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Abstract: The paper presents a subclass of p -valent functions defined by the means of Gegenbauer Polynomials in the

open unit disk D. We investigate the properties of this new class and provide estimations for the modulus of
the coefficients ap+1 and ap+2, where p ∈ N, for functions belong to this subclass. Moreover, we examine the
classical Fekete-Szegö inequality for functions f belong to the presenting subclass.
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1 Introduction

Let H be the class of all functions f(z) that are holo-
morphic in the open unit disk D = {z ∈ C : |z| < 1}. An
analytic function f in a domain D ⊂ C is called p-valent,
if for each w ∈ C the equation f(z) = w has at most p
roots in D. Therefore, there exists w0 ∈ C such that the
equation f(z) = w0 has exactly p roots in D. Let Ap

be the class of all holomorphic functions f ∈ H that are
given by

f(z) = zp +
∞∑

n=p+1

anz
n, where z ∈ D. (1)

Let S denote the class of all functions f in the class
A = A1 that are univalent in D. Let S∗p be the class of
p-valent starlike functions such that we say f(z) ∈ Ap

in the class S∗p if the following condition satisfies for all
z ∈ D:

R

{
zf ′(z)

f(z)

}
> 0.

Also, let Sc
p be the class of p-valent functions such that

we say f(z) ∈ Ap in the class Scp if the following condition
satisfies for all z ∈ D:

R

{
1 +

zf ′′(z)

f ′(z)

}
> 0.

It is well known (see, for details [1]) and [2]) that if
f is analytic in a convex domain D ⊂ C and

R
{
eiθf ′(z)

}
> 0 for some real θ and for all z ∈ D,

then f(z) is univalent in D. In [3] the auther extended
the previous result, in fact he showed that if f(z) of
the form (1) is analytic in a convex domain D ⊂ C and

R
{
eiθf (p)(z)

}
> 0 for some real θ and for all z ∈ D,

then f(z) is at most p-valent in D. Moreover, it can be

shown that if f ∈ Ap and R
{
f (p)(z)

}
> 0 for all z ∈ D,

then f(z) is at most p-valent in D. According to [4] we

have if f ∈ Ap, p ≥ 2, and arg
{
f (p)(z)

}
< 3π

4
for all

z ∈ D, then f(z) is at most p-valent in D. For more
information about p-valent we refer the readers to the
articles [5], [6], [7], [8] and the references therein.

Let the functions f and g be analytic in D, we say the
function f is subordinate by the function g in D, denoted
by f(z) ≺ g(z) for all z ∈ D, if there exists a Schwarz
function w, with w(0) = 0 and |w(z)| < 1 for all z ∈ D,
such that f(z) = g(w(z)) for all z ∈ D. In particular,
if the function g is univalent over D then f(z) ≺ g(z)
equivalent to f(0) = g(0) and f(D) ⊂ g(D. For more
information about the Subordination Principle we refer
the readers to the monographs [9], [10], [11] and [12].

The research in the geometric function theory has
been very active in recent years, the typical problem in
this field is studying a functional made up of combina-
tions of the initial coefficients of the functions f ∈ A.
For a function in the class S, it is well-known that |an| is
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bounded by n. Moreover, the coefficient bounds give in-
formation about the geometric properties of those func-
tions. For instance, the bound for the second coefficients
of functions in the class S gives the growth and distor-
tion bounds for the class.

Coefficient related investigations of functions belong
to the class Σ began around the 1970. It is worth men-
tioning that, in [13] the author studied the class of bi-
univalent functions and derived the bound for |a2|. Ac-
cording to [14] we know that the maximum value of |a2|
is 4

3 for functions belong to the class Σ. Moreover, in

[15] the authors proved that |a2| ≤
√

2 for functions
in the class Σ. Since then, many researchers investi-
gated the coefficient bounds for various subclasses of
the bi-univalent function class Σ. However, not much
is known about the bounds of the general coefficients
|a2| for n ≥ 4. In fact, the coefficient estimate problem
for the general coefficient |an| is still an open problem.

