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1 Introduction

Over the past few years, quantum error-correcting
codes have attracted a great deal of curiosity from re-
searchers, especially over finite rings. Without losing
meaning, we will denote them by QECC. A signifi-
cant benefit of these codes is their exceptional adapt-
ability to quantum physical systems of any order. In
addition, finite rings make it less difficult to perform
operations. The conventional error-correcting codes
are necessary to prevent decoherence and other noise
from destroying the classical information, but such in-
formation may also be duplicated. Similarly, the exis-
tence of QECC supplies a powerful manner to avoid
decoherence and other quantum noise during quan-
tum communication and quantum computation. We
suggest the reader to [1], [2] and [3], for further infor-
mation on information theory and coding theory over
finite rings.
Cyclic codes have shown to be an excellent resource
for developing QECC with appropriate parameters.
In [4], the author led the development of the first
QECC. Motivated by this discovery, the researcher,
[5], gives a method of construction QECC over fi-
nite field Fq, with hypothesis that q is a prime num-
ber power. After that, the authors, [6], proposed a
technique for building QECC based on conventional
error-correcting codes. Recently, QECC theory has

advanced quickly. Many QECC were created by var-
ious researchers, [7], [8], [9], [10], [11], using clas-
sical codes with good parameters and properties of
self-orthogonal or dual. Researchers have shown a
strong interest in investigating the built of QECC over
finite rings by using cyclic codes. Across a variety
of finite rings, several QECC constructed from cyclic
codes have been developed, more precisely, over fi-
nite non-chain ring. In [12], the author worked over
Fp[v]/(v

2−v) to construct linear codes. Later on, the
paper, [13], examined the linear codes structure over
the finite non-chain ring Fp[u]/(u

3−u), where p > 2
is a prime, the building of QECC over Fq[v]/(v

4− v)
via cyclic codes, with p is assumed to be an odd prime,
(p − 1) is divisible by 3 and q = pr, is given in
[14]. Some new QECC based on cyclic codes over
the finite ring F2[u, v]/(u

2 − u, v2 − v, uv − vu)
are presented by the authors of the paper, [15], later
on, they generalized in [16], the creating of QECC
over F2[v1, v2, . . . , vr]/(v

2
i − vi, vivj − vjvi) where

1 ≤ i, j ≤ r for r ≥ 1, by using cyclic codes. The
building of QECC based on cyclic codes of length not
divisible by two over the chain ring F2[u]/(u

2) is pro-
vided in [17]. Further, [18], provided a building of
QECC using cyclic codes of length not divisible by
two over the ring F4[u]/(u

2). Again, a building of
QECC over F2[v]/(v

2 − v) by utilizing cyclic codes,
was established in [19].
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The theory of QECC was further advanced by sev-
eral scientists, whose provided the building of QECC
over the finite non-chain ring F3[u]/(u

2 − 1) bas-
ing on cyclic codes in [20]. Then, over the ring
Fp[v]/(v

2 − v), they examined QECC derived from
cyclic codes and they established the construction
new non-binary QECC over the ring Fq[u, v]/(u

2 −
u, v2−v, uv−vu) in [21], [22], respectively. The au-
thors in [23], used cyclic codes that satisfy the condi-
tion of dual-containing, to produce novel QECC over
the ring F2m [u]/(uk+1), where m > 0 is an inte-
ger. The creation of QECC over Fpm [u]/(u2), where
p is a prime, from linear codes is presented in [24].
Based on this studies, [25], introduced several new
non-binary QECC over the ring Fq[v]/(v

3 − v), with
assumption that q = pr and p > 2 is a prime.
Researchers have recently focused on the structural
characteristics of codes over mixed alphabets (the di-
rect product of finite rings). [26], discovered QECC
and LCD codes using mixed alphabets. QECC over
mixed alphabets was constructed by [27]. The re-
searchers , [28], provide non-binary QECC across
mixed alphabets. Inspired by these studies, we inves-
tigate the creation of QECC employing cyclic codes
over the ringR.
This paper’s remaining sections are structured as be-
low: In sect. 2, fundamental facts about the ringR are
presented. In sect. 3, an equivalent condition of self-
duality verified by a linear code, is provided, along
with some helpful results on linear codes over this
ring. In sect. 4, the definition of theGraymap is intro-
duced and a method for representing codes that equal
their dual over Fp to be the images of linear codes by
this map overR, is provided. In sect. 5, cyclic codes’
characterisation over the ringR is covered, where we
also provide a condition that is equivalent to dual con-
taining verified by cyclic codes over R. In sect. 6,
we provide the characteristics of a QECC basing on
cyclic codes overR.

