was necessary to prove.   ∎ 
The proof of the sufficiency for Theorem 3 is 

much more complicated. First of all we need to work 
out some auxiliary technical results for this purpose. 
This work will be done in the next section. 

 
 

5 Some Auxiliary Technical 

Results 
 

5.1  Some Additional Properties of 

Quasi-chain Oriented Sets  
Assertion 2. Let, ℳ be a quasi-chain oriented set 

and 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ 𝔅𝔰(ℳ) be arbitrary elementary 
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states of ℳ . Then the following properties are 

performed:   

(QL3) If 𝑥3 ← 𝑥2 ←
 

+
𝑥1 ← 𝑥0 then 𝑥3 ← 𝑥0.  

(QL4) If 𝑥3 ←
 

+
𝑥2 ← 𝑥1 then 𝑥3 ← 𝑥1.  

(QL5) If 𝑥3 ← 𝑥2 ←
 

+
𝑥1 then 𝑥3 ← 𝑥1.  

(QL6) If 𝑥3 ←
 

+
𝑥2 ←

 

+
𝑥1 then 𝑥3 ←

 

+
𝑥1.   

Proof. The proofs of the properties 
(QL3)–(QL6) are listed below. 

≡> (QL3). Let 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ 𝔅𝔰(ℳ) and 
𝑥3 ← 𝑥2 ←

 

+
𝑥1 ← 𝑥0 . Assume that the correlation 

𝑥3 ← 𝑥0  is false (IE 𝑥3 ↚ 𝑥0 ). Then, taking into 
account the fact that the oriented set ℳ  is 
quasi-chain, we get 𝑥0 ←

+
𝑥3 . Thus, we have, 

𝑥0 ←
 

+
𝑥3 ← 𝑥2 ←

 

+
𝑥1 . Hence, by Definition 5 

(condition (QL2)) we get, 𝑥0 ←
 

+
𝑥1 , which is in a 

contradiction to the correlation 𝑥1 ← 𝑥0 . Therefore 
assumption about 𝑥3 ↚ 𝑥0  is false. So we have 
𝑥3 ← 𝑥0. 

≡>  (QL4). Suppose that 𝑥1, 𝑥2, 𝑥3 ∈

𝔅𝔰(ℳ) and 𝑥3 ←
 

+
𝑥2 ← 𝑥1 . Then, by Definition 1, 

we have, 𝑥3 ← 𝑥3 ←
 

+
𝑥2 ← 𝑥1 . Thence, using 

Property (QL3), we obtain 𝑥3 ← 𝑥1. 
≡> (QL5). If we assume that 𝑥3 ← 𝑥2 ←

 

+
𝑥1, 

then we will have 𝑥3 ← 𝑥2 ←
 

+
𝑥1 ← 𝑥1 . Thence, 

applying Property (QL3), we obtain 𝑥3 ← 𝑥1. 
≡>  (QL6). If we suppose that 

𝑥3 ←
 

+
𝑥2 ←

 

+
𝑥1 , then we will deliver 𝑥3 ←

 

+
𝑥2 ←

𝑥2 ←
 

+
𝑥1. Thence, by Definition 5 (condition (QL2)), 

we deduce 𝑥3 ←
 

+
𝑥1.   ∎  

 
5.2  Finite-repeating Time on Oriented 

Sets  
Definition 6. Let 𝕋 = (𝑻, ≤) be a linearly ordered 

set and ℳ be an oriented set.    

• The time 𝜓:𝑻 → 2𝔅𝔰(ℳ) will be named as 

finite-repeating if and only if for every 𝑥 ∈ 𝔅𝔰(ℳ) 

the following condition is fulfilled:  

𝐜𝐚𝐫𝐝({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}) < ℵ0 

(where 𝐜𝐚𝐫𝐝(𝑴) is the cardinality of a set 𝑴). 

Moreover, the number:  

Rp
𝑥
(𝜓) = 𝐜𝐚𝐫𝐝({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}) 

will be refereed to as repeatability of the time 𝜓 

relatively the element 𝑥 ∈ 𝔅𝔰(ℳ).  

• Let 𝑛 ∈ ℕ . The time 𝜓  is named as 

𝑛 -repeating if and only if the time 𝜓  is 

finite-repeating and  

∀𝑥 ∈ 𝔅𝔰(ℳ) (Rp
𝑥
(𝜓) = 𝑛).   

Notation 3. Let 𝜓:𝑻 → 2𝔅𝔰(ℳ)  be a 

finite-repeating time on the oriented set ℳ . For 

every 𝑥 ∈ 𝔅𝔰(ℳ) we note:  

�̂�+(𝑥):= max({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}); 

�̂�−(𝑥):= min({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}), 
 where maximum and minimum should be understood 

it the sense of the linearly ordered set 𝕋 = (𝑻,≤).  
Assertion 3. Let 𝕋 = (𝑻,≤)  be a linearly 

ordered set and 𝜓: 𝑻 → 2𝔅𝔰(ℳ) be a finite-repeating 

one-point time on the oriented set ℳ. Then for any 

𝑥, 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ)  the following properties are 

holding:   
(FR1) �̂�−(𝑥) ≤ �̂�+(𝑥) . If, in addition, 

Rp
𝑥
(𝜓) ≥ 2 then �̂�−(𝑥) < �̂�+(𝑥).   