The Fekete-Szegö functional is well known for its rich
history in the geometric function theory. Its origin was in
[16] when they found the maximum value of |a3−λa22|, as
a function of the real parameter 0 ≤ λ ≤ 1 for a univalent
function f . Since then, maximizing the modulus of the
functional Ψλ(f) = a3−λa22 for f ∈ A with any complex
λ is called the Fekete-Szegö problem. There are many
researchers investigated the Fekete-Szegö functional and
the other coefficient estimates problems, for example see
the articles [17], [18], [19], [20], [21], [22], [23], [24] and
the references therein.

2 Preliminaries

In this section we present some information that are cru-
cial for the main results of this paper. In [25] the author
introduced and studied a subclass F(γ) of the class A

consisting of functions of the form

f(z) =

∫ 1

−1

K(z, x) dσ(x), (2)

where K(z, x) =
z

(z2 − 2tz + 1)γ
, γ ≥ 0, −1 ≤ x ≤ 1,

and σ is the probability measure on [−1, 1]. Moreover,
the function K(z, x) has the following Taylor-Maclaurin
series expansion

K(z, x) = z + Cγ
1 (x)z2 + Cγ

2 (x)z3 + Cγ
3 (x)z4 + · · ·,

where Cγ
n(t) denotes the Gegenbauer polynomials of or-

der α. Furthermore, for any real numbers γ, x ∈ R ,with
γ ≥ 0 and −1 ≤ x ≤ 1, the generating function of Gegen-
bauer polynomials is given by

Hγ(z, x) = (z2 − 2xz + 1)−γ , where z ∈ D.

Thus, for any fixed x the function Hγ(z, x) is analytic
on the unit disk D and its Taylor-Maclaurin series is

given by

Hγ(z, x) =
∞∑

n=0

Cγ
n(x)zn.

Moreover, Gegenbauer polynomials can be defined in
terms of the following recurrence relation:

Cγ
n(x) =

2x(n+ γ − 1)Cγ
n−1(x) − (n+ 2γ − 2)Cγ

n−1(x)

x
,

(3)
with initial values

Cγ
0 (x) = 1, Cγ

1 (x) = 2γx, and

Cγ
2 (x) = 2γ(γ + 1)x2 − γ.

(4)

It is well-known that the Gegenbauer polynomials
and their special cases such as Legendre polynomials
Ln(x) and the Chebyshev polynomials of the second kind
Tn(x) are orthogonal polynomials, where the values of γ
are γ = 1/2 and γ = 1 respectively, more precisely

Ln(x) = C1/2
n (x), and Tn(x) = C1

n(x).

For more information about the Gegenbauer polynomials
and their special cases, we refer the readers to the arti-
cles [26], [27], [28], the monographs [29], [30], and the
references therein. next, we define our class of p-valent
functions which we denote by Ap(α, β, γ).

Definition 2.1. A function f(z) in the family Ap is said
to be in the class Ap(α, β, γ) if, for all z ∈ D, it satisfies
the following subordination(

zf ′(z) − pf(z)

βpf(z)

)
+ α

(
f ′(z) − pzp−1

βpzp−1

)
≺ Hγ(x, z),

where γ > 0, x ∈ [−1, 1], 0 ≤ α ≤ 1, and β is a non-zero
complex number.

The following lemma (see, for details [22]) is a well-
known fact, but it is crucial for our presented work.

Lemma 2.2. Let the Schwarz function w(z) be given by:

w(z) = w1z + w2z
2 + w3z

3 + · · · where z ∈ D,

then |w1| ≤ 1 and for t ∈ C

|w2 − tw2
1| ≤ 1 + (|t| − 1)|w1|2 ≤ max{1, |t|}.

The results is sharp for the functions w(z) = z and
w(z) = z2.

The primary goal of this article is to investigate a
class of p-valent functions in the open unit disk D, which
we denote by Ap(α, β, γ). For functions in this class,
we obtain the estimates for the initial coefficients |ap+1|
and |ap+2|. Furthermore, we examine the correspond-
ing Fekete-Szegö functional problem for functions in this
class.
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3 Coefficient bounds of functions
in the class Ap(α, β, γ)

In this section, we provide bounds for the initial coef-
ficients for the functions belong to the class Ap(α, β, γ)
which are given by equation (1).