2 Preliminaries
In this work, consider a prime p where p 6= 2 and Fp

represent a finite field, the ring Fp[u] = Fp + uFp +
u2Fp + u3Fp[u] is denoted by R where u is an inde-

terminate with u4 = u3.
The following facts provide some fundamental char-
acteristics of R, which will be employed in the parts
that follow:

1. For any element α ∈ R, there exist δ, σ, ρ, λ ∈
Fp, so we can represent α as α = δ+σu+ρu2+
λu3.

2. Recall that R and Fp[X]/(X4 − X3) are iso-
morphic as rings. Besides that, the finiteness and

commutativity are verified by the ringR, further-
more, it has identity and characteristic equals p.
To prove this result, we need to construct a bijec-
tive ring homomorphism between them. In fact,
we consider the map:

ϑ : Fp[X] −→ Fp[u]
P 7−→ P (u).

The fact that ϑ is a surjective homomorphism is
obvious. It is still necessary to demonstrate that
the kernel of ϑ is the ideal (X4 −X3).
From the fact that u satisfies u4 = u3, it follows
immediately that
(X4 −X3) ⊆ ker(ϑ).
On other hand, Let P ∈ Fp[X] such that ϑ(P ) =
0 inR. Then,
0 = ϑ(P ) = P (u) which implies that P is
divisible by (X4 − X3). Therefore, ker(ϑ) =
(X4 −X3).
Thus, by the isomorphism theorem for rings, we
have

R ' Fp[u],

where u4 = u3.

3. For any element α = δ + σu+ ρu2 + λu3 ofR,
we have

α is unit ⇐⇒
{

δ 6= 0,
δ + σ + ρ+ λ 6≡ 0(mod p)

Moreover, from [13], we have | R× |= (p− 1)2,
whereR× represents the group of units ofR.

4. Let α ∈ R, then

α ∈ R\R× ⇐⇒

 α = σu+ ρu2 + λu3

or
α = δ + σu+ ρu2 − (δ + σ + ρ)u3

where (δ, σ, ρ, λ) ∈ F4
p. Basing on this fact,R is

a semi-local ring.
Indeed, consider I1 = (σu + ρu2 + λu3) and
I2 = (δ + σu+ ρu2 − (δ+ σ+ ρ)u3) to be two
ideals ofR.
Since I1 6= R and I2 6= R, then it is sufficient
to show that I1 ∪ I2 is not an ideal.
It is obvious that the elements of I1 ∪ I2 are non
invertible elements inR.
Let consider δ, σ, ρ, a, b, c ∈ Fp, then we obtain

δ+σu+ρu2− (δ+σ+ρ)u3 = au+ bu2+ cu3

⇒ δ+(σ−a)u+(ρ−b)u2−(δ+σ+ρ+c)u3 = 0

⇒


δ = 0

σ − a = 0
ρ− b = 0

δ + σ + ρ+ c = 0

⇒


δ = 0
σ = a
ρ = b

σ + ρ = −c
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As a result, we have I1∩I2 = (au+bu2−cu3).
therefore I1 ∪ I2 is not an ideal.
Consequently, I1 and I2 are two maximal ideals
ofR. Then, we obtain the result.

5. According to ring theory, a commutative chain
ring is a ring verifying that its ideals create a
unique chain below the inclusion relation. Based
on the previous result, we can see that the ide-
als ofR do not create a chain because I1 and I2
are incomparable, implying thatR is not a chain
ring.

6. The ring A = Fp[X]/(X4 −X3) is isomorphic
to the direct product rings

A ' A1 ×A2,

where A1 = Fp and A2 = Fp[v]/(v
3).

7. Let consider the following mapping:

π1 : A −→ A1 = Fp

α = δ + σu+ ρu2 + λu3 7−→ δ + σ + ρ+ λ

and

π2 : A −→ A2

α = δ + σu+ ρu2 + λu3 7−→ δ + σv + ρv2,

where v3 = 0, then π1 and π2 are the surjective
morphisms of rings.

8. LetR1 andR2 be two rings, such that

R1 = {u3.α | α ∈ A}

and

R2 = {δ+σu+ρu2−(δ+σ+ρ)u3 | (δ, σ, ρ) ∈ F3
p}.