(FR2) The correlation 𝑥2 ← 𝑥1 is true if and 

only if �̂�−(𝑥1) ≤ �̂�+(𝑥2) . If, in addition, 𝑥1 ≠ 𝑥2 

then 𝑥2 ← 𝑥1 if and only if �̂�−(𝑥1) < �̂�+(𝑥2).  
(FR3) 𝑥2 ←

+
𝑥1  if and only if �̂�+(𝑥1) <

�̂�−(𝑥2).  

(FR4) If, in addition, the time 𝜓  is 

𝑛-repeating with 𝑛 ≥ 2 then 𝑥2 ← 𝑥1 if and only if 

�̂�−(𝑥1) < �̂�+(𝑥2).   
Proof. (FR1): Let 𝑥 ∈ 𝔅𝔰(ℳ) . Then 

according to Notation 3, we have �̂�−(𝑥) =

min({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}) ≤ max({𝑡 ∈ 𝑻 | 𝑥 ∈

𝜓(𝑡)}) = �̂�+(𝑥). If, in addition, Rp
𝑥
(𝜓) ≥ 2 then 

the set {𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}  contains at least two 
elements. So minimum of this set is less then 
maximum.  

(FR2):  First we suppose that 𝑥1, 𝑥2 ∈
𝔅𝔰(ℳ) and 𝑥2 ← 𝑥1.  

Then in the case 𝑥1 = 𝑥2  we have the 
inequality �̂�−(𝑥1) ≤ �̂�+(𝑥2) according to Property 
(FR1). Hence we will consider that 𝑥1 ≠ 𝑥2. Since 
𝑥2 ← 𝑥1 and 𝑥1 ≠ 𝑥2, then, by Definition 3, the time 
points 𝑡1, 𝑡2 ∈ 𝑻  exist such that 𝑥1 ∈ 𝜓(𝑡1) , 𝑥2 ∈
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𝜓(𝑡2) and 𝑡1 < 𝑡2. Therefore:  
�̂�−(𝑥1) = min({𝑡 ∈ 𝑻 | 𝑥1 ∈ 𝜓(𝑡)}) ≤ 

      ≤ 𝑡1 < 𝑡2 ≤ max({𝑡 ∈ 𝑻 | 𝑥2 ∈ 𝜓(𝑡)}) =

= �̂�+(𝑥2). 
 

So, for every 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ)  it is performed the 
following implication:  

(𝑥2 ← 𝑥1)&(𝑥1 ≠ 𝑥2) ⇒ 

         ⇒ (�̂�−(𝑥1) < �̂�+(𝑥2)). 
(2) 

  
Thus, in the both cases for any 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) we 
have the implication:  

   (𝑥2 ← 𝑥1) ⇒ (�̂�−(𝑥1) ≤ �̂�+(𝑥2)).      (3) 
 

 Conversely, suppose that �̂�−(𝑥1) ≤
�̂�+(𝑥2). Put:  

�̂�1: = �̂�−(𝑥1),        �̂�2:= �̂�+(𝑥2). 
 

Then in accordance with Notation 3, we have, 
𝑥1 ∈ 𝜓(�̂�1) , 𝑥2 ∈ 𝜓(�̂�2)  and �̂�1 ≤ �̂�2 . Hence, by 
Definition 4, we deduce 𝑥2 ← 𝑥1 . Thus for every 
𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) we have the implication:  

  (�̂�−(𝑥1) ≤ �̂�+(𝑥2)) ⇒ (𝑥2 ← 𝑥1)    (4) 
 
The implications (3) and (4) assure the desired 

equivalence:  
   (𝑥2 ← 𝑥1) ⇔ (�̂�−(𝑥1) ≤ �̂�+(𝑥2)). 

If we assume that, in addition, 𝑥1 ≠ 𝑥2 then 
from (2) and (4) we deliver the equivalence:  
   (𝑥2 ← 𝑥1) ⇔ (�̂�−(𝑥1) < �̂�+(𝑥2)). 

(FR3): Let 𝑥2 ←
+
𝑥1. Assume that �̂�−(𝑥2) ≤

�̂�+(𝑥1). Then according to Property (FR2), we obtain 
the correlation 𝑥1 ← 𝑥2 , which contradicts to 
𝑥2 ←

+
𝑥1. Therefore, �̂�+(𝑥1) < �̂�−(𝑥2). 

Conversely, suppose that �̂�+(𝑥1) < �̂�−(𝑥2). 
Then, applying Property (FR1), we deliver �̂�−(𝑥1) ≤
�̂�+(𝑥1) < �̂�−(𝑥2) ≤ �̂�+(𝑥2) . Hence, according to 
Property (FR2), we obtain 𝑥2 ← 𝑥1. Assume that the 
condition 𝑥1 ← 𝑥2  also is performed. Then by 
Property (FR2), we get the inequality �̂�−(𝑥2) ≤
�̂�+(𝑥1) , which contradicts to the inequality 
�̂�+(𝑥1) < �̂�−(𝑥2) . That is the assumption about 
𝑥1 ← 𝑥2 is wrong. That is why we have 𝑥2 ←

+
𝑥1.  