Theorem 3.1. If a function f ∈ Ap is given by (1)
belong to the class Ap(α, β, γ), then

|ap+1| ≤
2γp|x||β|
αp+ α+ 1

, (5)

and

|ap+2| ≤
γp|x||β|

αp+ 2α+ 1
×

max

{
1,

∣∣∣∣∣2(γ + 1)x2 − 1

2x
+

2xpγβ

(αp+ 1α+ 1)
2

∣∣∣∣∣
}
.

(6)

Proof. Let f be in the class Ap(α, β, γ). Then, using
Definition 2.1, there exists a holomorphic function ψ on
the unit disk D such that

(
zf ′(z) − pf(z)

βpf(z)

)
+ α

(
f ′(z) − pzp−1

βpzp−1

)
≺ Hγ(x, ψ(z)),

(7)

where the holomorphic function ψ is given by ψ(z) =
∞∑

n=1

bnz
n such that ψ(0) = 0 and |ψ(z)| < 1 for all

z ∈ D. Moreover, it is well-known that (see, for de-
tails [9]), |bj | ≤ 1 for all j ∈ N.

Now, upon comparing the coefficients of both-sides
of equation (7), we obtain the equations(

α(p+ 1) + 1

pβ

)
ap+1 = Cγ

1 (x)b1, (8)

and (
2α(p+ 2) + 2

pβ

)
ap+2 −

(
1

pβ

)
a2p+1

= Cγ
1 (x)b2 + Cγ

2 (x)b21.

(9)

Hence, using equation (8), we get

ap+1 =
pβCγ

1 (x)b1
α(p+ 1) + 1

. (10)

In view of the initial values (4) and the fact |b1| ≤ 1,
we get

|ap+1| ≤
2pγ|x||β|

α(p+ 1) + 1
,

which is the desired estimate of |ap+1|.

Secondly, we look for the coefficient estimate of ap+2.
Using equation (9), we obtain

2(α(p+ 2) + 1)ap+2 − a2p+1

= pβ[Cγ
1 (x)b2 + Cγ

2 (x)b21].
(11)

Using equation (10), the last equation becomes

ap+2 =
pβ

2(α(p+ 2) + 1)
×(

Cγ
1 (x)b2 + Cγ

2 (x)b21 +
pβ[Cγ

1 (x)]2b21
(α(p+ 1) + 1)2

)
=

pβCγ
1 (x)

2(α(p+ 2) + 1)
×(

b2 +
Cγ

2 (x)

Cγ
1 (x)

b21 +
pβCγ

1 (x)b21
(α(p+ 1) + 1)2

)
.

Hence, using Lemma 2.2, we obtain

|ap+2| ≤
p|β| |Cγ

1 (x)|
2(α(p+ 2) + 1)

×

max

{
1,

∣∣∣∣Cγ
2 (x)

Cγ
1 (x)

+
pβCγ

1 (x)

(α(p+ 1) + 1)2

∣∣∣∣} .
Finally, using the initial values (4), we get the desired
estimate of |ap+2|. Therefore, this completes the proof
of Theorem 3.1.

The following corollary is just a consequence of The-
orem 3.1 when taking γ = 1. These initial coefficient
estimates are related to Chebyshev polynomials of the
second kind. The proof is similar to the previous theo-
rem’s proof, so we omit the proof’s details.

Corollary 3.2. If a function f ∈ Ap is given by (1)
belong to the class Ap(α, β, 1), then

|ap+1| ≤
2p|x||β|

αp+ α+ 1
,

and

|ap+2| ≤
p|x||β|

αp+ 2α+ 1
max

{
1,

∣∣∣∣∣4x2 − 1

2x
+

2xpγβ

(αp+ α+ 1)
2

∣∣∣∣∣
}
.

Remark 1. The following are special cases of our class
of p-valent functions Ap(α, β, γ).