The following mapping:

ξ1 : R1 −→ A1

u3.α 7−→ δ + σ + ρ+ λ,

and
ξ2 : R1 −→ A2

δ + σu+ ρu2 − (δ + σ + ρ)u3 7−→ δ + σv + ρv2,
are the isomorphisms of rings.

9. From the facts above, we can deduce that

R ' Fp × (Fp + vFp + v2Fp),

where v3 = 0.

3 Linear codes overR
From coding theory, a code C that it is linear and
its length equals n over R, is characterized as an
R-submodule of Rn. A codeword is every element
w ∈ C.
Let w = (w0,w1, . . . ,wn−1) ∈ C,

• The Hamming weight of w is known to be
wtH(w) =| {i | wi 6= 0} |, for 0 ≤ i ≤ n− 1.

• For an element α = δ + σu + ρu2 + λu3 ∈
R, its Lee weight can be given as wtL(α) =
wtH(δ, σ − ρ, σ + ρ− λ, δ − σ + ρ+ λ), where
wtH(γ) is the Hamming weight of γ = (δ, σ −
ρ, σ + ρ− λ, δ − σ + ρ+ λ) over Fp.

• From previous definition, it can easily define the
Lee weight of a vector z = (z0, z1, . . . , zn−1) ∈
Rn to be

wtL(z) =

n−1∑
i=0

wtL(zi),

wherewtL(zi) = wtL(δi, σi−ρi, σi+ρi−λi, δi−
σi + ρi + λi) for 0 ≤ i ≤ n− 1.

• The number of places where two codewords x =
(x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)
are different is called the Hamming distance, i.e
dH(x, y) =| {i | xi 6= yi} |.

• The Lee distance is provided by dL(x, y) =
wtL(x− y), where x and y are elements ofRn.

• The minimum Hamming distance of C is d(C) =
min{wtH(w) | 0 6= w ∈ C}.

• The smallest dL(x, y) 6= 0 present the minimum
Lee distance of a code C, where x, y ∈ C. The
minimum Lee weight, on the other hand, is the
codeword with the least nonzero Lee weight.

Given that C is linear, it result that there is equality
between the minimum Lee distance and the minimum
Lee weight.
Recall that

< x, y >Rn=

n∑
i=1

xiyi,

is the definition of the Euclidean inner product of
two components x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) inRn.
If < x, y >Rn equals zero, implies that they are or-
thogonal.
The set

C⊥ = {x ∈ Rn |< x, y >Rn= 0, ∀y ∈ C},

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.3

Noureddine Essaidi, 
Abdelhamid Tadmori, Ossama El Abouti

E-ISSN: 2224-2880 28 Volume 23, 2024



represents the dual of C.
The condition C ⊂ C⊥ implies that C satisfy the self-
orthogonality and verifying the self-duality if there is
equality.
Now, consider a code C over the product ring Fp ×
(Fp+vFp+v2Fp)with assumption that it is linear and
its length is n. Hence, C is represented to be (C1,C2),
where the codes C1 and C2 are considered over the
ringsFp andFp+vFp+v2Fp, respectively. Moreover,
they are linear and their length is n.
Furthermore, C1 and C2 are expressed in the manner
that follow:

C1 = {µ ∈ Fn
p | (µ, 0) ∈ C}

and

C2 = {ν ∈ (Fp + vFp + v2Fp)
n | (0, ν) ∈ C}.

As a result, C is presented by the direct sum of C1 and
C2, with denotation C = C1⊕C2, and each codeword
in C is uniquely written as

w = (r, s+ tv + lv2),

where r, s, t, l ∈ Fn
p .

The generator matrices G1 and G2 are assumed cor-
responding to C1 and C2, respectively. Since C is a
R-module, hence, the matrix G generating C is repre-
sented as follows

G =

(
G1

G2

)
. (1)

Lemma 1 Given a code C = C1 ⊕ C2 that supposed
linear and its length is n over R. Then,

C⊥ = C⊥
1 ⊕ C⊥

2 .