(FR4): In the case 𝑥1 ≠ 𝑥2 Property (FR4) 

follows from Property (FR2). In the case 𝑥1 = 𝑥2 this 
property follows from Property (FR1).                          
∎ 

 
Remarks on the idea of proof the sufficiency of 

Theorem 3. It turns out that it is technically easier to 
prove the existence of 2-repeating one-point time on 
the quasi-chain oriented set ℳ. Taking into account 
this situation, we can take the set 𝑻 = 𝔅𝔰(ℳ) ×
{0,1}  as the set of time points and consider the 
mapping:  

  𝜓(𝑡) = 𝜓((𝑥, 𝛼)) = {𝑥},   𝑡 = (𝑥, 𝛼) ∈ 𝑻    
       (𝑥 ∈ 𝔅𝔰(ℳ),   𝛼 ∈ {0,1}).       (5) 

  
Then for the proof of desired result it is sufficient to 
find the linear order relation ≤ on 𝑻, which turns the 
mapping (5) into a one-point time. Further we will 
consider that the desired order ≤  satisfies the 
following natural additional condition:  

  (𝑥, 0) ≤ (𝑥, 1)      (∀𝑥 ∈ 𝔅𝔰(ℳ))      (6) 
 

Assume that the mapping (5) is an one-point time. 
Taking into account convention (6), for every 𝑥 ∈
𝔅𝔰(ℳ) we obtain the equalities:  

 �̂�−(𝑥) = (𝑥, 0),       �̂�+(𝑥) = (𝑥, 1).    (7) 
 

From the equalities (7) and properties (FR2), 
(FR3) (see. Assertion 3) it follows that the desired 
order ≤  on 𝑻 = 𝔅𝔰(ℳ) × {0,1}  must have the 
following properties:    
    • If 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) and 𝑥2 ← 𝑥1 then 
(𝑥1, 0) ≤ (𝑥2, 1).  
    • If 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ) and 𝑥2 ←

+
𝑥1 then 

(𝑥1, 1) ≤ (𝑥2, 0).   
 
 
6  Proof of Sufficiency for 

Theorem 3 
For proving the main result of this section we need the 
following auxiliary assertion:  

Assertion 4 ([16]). Let (𝑻,⪯)  be a partially 

ordered set. Then the linear order ≤ on the set 𝑻 

exists such that ⪯  ⊆  ≤. 
Emphasize that the inclusion of binary relations in 

Assertion 4 should be understood in set-theoretic 
sense, that is the record “⪯  ⊆  ≤” means that for 
any 𝑡1, 𝑡2 ∈ 𝑻 the correlation 𝑡1 ⪯ 𝑡2  leads to 𝑡1 ≤
𝑡2.  
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It is known that Assertion 4 is a consequence of 
Ultrafilter Tarski theorem (UFT). In turn UFT follows 
from the axiom of choice (AC), moreover UFT is 
logically weaker than AC. So Assertion 4 also is 
logically weaker than AC. But, from the other hand, it 
is known that this Assertion can not be obtained from 
Zermelo–Fraenkel axiomatic system without AC (for 
details see [16], Theorem 2.18 and Proposition 4.39). 

The next lemma ensures the sufficiency for 
Theorem 3.  

Lemma 2. If the oriented set ℳ is a quasi-chain 

then it can be one-point chronologized. Moreover 

there exists the chronologization ℋ = ((𝑻,≤), 𝜓) of 

ℳ with 2-repeating one-point time 𝜓. 
Proof. Let ℳ  be quasi-chain oriented set. 

Denote:  
𝑻:= 𝔅𝔰(ℳ) × {0,1}. 

 
First we introduce the binary relation ⊴ on the set 𝑻 
by the following rule:  
 ⊳ For any 𝑡1 = (𝑥1, 𝛼1) ∈ 𝑻, 𝑡2 = (𝑥2, 𝛼2) ∈ 𝑻 we 
write 𝑡1 ⊴ 𝑡2  if and only if at least one of the 
following conditions is satisfied:  
   (Preo1) 𝑡1 = 𝑡2 (that is 𝑥1 = 𝑥2 and 𝛼1 = 𝛼2);  
   (Preo2) 𝑥2 ← 𝑥1, 𝛼1 = 0, 𝛼2 = 1;   
   (Preo3) 𝑥2 ←

+
𝑥1, 𝛼1 = 1, 𝛼2 = 0.   

  
Also, we note 𝑡1 ⊲ 𝑡2 if and only if 𝑡1 ⊴ 𝑡2 and 

𝑡1 ≠ 𝑡2. 
The introduced relation ⊴ is obviously reflexive 

(ie 𝑡 ⊴ 𝑡 (∀𝑡 ∈ 𝑻)). Moreover, we are going to prove 
that this relation has the following property of the 
“weak” transitivity:    

(WT) If  𝑡0, 𝑡1, 𝑡2, 𝑡3 ∈ 𝑻 and 𝑡0 ⊲ 𝑡1 ⊲
𝑡2 ⊲ 𝑡3 then 𝑡0 ⊲ 𝑡3.   