• Putting, α = 0 in Definition 2.1, we get a subclass
that satisfies the following subordination:

1

β

(
zf ′(z)

pf(z)
− 1

)
≺ Hγ(x, z) (12)

• Putting, β = 1 in Definition 2.1, we get a subclass
that satisfies the following subordination:(

zf ′(z)

pf(z)
− 1

)
+α

(
f ′(z)

pzp−1
− 1

)
≺ Hγ(x, z), (13)
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Corollary 3.3. If a function f ∈ Ap is given by (1)
satisfies the subordination (12), then

|ap+1| ≤ 2γp|x||β|,

and

|ap+2| ≤ γp|x||β|max

{
1,

∣∣∣∣ (4pγβ + 2γ + 2)x2 − 1

2x

∣∣∣∣} .
Corollary 3.4. If a function f ∈ Ap is given by (1)
satisfies the subordination (13), then

|ap+1| ≤
2γp|x|

αp+ α+ 1
,

and

|ap+2| ≤
γp|x|

αp+ 2α+ 1
×

max

{
1,

∣∣∣∣∣2(γ + 1)x2 − 1

2x
+

2xpγ

(αp+ α+ 1)
2

∣∣∣∣∣
}
.

4 Fekete-Szegö inequality of the
class Ap(α, β, γ)

In this section, we maximize the modulus of the func-
tional Ψλ(f) = ap+2 − λa2p+1 for real numbers λ and for
functions f belong to the class Ap(α, β, γ).

Theorem 4.1. If a function f ∈ Ap is given by (1)
belong to the class Ap(α, β, γ), then for some λ ∈ R and
for x ∈ (0, 1],

|a3 − λa22| ≤

{
pγx|β|

αp+2α+1 , if λ ∈ [λ1, λ2]
pγx|β||A|
αp+2α+1 , if λ /∈ [λ1, λ2],

(14)

where

λ1 =
(2(γ + 1)x2 − 2x− 1)(αp+ α+ 1)2 + 4γβpx2

8γβpx2(αp+ 2α+ 1)
,

λ2 =
(2(γ + 1)x2 + 2x− 1)(αp+ α+ 1)2 + 4γβpx2

8γβpx2(αp+ 2α+ 1)
,

and

A =
2(γ + 1)x2 − 1

2x
+

2xγβ(1 − 2λ(αp+ 2α+ 1))

(αp+ α+ 1)2
.

Proof. For any real number λ, using equations (11) and
(10), we get

ap+2 − λa2p+1 =
pβ[Cγ

1 (x)b2 + Cγ
2 (x)b21]

2(αp+ 2α+ 1)

+

(
1

2(αp+ 2α+ 1)
− λ

)
a2p+1

=
βp[Cγ

1 (x)b2 + Cµ
2 (t)b21]

2(αp+ 2α+ 1)

+
βp(1 − 2λ(αp+ 2α+ 1))[Cµ

1 (t)]2b21
2(αp+ 2α+ 1)(αp+ α+ 1)2

=
γβpx

αp+ 2α+ 1

{
b2 +Ab21

}
.

Hence, using Lemma 2.2, we get

|ap+2 − λa2p+1| ≤
γp|β||x|

αp+ 2α+ 1
max{1, |A|}.

For x > 0, if |A| ≤ 1, then∣∣∣∣Cγ
2 (x)

Cγ
1 (t)

+
βp(1 − 2λ(αp+ 2α+ 1)[Cγ

1 (t)]

(αp+ α+ 1)2

∣∣∣∣ ≤ 1.

Therefore, solving for λ we get

−[Cγ
2 (x) + Cγ

1 (x)](αp+ α+ 1)2

βp[Cγ
1 (x)]2

≤ 1 − 2λ(αp+ 2α+ 1)

≤ [Cγ
1 (x) − Cγ

2 (x)](αp+ α+ 1)2

βp[Cγ
1 (x)]2

.