In addition, the next propositions are equivalents:

1. C satisfy the self-orthogonality over R.

2. The self-orthogonality is verified respectively by
C1 and C2 over the rings Fp and Fp+vFp+v2Fp.

Proof 1 Suppose that C1 satisfy the self-
orthogonality over Fp i.e C1 ⊆ C⊥

1 and satisfied by

C2 over Fp + vFp + v2Fp i.e C2 ⊆ C⊥
2 . Since C

is expressed as (C1,C2), moreover, C1 and C2 are

linear , then C ⊆ C⊥.
Conversely, let w = (r, s + tv + lv2) ∈ C, assum-
ing the self-orthogonality of C over R, we get via
Euclidian inner product:

< w,w >Rn=< (r, s+tv+lv2), (r, s+tv+lv2) >Rn

=<< r, r >Fn
p
, < s+tv+lv2, s+tv+lv2 >(Fp+vFp+v2Fp)n>

= 0.
Hence, < r, r >Fn

p
= 0 and < s + tv + lv2, s + tv +

lv2 >(Fp+vFp+v2Fp)n= 0, which implies that r ∈ C⊥
1 ,

and s+ tv+ lv2 ∈ C⊥
1 . Thus, C1 ⊆ C⊥

1 and C2 ⊆ C⊥
2 .

From literature, we recall the definition of the dimen-
sion of C overR as follow:
The dimension of C is the maximum number of lin-
early independent codewords in C. In other words

|C| = max{|F|;F ⊆ C},

where F = {w1,w2, . . . ,wj} is a set of linearly in-
dependent codewords of C.

4 Gray map overR
From section 2, every element α ∈ R is represented
by the expression α = δ + σu + ρu2 + λu3, where
δ, σ, ρ, λ ∈ Fp. The following map is known as Gray
map onR:

Γ : R −→ F4
p

α 7−→ (δ, σ − ρ, σ + ρ− λ, δ − σ + ρ+ λ).

Clearly, Γ is linear and an Fp-module isomorphism.
Similarly, the Gray map Γ is extended naturally toRn

by the following manner:

Γ : Rn −→ F4n
p

(α0, α1, . . . , αn−1) 7−→ (β0, β1, . . . , βn−1),

where αi = δi + σiu + ρiu
2 + λiu

3 and βi =
(δi, σi − ρi, σi + ρi − λi, δi − σi + ρi + λi) for
i = 0, 1, . . . , n− 1.
In the same way that the matrix generating C over R
is given in (1). As aR-module isomorphism, the fol-
lowing matrix generate Γ(C) (Gray image of C) as be-
low:

Γ(G) =

(
Γ(G1)
Γ(G2)

)
.

According to the definition of Γ onRn the following
facts are evident:

Lemma 2 [13] Γ is an isometry from Rn (Lee dis-
tance) to F4n

p (Hamming distance). Moreover, Γ is
Fp-linear.

Lemma 3 [13,21] Consider a code C that supposed
linear and characterized by lengthn, dimension |C| =
pk and the minimum Lee distance dL over R. It re-
sult that the code Γ(C) is linear and parameterized by
length 4n, dimension k and the minimum Hamming
distance dH over Fp, where dH = dL.

Proof 2 Clearly, Γ(C) is a linear code over Fp, ac-
cording to Fp-linearity of Γ from lemma 2. Further-
more, the construction of Γ implies that Γ(C) is an
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element of F4n
p then its length is 4n. It is evident that

Γ is a bijective map from Rn to F4n
p , hence, the di-

mension of Γ(C) equals vp(| C |) = k, where vp is the
p-adic valuation.
From the above lemma, the preserving distance of Γ
ensure that theminimum distance ofΓ(C) is dH = dL.

Theorem 1 [13] Let a code C that supposed linear
over R and characterized as in Lemma 3. Then

C satisfy the self − duality over R
⇓

Γ(C) satisfy the self − duality over Fp.

Moreover, the dual of Γ(C) equals Γ(C⊥).

5 Cyclic codes overR
Now, we introduce a few essential structural facts
about cyclic codes overR, that will be useful in build-
ing of the appropriate QECC.
A code C that it is linear and its length is n over R is
known as cyclic if it satisfies the following condition:
for each codewordw = (w0,w1, . . . ,wn−1) ∈ C, the
codeword ŵ = (wn−1,w0, . . . ,wn−2) ∈ C.
From literature, the fact that C is a cyclic code of
length n overR equivalent to C is viewed as an ideal

in the polynomial ring R̃ = R[ε]/(εn − 1) by the
followingR-module isomorphism:

ϕ : Rn → R̃ = R[ε]/(εn − 1)
w 7→ w0 +w1ε+ . . .+wn−1ε

n−1 + (εn − 1)

In fact, it is sufficient that we write each w =
(w0,w1, . . . ,wn−1) ∈ C as polynomial w(ε) =
w0 + w1ε + . . . + wn−1ε

n−1 ∈ R[ε], which called
the associated polynomial of C. Then, we can write
ŵ = (wn−1,w0, . . . ,wn−2) as ŵ(ε) = wn−1 +
w0ε+ . . .+wn−2ε

n−1 ∈ R[ε] and we obtain ŵ(ε) =
w(ε)ε−wn−1(ε

n − 1), it results that

ŵ(ε) ≡ w(ε)ε mod (εn − 1).