 Indeed, let 𝑡0, 𝑡1, 𝑡2, 𝑡3 ∈ 𝑻  and 𝑡0 ⊲ 𝑡1 ⊲
𝑡2 ⊲ 𝑡3 , where 𝑡𝑖 = (𝑥𝑖, 𝛼𝑖) , 𝑥𝑖 ∈ 𝔅𝔰(ℳ) , 𝛼𝑖 ∈
{0,1}  (𝑖 ∈ 0,3 = {0,1,2,3}) . Since 𝑡0 ⊲ 𝑡1 , 
Condition (Preo1) can not be performed for the 
elements 𝑡0  and 𝑡1 . Hence one of the conditions 
(Preo2), (Preo3) must be fulfilled. If Condition 
(Preo2) is fulfilled, we have, 𝑥1 ← 𝑥0, 𝛼0 = 0, 𝛼1 =
1. Next, since 𝑡1 ⊲ 𝑡2, Condition (Preo1) can not be 
performed for the elements 𝑡1  and 𝑡2 . Condition 

(Preo2) also can not be performed for the elements 𝑡1 
and 𝑡2 , because 𝛼1 = 1 ≠ 0 . Therefore Condition 
(Preo3) is fulfilled, that is 𝑥2 ←

+
𝑥1 , 𝛼2 = 0 . 

Similarly we verify that 𝑥3 ← 𝑥2, 𝛼3 = 1. Hence, we 
have 𝑥3 ← 𝑥2 ←

+
𝑥1 ← 𝑥0 . And, applying Property 

(QL3) (see Assertion 2), we deliver 𝑥3 ← 𝑥0. And, 
taking into account that 𝛼0 = 0, 𝛼3 = 1, we see that 
Condition (Preo2) is performed for 𝑡0 and 𝑡3. That is 
why, 𝑡0 ⊴ 𝑡3 . But, since 𝛼0 = 0 ≠ 1 = 𝛼3 , then 
𝑡0 ≠ 𝑡3. Thus, 𝑡0 ⊲ 𝑡3. Similarly, in the case where 
(Preo3) is fulfilled for 𝑡0  and 𝑡1 , we successively 
obtain:   
 1) 𝑥1 ←

+
𝑥0, 𝛼0 = 1, 𝛼1 = 0;   2) 𝑥2 ← 𝑥1, 𝛼2 =

1;   3) 𝑥3 ←
+
𝑥2, 𝛼3 = 0.  

  
Thence, by Definition 5 (item (QL2)), we deduce, 

𝑥3 ←
+
𝑥0. So, taking into account that 𝛼0 = 1, 𝛼3 = 0 

and 𝛼0 ≠ 𝛼3, we obtain 𝑡0 ⊲ 𝑡3. 
Let us prove that the relation ⊴ is asymmetric, 

i.e.:    
(AS) If 𝑡0, 𝑡1 ∈ 𝑻, 𝑡0 ⊴ 𝑡1 and 𝑡1 ⊴ 𝑡0 then 

𝑡0 = 𝑡1.   
 Indeed, suppose that 𝑡0 ⊴ 𝑡1  and 𝑡1 ⊴ 𝑡0 , 

where 𝑡𝑖 = (𝑥𝑖 , 𝛼𝑖) , 𝑥𝑖 ∈ 𝔅𝔰(ℳ) , 𝛼𝑖 ∈ {0,1} 
(𝑖 ∈ 0,1) . Assume that 𝑡0 ≠ 𝑡1 . Then Condition 
(Preo1) can not be performed for the elements 𝑡0 and 
𝑡1. So, by conditions (Preo2), (Preo3), at least on of 
the following two cases must hold:   
     [case 1] 𝑥1 ← 𝑥0 and 𝑥0 ←

+
𝑥1  or   

     [case 2] 𝑥1 ←
+
𝑥0 and 𝑥0 ← 𝑥1.  

 But really each of these cases is impossible (by 
definition of relation ←

+
). The contradiction obtained 

above proves that 𝑡0 = 𝑡1. 
Now, using the properties (AS) and (WT), we will 

prove that the relation ⊴ has the following property 
of “stronged” asymmetry:    

(AS(n)) If 𝑛 ∈ ℕ, 𝑡0, … , 𝑡𝑛 ∈ 𝑻 and 𝑡0 ⊴
𝑡1 ⊴ ⋯ ⊴ 𝑡𝑛 ⊴ 𝑡0 then 𝑡0 = 𝑡1 = ⋯ = 𝑡𝑛.   

Indeed, let 𝑛 ∈ ℕ , 𝑡0, … , 𝑡𝑛 ∈ 𝑻   and  𝑡0 ⊴
𝑡1 ⊴ ⋯ ⊴ 𝑡𝑛 ⊴ 𝑡0 . In the case 𝑛 = 1  the desired 
result follows from Property (AS). In the case 𝑛 = 2 
we have 𝑡0 ⊴ 𝑡1 ⊴ 𝑡2 ⊴ 𝑡0. If we assume that 𝑡0 =
𝑡1 , we obtain 𝑡0 = 𝑡1 ⊴ 𝑡2 ⊴ 𝑡1 . Thence, using 
Property (AS) we obtain 𝑡0 = 𝑡1 = 𝑡2. Similarly we 
get the equality 𝑡0 = 𝑡1 = 𝑡2  in the cases 𝑡1 = 𝑡2 
and 𝑡2 = 𝑡0 . If we assume that 𝑡0 ≠ 𝑡1 ≠ 𝑡2 ≠ 𝑡0 
then we obtain 𝑡0 ⊲ 𝑡1 ⊲ 𝑡2 ⊲ 𝑡0. And, by Property 
(WT), we deduce the impossible correlation 𝑡0 ⊲ 𝑡0. 
Hence, the case 𝑡0 ≠ 𝑡1 ≠ 𝑡2 ≠ 𝑡0  is impossible. 
And in all possible cases we obtain the desired result 
for 𝑛 = 2. 