Hence, simple calculations give us the following inequal-
ity

(Cγ
2 (x) − Cγ

1 (x)) (αp+ α+ 1)2 + βp[Cγ
1 (x)]2

2βp(αp+ 2α+ 1)[Cγ
1 (x)]2

≤ λ

≤ (Cγ
2 (x) + Cγ

1 (x)) (αp+ α+ 1)2 + βp[Cγ
1 (x)]2

2βp(αp+ 2α+ 1)[Cγ
1 (x)]2

.

⇐⇒ λ1 ≤ λ ≤ λ2.

Therefore, in view of the initial values (4), if |A| ≤ 1,
then λ ∈ [λ1, λ2] and hence we get

|ap+2 − λa2p+1| ≤
γp|β||x|

αp+ 2α+ 1
.

Moreover, if |A| > 1, then λ /∈ [λ1, λ2] and hence we get

|ap+2 − λa2p+1| ≤
γp|β||x||A|
αp+ 2α+ 1

.

This completes the Theorem’s proof.

The following corollary is just consequences of The-
orem 4.1. Taking γ = 1, we get the Fekete-Szegö in-
equality that is related to Chebyshev polynomials of the
second kind.

Corollary 4.2. If a function f ∈ Ap is given by (1)
belong to the class Ap(α, β, 1), then for some λ ∈ R and
for x ∈ (0, 1],

|a3 − λa22| ≤

{
px|β|

αp+2α+1 , if λ ∈ [ζ1, ζ2]
px|β||B|
αp+2α+1 , if λ /∈ [ζ1, ζ2],

where

ζ1 =
(4x2 − 2x− 1)(αp+ α+ 1)2 + 4βpx2

8βpx2(αp+ 2α+ 1)
,

ζ2 =
(4x2 + 2x− 1)(αp+ α+ 1)2 + 4βpx2

8βpx2(αp+ 2α+ 1)
,

and

B =
4x2 − 1

2x
+

2xβ(1 − 2λ(αp+ 2α+ 1))

(αp+ α+ 1)2
.
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Corollary 4.3. If a function f ∈ Ap is given by (1)
satisfies the subordination (12), then for some λ ∈ R
and for x ∈ (0, 1],

|a3 − λa22| ≤

{
pγx|β|, if λ ∈ [ζ3, ζ4]

pγx|β||K|, if λ /∈ [ζ3, ζ4],

where

ζ3 =
(4γβp+ 2γ + 2)x2 − 2x− 1

8γβpx2
,

ζ4 =
(4γβp+ 2γ + 2)x2 + 2x− 1

8γβpx2
,

and

K =
(4γβ(1 − 2λ) + 2γ + 2)x2 − 1

2x
.

Corollary 4.4. If a function f ∈ Ap is given by (1)
satisfies the subordination (13), then for some λ ∈ R
and for x ∈ (0, 1],

|a3 − λa22| ≤

{
pγx

αp+2α+1 , if λ ∈ [ζ5, ζ6]
pγx|∆|

αp+2α+1 , if λ /∈ [ζ5, ζ6],

where

ζ5 =
(2(γ + 1)x2 − 2x− 1)(αp+ α+ 1)2 + 4γpx2

8γpx2(αp+ 2α+ 1)
,

ζ6 =
(2(γ + 1)x2 + 2x− 1)(αp+ α+ 1)2 + 4γpx2

8γpx2(αp+ 2α+ 1)
,

and

∆ =
2(γ + 1)x2 − 1

2x
+

2xγ(1 − 2λ(αp+ 2α+ 1))

(αp+ α+ 1)2
.

5 Conclusion

This research paper has investigated a new class of p-
valent functions related to Gegenbauer polynomials. For
functions belong to this function class, the author has
derived estimates for the initial coefficients and Fekete-
Szegö functional problem. The work presented in this
paper will lead to many different results for subclasses
defined by the means of Horadam polynomials and their
special cases, such as: Fibonacci polynomials, Lucas Poly-
nomials, Pell Polynomials, and Pell-Lucas Polynomials.
Moreover, the presented work in this paper will inspire
researchers to extend its concepts to harmonic functions
and symmetric q-calculus such as q-Ruscheweyh and q-
Salagean differential operators.
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