Furthermore, it is easily seen that

w(ε) ∈ Cmod(εn−1) ⇐⇒ w(ε)ε ∈ Cmod(εn−1).

We repeat this procedure, we get

w(ε)ε ∈ Cmod(εn−1) ⇐⇒ w(ε)ε2 ∈ Cmod(εn−1).

By induction steps, it results that w(ε)εi ∈
Cmod (εn − 1), for all i ∈ N.
This leads us to the conclusion that a code C with as-
sumption that it is linear and its length is n, is consid-
ered cyclic over R equivalent to ϕ(C) is an ideal of

R̃.
The following results are required for the next part.

Lemma 4 Consider a code C = C1 ⊕ C2 with as-
sumption that it is linear and its length is n over R.
Hence, the following equivalence holds:

C is cyclic over R
m{

The codes C1 and C2 are cyclic over the
rings Fp and Fp + vFp + v2Fp, resp.

Proof 3 Let (r0, r1, . . . , rn−1) ∈ C1 and (s0 + t0v +
l0v

2, s1+t1v+l1v
2, . . . , sn−1+tn−1v+ln−1v

2) ∈ C2.
Assume that the cyclicity is verified by C1 over Fp and

by C2 over Fp + vFp + v2Fp. We consider an el-
ement w = (w0,w1, . . . ,wn−1) of C, where wi =
(ri, si + tiv + liv

2), for i = 0, 1, . . . , n − 1. We de-
duce that
(wn−1,w0, . . . ,wn−2) = (rn−1, r0, . . . , rn−2) +
(sn−1+ tn−1v+ ln−1v

2, s0+ t0v+ l0v
2, . . . , sn−2+

tn−2v + ln−2v
2).

Since (rn−1, r0, . . . , rn−2) ∈ C1 and (sn−1+ tn−1v+
ln−1v

2, s0+t0v+l0v
2, . . . , sn−2+tn−2v+ln−2v

2) ∈
C2, then

(wn−1,w0, . . . ,wn−2) ∈ C1 ⊕ C2 = C,

as a result, C is a cyclic code over R.
On other hand, suppose thatwi = (ri, si+tiv+liv

2),
for i = 0, 1, . . . , n − 1. Then (w0,w1, . . . ,wn−1) is
an element of C. According to the hypothesis, C is a
cyclic code over R, hence (wn−1,w0, . . . ,wn−2) ∈
C. Furthermore,
(wn−1,w0, . . . ,wn−2) = (rn−1, r0, . . . , rn−2) +
(sn−1+ tn−1v+ ln−1v

2, s0+ t0v+ l0v
2, . . . , sn−2+

tn−2v + ln−2v
2).

It results that (rn−1, r0, . . . , rn−2) ∈ C1 and (sn−1 +
tn−1v+ ln−1v

2, s0+ t0v+ l0v
2, . . . , sn−2+ tn−2v+

ln−2v
2) ∈ C2, which ensure the result.

In the following parts, we set a code C = C1⊕C2 over
R that supposed cyclic and its length equals n. The
result below gives the polynomial generating C over
R.

Theorem 2 A unique polynomial χ(ε) ∈ R[ε] exists
and generating C as:

C = (χ(ε))

= (χ1(ε), χ2(ε) + vχ3(ε) + v2χ4(ε)),

where the polynomial χ1(ε) generate C1 over Fp and

the polynomial χ2(ε)+vχ3(ε)+v2χ4(ε) generate C2

over Fp+vFp+v2Fp. Additionally, ε
n−1 is divided

by χ(ε) over R.