Now we consider any number 𝑛 ∈ ℕ such that 
𝑛 > 2 . Our inductive assumption is that Property 
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(AS(k)) holds for all 𝑘 ∈ ℕ  such that 𝑘 < 𝑛 . Let 
𝑡0, … , 𝑡𝑛 ∈ 𝑻 and 𝑡0 ⊴ 𝑡1 ⊴ 𝑡2 ⊴ ⋯ ⊴ 𝑡𝑛 ⊴ 𝑡0. First 
we assume that 𝑡0 ≠ 𝑡1 ≠ 𝑡2 ≠ 𝑡3 . Then we obtain 
𝑡0 ⊲ 𝑡1 ⊲ 𝑡2 ⊲ 𝑡3 ⊴ ⋯ ⊴ 𝑡0 . Thence by Property 
(WT), we deduce 𝑡0 ⊴ 𝑡3 ⊴ ⋯ ⊴ 𝑡0. So, by inductive 
assumption, we have 𝑡0 = 𝑡3 = ⋯ = 𝑡𝑛. The equality 
𝑡0 = 𝑡3 together with the correlation, obtained before 
leads to the correlation 𝑡0 ⊲ 𝑡1 ⊲ 𝑡2 ⊲ 𝑡0, which, by 
Property (WT) leads to the contradiction 𝑡0 ⊲ 𝑡0 . 
Thus, the assumption 𝑡0 ≠ 𝑡1 ≠ 𝑡2 ≠ 𝑡3 is false. In 
the case where 𝑡0 = 𝑡1  or 𝑡1 = 𝑡2  or 𝑡2 = 𝑡3 
Property (AS(n)) can be reduced to Property 
(AS(n-1)), which is valid, according to inductive 
assumption. Therefore, the inductive transition is 
well-founded. That is why, Property (AS(n)) holds for 
each 𝑛 ∈ ℕ. 

Let ⪯ be a transitive closure (transitive hull) of 
the relation ⊴ in the sense of [18] (see page 337) or 
[19], (see page 69), that is binary relation on 𝑻 
satisfying the following condition:    

 (PO) For 𝑡, 𝜏 ∈ 𝑻 the correlation 𝑡 ⪯ 𝜏 is valid 
if and only if there exist 𝑛 ∈ ℕ and 𝑡0, … , 𝑡𝑛 ∈ 𝑻 
such, that 𝑡0 = 𝑡, 𝑡𝑛 = 𝜏 and 𝑡0 ⊴ ⋯ ⊴ 𝑡𝑛.  

 The following inclusion holds:  
       ⊴    ⊆  ⪯.               (8) 

 
Indeed, if assume that 𝑡, 𝜏 ∈ 𝑻 and 𝑡 ⊴ 𝜏 , then 

we can put 𝑛:= 1, 𝑡0:= 𝑡, 𝑡1: = 𝜏. And, according 
to (PO), we obtain 𝑡 ⪯ 𝜏. 

It follows from the reflexivity of the relation ⊴ 
and the inclusion (8) that the relation ⪯  is also 
reflexive. According to Property (AS(n)) that the 
relation ⪯ is asymmetric (that is, if 𝑡 ⪯ 𝜏 and 𝜏 ⪯ 𝑡 
then 𝑡 = 𝜏). Being a transitive closure of the relation 
⊴, the relation ⪯ is transitive (according to [18] (see 
Theorem and Definition 28.18) or [19], (see Theorem 
5.7)). So if 𝑡 ⪯ 𝜏 and 𝜏 ⪯ 𝑢 then 𝑡 ⪯ 𝑢. Note that 
the transitivity of the relation ⪯ is not difficult to 
check also by the direct verification method. Thus, the 
relation ⪯  is a partial order on 𝑻 . Therefore, by 
Assertion 4,  there exists a linear order relation ≤ 

on 𝑇 such that  ⪯  ⊆  ≤. Then, using (8), we get the 
inclusion:  

   ⊴   ⊆   ≤.                   (9) 
 

Denote: 𝕋:= (𝑻,≤). Also we define the mapping 
𝜓:𝑻 → 2𝔅𝔰(ℳ) by formula (5). That is for an arbitrary 
𝑡 = (𝑥, 𝛼) ∈ 𝑻 we put 𝜓(𝑡) = 𝜓((𝑥, 𝛼)): = {𝑥}. We 
are going to prove that the mapping 𝜓 is an one-point 
time on the oriented set ℳ. 

1. According to formula (5), for any 𝑥 ∈ 𝔅𝔰(ℳ) 
we obtain:  

𝑥 ∈ {𝑥} = 𝜓((𝑥, 0)) = 𝜓(𝑡𝑥),       where  
      𝑡𝑥 = (𝑥, 0) ∈ 𝑻. 
 
Hence, the first condition of Definition 3 is satisfied. 

2. Let 𝑥1, 𝑥2 ∈ 𝔅𝔰(ℳ), 𝑥2 ← 𝑥1  and 𝑥1 ≠
𝑥2 . Denote, 𝑡1: = (𝑥1, 0) , 𝑡2:= (𝑥2, 1) . Then for 
elements 𝑡1  and 𝑡2  it is performed Condition 
(Preo2). Therefore 𝑡1 ⊴ 𝑡2. Thence, by inclusion (9), 
we deduce the inequality 𝑡1 ≤ 𝑡2. And, since 𝑡1 ≠ 𝑡2, 
we have 𝑡1 < 𝑡2. Moreover, by formula (5), we have 
𝜓(𝑡1) = 𝑥1 , 𝜓(𝑡2) = 𝑥2 . Hence, the second 
condition of Definition 3 also is satisfied. 

 
Thus, in accordance with Definition 3, the mapping 𝜓 

is a time on the oriented set ℳ. 
 
3. Let’s prove that the time 𝜓 is one-point. 
3.1. According to formula (5) the set 𝜓(𝑡) consists of 
one element. Hence, by Definition 4, the time 𝜓 is 
quasi one-point. 
3.2 Suppose that 𝑥1 ∈ 𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) and 𝑡1 ≤
𝑡2. Then it follows from the quasi-one-pointness of 
time 𝜓  that 𝜓(𝑡1) = {𝑥1} , 𝜓(𝑡2) = {𝑥2} . In 
accordance with the formula (5), the last two 
equalities are possible only if there exist numbers 
𝛼1, 𝛼2 ∈ {0,1}  such that 𝑡1 = (𝑥1, 𝛼1) , 𝑡2 =
(𝑥2, 𝛼2). Denote, 𝑡1′:= (𝑥1, 0), 𝑡2′: = (𝑥2, 1). Then, 
according to the conditions (Preo1), (Preo2), taking 
into account the reflexivity of the relation ← , we 
obtain 𝑡1′ ⊴ 𝑡1  and 𝑡2 ⊴ 𝑡2′ . Hence, taking into 
account the inclusion (9), we have 𝑡1′ ≤ 𝑡1 and 𝑡2 ≤
𝑡2′ (where 𝑡1 ≤ 𝑡2, according to the above). That is 
why:  

     𝑡1′ ≤ 𝑡2′.                 (10) 
 

Also, by formula (5), we obtain 𝜓(𝑡1′) = {𝑥1}, 
𝜓(𝑡2′) = {𝑥2}. Now we are going to prove that 𝑥2 ←
𝑥1. Assume the the contrary, 𝑥2 ↚ 𝑥1. Then, since the 
oriented set ℳ is a quasi-chain, we deduce 𝑥1 ←

+
𝑥2. 

Consequently, according to condition (Preo3), we 
obtain 𝑡2′ ⊴ 𝑡1′  and therefore 𝑡2′ ≤ 𝑡1′ . The last 
inequality together with (10) ensures 𝑡1′ = 𝑡2′, which 
is impossible, because 𝑡1′:= (𝑥1, 0), 𝑡2′:= (𝑥2, 1). 
The obtained contradiction proves that 𝑥2 ← 𝑥1. 
 

Thus the both conditions of Definition 4 are 
satisfied. Therefore the time 𝜓 is one-point. 
4. Now we are going to prove that the time 𝜓  is 
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2-repeating. Using formula (5) for each 𝑥 ∈ 𝔅𝔰(ℳ) 
we obtain:  

Rp
𝑥
(𝜓) = 𝐜𝐚𝐫𝐝({𝑡 ∈ 𝑻 | 𝑥 ∈ 𝜓(𝑡)}) = 

         = 𝐜𝐚𝐫𝐝({𝑡 ∈ 𝑻 | 𝜓(𝑡) = {𝑥}}) = 
         = 𝐜𝐚𝐫𝐝({(𝑥, 0), (𝑥, 1)}) = 2.  
So, by Definition 6, the time 𝜓 is 2-repeating.  
The lemma is completely proven.  ∎ 
Now Theorem 3 follows from Lemma 1 and Lemma 
2. 
In fact, applying Lemma 1 and Lemma 2 we can 
readily deduce the following, more powerful theorem.  
Theorem 4. For an oriented set ℳ  the following 

statements are equivalent: 
(1) ℳ is a quasi-chain; 
(2) admits an one-point time; 
(3) ℳ admits 2-repeating one-point time.  
 
 

7 On Images of Linearly Ordered 

Sets 
In this short section we deduce one interesting 
corollary from Theorem 3 in the theory of ordered 
sets. Namely it will be obtained the description of all 
oriented sets, which can be represented as images of 
linearly ordered sets. First of all we formulate the 
definition of image of linearly ordered set. 

Let ℳ  be an oriented set and 𝑼:𝔅𝔰(ℳ) → 𝒳 
be a mapping from 𝔅𝔰(ℳ)  to 𝒳 . Then we can 
introduce the binary relation ←(1) on the set 𝑀1 =

𝑼[𝔅𝔰(ℳ)] = ℜ(𝑼) by the following rule:    
⇛ For �̃�, �̃� ∈ 𝑀1 we note �̃� ←(1) �̃� if and 

only if there exist 𝑥, 𝑦 ∈ 𝔅𝔰(ℳ) such, that �̃� =
𝑼(𝑥), �̃� = 𝑼(𝑦)  and  𝑦 ← 𝑥.   