Proof 4 The existence and uniqueness of χ(ε) are en-
sured by that of χ1(ε), χ2(ε), χ3(ε) and χ4(ε).
In fact, we know there are unique polynomials χ1(ε),
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χ2(ε), χ3(ε) and χ4(ε) in Fp[ε] such that C1 =
(χ1(ε)) and C2 = (χ2(ε)+vχ3(ε)+v2χ4(ε)) where
χi(ε) divides the polynomial ε

n − 1 in Fp[ε] for i =
1, 2, 3, 4 and χ2(ε) + vχ3(ε) + v2χ4(ε) divides the
polynomial εn − 1 in (Fp + vFp + v2Fp)[ε]. Hence

C = (C1,C2)

= (χ1(ε), χ2(ε) + vχ3(ε) + v2χ4(ε))

= (χ(ε)),

In conclusion, χ(ε) divides εn − 1 over R.

Remark 1 The fact that C = C1 ⊕ C2 and C1 =
(χ1(ε)) andC2 = (χ2(ε)+vχ3(ε)+v2χ4(ε)), allows
us to note that:

1.
| C |= | C1 || C2 |
= pn−deg(χ1(ε))p3n−deg(χ2(ε))−deg(χ3(ε))−deg(χ4(ε))

= p4n−deg(χ1(ε))−deg(χ2(ε))−deg(χ3(ε))−deg(χ4(ε))

2. From the existence and uniqueness of χ(ε), we

can deduce that every ideal of R̃ is principal, R̃
is principal.

Recall that, the polynomial:

φ∗(ε) = εdeg(φ(ε))φ(ε−1),

present the reciprocal of the polynomial φ(ε) = e0 +
e1ε+ . . .+ emεm, where ei ∈ R for 0 ≤ i ≤ m.
Moreover, φ(ε) is called self-reciprocal if φ(ε) =
φ∗(ε).

Corollary 1 [13] There exist polynomials φi(ε) di-
vides εn − 1, i.e. φi(ε)χi(ε) = εn − 1 in Fp[ε], for
i = 1, 2, 3, 4, such that

C⊥ = (φ(ε))

= (φ∗
1(ε), φ

∗
2(ε) + vφ∗

3(ε) + v2φ∗
4(ε)),

and | C⊥ |= pdeg(χ1(ε))+deg(χ2(ε))+deg(χ3(ε))+deg(χ4(ε)),
where, φ∗

i (ε) is the reciprocal polynomials of φi(ε),
for i = 1, 2, 3, 4.

6 QECC from cyclic codes overR
We start this part by presenting the CSS construction,
which is a fundamental structure of QECC and was
presented by Calderbank, Shor and Steane. Next, we
give our contribution regarding QECC overR.
The following arguments explain why creating QECC
from cyclic codes over R is preferable: The ring R
has some similar characteristics as the finite field Fp.
Furthermore, the ring R may be used to generate op-

timal cyclic codes. Since every ideal over R̃ is princi-
pal, QECC of any length may be simply created. The

number of cyclic codes overR for a particular length
n is substantially more than those over finite field Fp.
In addition, cyclic codes over R can result in good
QECC. We anticipate that cyclic codes over R will
be an excellent source for creating excellent QECC.

Lemma 5 [3] Consider two codes C1 and C2, with
assumption that they are linear over Fp, where p
is a prime and parameterized by [n, k1, d1]p and
[n, k2, d2]p, respectively, and satisfying the condition

C⊥
2 ⊆ C1. Moreover, let d = min{wt(x) | x ∈

(C1\C⊥
2 ) ∪ (C2\C⊥

1 )} with d ≥ min{d1, d2}.
It result, the existence of a QECC over Fp is guar-
anteed and parameterized by length n, dimension
k1 + k2 − n and minimum distance d.
Furthermore, if C⊥

1 ⊆ C1, hence there exist a QECC
over Fq characterized by length n, dimension n−2k1
and minimum distance d1, where d1 = min{wt(x) |
x ∈ (C⊥

1 \C1)}.
Calderbank and colleagues have provided an es-

sential conclusion that establishes the equivalence
condition verified by cyclic codes over finite fields
of dual containing as follows:

Lemma 6 [6] Consider a cyclic code C1 over the fi-
nite field Fp and generated by the polynomial χ1(ε).
Then,

C⊥
1 ⊆ C1 ⇐⇒ εn − 1 ≡ 0 (mod χ1(ε)χ

∗
1(ε)),

where χ∗
1(ε) is the reciprocal polynomial of χ1(ε).