 It is not difficult to verify that the ordered pair 
ℳ1 = (𝑀1,←(1))  is an oriented set, moreover 
𝔅𝔰(ℳ1) = 𝑀1  and  ←

ℳ1

=←(1).  

Definition 7. An oriented set ℳ1 is referred to as 

image of the oriented set ℳ  under the mapping 

𝑈:𝔅𝔰(ℳ) → 𝒳 if and only if:   

1.  𝔅𝔰(ℳ1) = 𝑼[𝔅𝔰(ℳ)] = ℜ(𝑼).  

2. For �̃�, �̃� ∈ 𝔅𝔰(ℳ1)  the correlation �̃� ←
ℳ1

�̃� 

holds if and only if there exist 𝑥, 𝑦 ∈ 𝔅𝔰(ℳ) such, 

that �̃� = 𝑼(𝑥), �̃� = 𝑼(𝑦)  and  𝑦 ←
ℳ
𝑥.  

It is apparently that for each mapping 
𝑼:𝔅𝔰(ℳ) → 𝒳 there exists an unique image under 
the mapping 𝑼. We will use the notation 𝑼[[ℳ]] for 
the image of the oriented set ℳ under the mapping 

𝑼:𝔅𝔰(ℳ) → 𝒳. 
It is evidently that every linearly ordered set 𝕋 =

(𝑻,≤) is an oriented set with:  
𝔅𝔰(𝕋) = 𝑻,        ←

𝕋
=≤. 

Therefore, it is meaningful to consider the image 
of the linearly ordered set 𝕋 = (𝑻,≤) under some 
mapping of kind 𝑼:𝑻 → 𝒳 . And the image of the 
linearly ordered set 𝕋 is the oriented set 𝑼[[𝕋]]. That 
is why the following problem naturally arises:  

Problem 2. Can an arbitrary oriented set be 

represented as the image 𝑼[[𝕋]]  of some linearly 

ordered set 𝕋? If it can not, describe all oriented sets 

that can be represented as an image of some linearly 

ordered set. 
The key for solution of Problem 2 gives the 

following Assertion.  
Assertion 5. An oriented set ℳ  can be 

represented as image of some linearly ordered set if 

and only if ℳ can be one-point chronologized.  
Proof. Indeed, suppose that the ordered set ℳ 

can be represented in the form ℳ = 𝑼[[𝕋]], where 
𝕋 = (𝑻,≤)  is a linearly ordered set. So, 𝑼  is the 
mapping of kind 𝑼:𝑻 → 𝔅𝔰(ℳ)  with ℜ(𝑼) =
𝔅𝔰(ℳ). Here we denote by ≥ the binary relation, 
inverse to ≤  (ie for 𝑥, 𝑦 ∈ 𝑻  the condition 𝑦 ≥ 𝑥 
holds if and only if 𝑥 ≤ 𝑦). According to Duality 
Principle (see [20], page 14), the ordered pair:  

𝕋≥ = (𝑻,≥)             (11) 
 
is the linearly ordered set as well. It is not difficult to 
verify that the mapping:  

𝑻 ∋ 𝑡 ↦ 𝜓(𝑡) = {𝑼(𝑡)} ⊆ 𝔅𝔰(ℳ) 
 
is an one-point time on ℳ  (relatively the linearly 
ordered set 𝕋≥ ). Conversely, let 𝕋 = (𝑻,≤)  be a 
linearly ordered set and 𝜓: 𝑻 → 2𝔅𝔰(ℳ) be one-point 
time on the oriented set ℳ. Then, by Definition 4, for 
every time point 𝑡 ∈ 𝑻  the element 𝒙(𝑡) ∈ 𝔅𝔰(ℳ) 
exists such, that 𝜓(𝑡) = {𝒙(𝑡)} . Consider the 
mapping:  

𝑻 ∋ 𝑡 ↦ 𝑼(𝑡) = 𝒙(𝑡) ∈ 𝔅𝔰(ℳ). 
 

It is easy to verify that for this mapping 𝑼 it is 
performed the equality ℳ = 𝑼[[𝕋≥]] , where the 
linearly ordered set 𝕋≥ is determined by the formula 
(11).                         ∎ 

Assertion 5 together with Theorem 3 stipulate the 
following corollary.  

Corollary 1. An oriented set ℳ can be 
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represented as image of some linearly ordered set if 

and only if it is a quasi-chain. 
 
 

References:  

[1]  A.N. Gorban,  “Hilberts sixth problem: the 
endless road to rigour” , Phil Trans R Soc A, 
376(2118), 2018, p. 
20170238, http://dx.doi.org/10.1098/rsta.2017.
0238 . 

[2]  L. Corry,  “Hilbert’s sixth problem: between 
the foundations of geometry and the 
axiomatization of physics” , Phil Trans R Soc A, 
376(2118), 2018, 
https://doi.org/10.1098/rsta.2017.0221 . 

[3]  L. Accardi,  “Quantum probability and 
Hilbert’s sixth problem” , Phil Trans R Soc A, 
376(2118), 
2018, https://doi.org/10.1098/rsta.2018.0030 . 

[4]  S. Majid,  “On the emergence of the structure 
of physics” , Phil Trans R Soc A, 376(2118), 
2018, https://doi.org/10.1098/rsta.2017.0231 . 

[5]  M. Slemrod,  “Hilbert’s sixth problem and the 
failure of the Boltzmann to Euler limit” , Phil 

Trans R Soc A, 376(2118), 2018, 
https://doi.org/10.1098/rsta.2017.0222 . 

[6]  G. M. D’Ariano,  “The solution of the sixth 
Hilbert problem: the ultimate Galilean 
revolution” , Phil Trans R Soc A, 376(2118), 
2018, https://doi.org/10.1098/rsta.2017.0224 . 

[7]  A. N. Gorban and I. Y. Tyukin,  “Blessing of 
dimensionality: mathematical foundations of 
the statistical physics of data” , Phil Trans R Soc 

A, 376(2118), 2018, 
https://doi.org/10.1098/rsta.2017.0237 . 

[8]  A.P. Levich,  “Methodological difficulties in 
the way to understanding the phenomenon of 
time” , in Time of the end of time: Proceedings 

of Moscow-Petersburg Philosophical Club, 
2009, pp. 66–88,  
[Online]. http://www.chronos.msu.ru/old/RRE
PORTS/levich_trudnosti.pdf (Accessed Date: 
February 24, 2024). 

[9]  A.P. Levich,  “Time as variability of natural 
systems: ways of quantitative description of 
changes and creation of changes by substantial 
flows” , in On the Way to Understanding the 
Time Phenomenon: the Constructions of Time 
in Natural Science. Part 1. Interdisciplinary 
Time Studies, World Scientific, chap. 5, 1995, 
pp. 149–192, [Online].  

http://www.chronos.msu.ru/old/EREPORTS/le
vich1.pdf (Accessed Date: February 24, 2024). 

[10]  A.P. Levich,  “Modeling of “dynamic sets”” , 
in Irreversible processes in nature and 

technique, MSTU named after N.E. Bauman, 
pp. 3–46. 

[11]  Michael Barr, Colin Mclarty and Charles Wells,  
“Variable Set Theory”, 1986, 12 pages, 
[Online].   http://www.math.mcgill.ca/barr/pap
ers/vst.pdf (Accessed Date: February 24, 2024). 

[12]  John L. Bell., “Abstract and Variable Sets in 
Category Theory” , in What is Category 

Theory?, Polimetrica International Scientific 
Publisher, 2006, pp. 9–16. 

[13]  Lawvere FW, Rosebrugh R. Sets for 

Mathematics. Cambridge University Press, 
2003. 

[14]  Ya.I. Grushka,  “Draft introduction to abstract 
kinematics. (Version 2.0)” , Preprint: 
ResearchGate, 2017, pp. 1–208,  
https://doi.org/10.13140/RG.2.2.28964.27521 . 

[15]  Ya.I. Grushka,  “Primitive changeable sets and 
their properties” , Mathematical Bulletin of 

Taras Shevchenko Scientific Society, 9, 2012, 
pp. 52–80. 

[16]  Herrlich Horst, Axiom of Choice, Lecture Notes 
in Mathematics, Springer-Verlag, 2006. 

[17]  David Pincus,  “The dense linear ordering 
principle” , Journal of Symbolic Logic, 62(2), 
1997, pp. 438–456. 

[18]  Rudolf Lidl and Gnter Pilz, Applied Abstract 

Algebra, Undergraduate Texts in Mathematics, 
Springer New York, NY, 2nd edn., 1998,  
https://doi.org/10.1007/978-1-4757-2941-2 . 

[19]  T.O. Karnaukh and A.B. Stavrovsky, 
Introduction to discrete mathematics, Kyiv 
University, 2006. 

[20]  Garrett Birkhoff, Lattice theory, Third edition. 
American Mathematical Society Colloquium 
Publications, Vol. XXV, American 
Mathematical Society, Providence, R.I., New 
York, 1967. 

 

 

 

 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.109 Grushka Ya. I.

E-ISSN: 2224-2880 1010 Volume 22, 2023

http://dx.doi.org/10.1098/rsta.2017.0238
http://dx.doi.org/10.1098/rsta.2017.0238
https://doi.org/10.1098/rsta.2017.0221
https://doi.org/10.1098/rsta.2018.0030
https://doi.org/10.1098/rsta.2017.0231
https://doi.org/10.1098/rsta.2017.0222
https://doi.org/10.1098/rsta.2017.0224
https://doi.org/10.1098/rsta.2017.0237
http://www.chronos.msu.ru/old/RREPORTS/levich_trudnosti.pdf
http://www.chronos.msu.ru/old/RREPORTS/levich_trudnosti.pdf
http://www.chronos.msu.ru/old/EREPORTS/levich1.pdf
http://www.chronos.msu.ru/old/EREPORTS/levich1.pdf
http://www.math.mcgill.ca/barr/papers/vst.pdf
http://www.math.mcgill.ca/barr/papers/vst.pdf
https://doi.org/10.13140/RG.2.2.28964.27521
https://doi.org/10.1007/978-1-4757-2941-2


Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Grushka Ya.I. is the only author in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 

 

Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The author has no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en_
US 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2023.22.109 Grushka Ya. I.

E-ISSN: 2224-2880 1011 Volume 22, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