In a similar manner, we can derive the following con-
clusion:

Lemma 7 Consider a cyclic code C2 over Fp +
vFp+v2Fp and generated by the polynomial χ2(ε)+
vχ3(ε) + v2χ4(ε). Then,

C⊥
2 ⊆ C2 ⇐⇒ εn − 1 ≡ 0 (mod χi(ε)χ

∗
i (ε)),

where χ∗
i (ε) is the reciprocal polynomial of χi(ε) for

i = 2, 3, 4.

Proof 5 The proof can be given by using the method
in [6].

Using the fact that C = C1 ⊕ C2, the next theorem
provides an equivalence condition satisfied by cyclic
code of dual containing overR.

Theorem 3 Let C generated by the polynomial χ(ε).
Then the following equivalence is established,

C⊥ ⊆ C ⇐⇒



εn − 1 ≡ 0 (mod χ1(ε)χ
∗
1(ε))

and
εn − 1 ≡ 0 (mod χ2(ε)χ

∗
2(ε))

and
εn − 1 ≡ 0 (mod χ3(ε)χ

∗
3(ε))

and
εn − 1 ≡ 0 (mod χ4(ε)χ

∗
4(ε)),
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where χ∗
i (ε) is the reciprocal polynomial of χi(ε) for

i = 1, 2, 3, 4.

Proof 6 Via using Theorem 2, Lemma 6 and Lemma
7, the proof can be easily obtained.

Definition 1 A QECCQ overR of length n is a sub-
space of the tensor product R⊗n. The encoding pro-
cess is represented by an encoding map:

E : R⊗k −→ Q,

which encodes k logical qubits into n physical qubits.

Based on lemma 5 and theorem 3, the next QECC con-
struction can be derived.

Theorem 4 Let Γ(C) the Gray image of C character-
ized by length 4n, dimension k and minimum distance
dL.
Suppose that C⊥ ⊂ C, then the existence of a QECC
over R is ensured and parameterized by length 4n,
dimension 2k − 4n and minimum distance dL, where
dL denotes the minimum Lee distance of C.
We can denote the parameters of this QECC by
[4n, 2k − 4n, dL] over R.

Example 1 LetR = F3× (F3+ vF3+ v2F5), where

v3 = 0 and n = 24. Then, ε2
4 − 1 = (ε + 1)(ε +

2)(ε2+1)(ε2+ε+2)(ε2+2ε+2)(ε4+ε2+2)(ε4+
2ε2 + 2) over F3[ε]. Let χ(ε) = (χ1(ε), χ2(ε) +
vχ3(ε) + v2χ4(ε)) where χ1(ε) = (ε2 + 1) and
χ2(ε) = χ3(ε) = χ4(ε) = (ε2 + ε + 2) and let a
code C that it is linear over R, where

C = (χ(ε))

= ((χ1(ε), χ2(ε) + vχ3(ε) + v2χ4(ε))).

Clearly, the code C is cyclic, generated by χ(ε) over

R and characterized by length 24, dimension 32
3.3

and dL = 2. Therefore, the code Γ(C) satisfy the
linearity and parameterized by [26, 23.3, 2] over F3.

From Corollary 1, we can represent the dual code C⊥

by

C⊥ = ((φ∗
1(ε), φ

∗
2(ε) + vφ∗

3(ε) + v2φ∗
4(ε))).

It result that C⊥ ⊆ C. Then, by Theorem 4, it
is possible to construct a QECC parameterized by
[26, 24.3, 2] over F3 × (F3 + vF3 + v2F3).

Example 2 LetR = F5× (F5+ vF5+ v2F5), where

v3 = 0 and n = 26. Then, ε2
6 − 1 = (ε + 1)(ε +

2)(ε+3)(ε+4)(ε2+2)(ε2+3)(ε4+2)(ε4+3)(ε8+
2)(ε8 + 3)(ε16 + 2)(ε16 + 3) over F5[ε]. Let χ(ε) =
(χ1(ε), χ2(ε) + vχ3(ε) + v2χ4(ε)) where χ1(ε) =

(ε2 +2) and χ2(ε) = χ3(ε) = χ4(ε) = (ε2 +3) and
let a code C that it is linear over R, where

C = (χ(ε))

= ((χ1(ε), χ2(ε) + vχ3(ε) + v2χ4(ε))).

Clearly, the code C is cyclic, generated by χ(ε) over

R and characterized by length 26, dimension 32
3.31

and dL = 2. Therefore, the code Γ(C) satisfy the
linearity and parameterized by [28, 23.31, 2] over F5.

From Corollary 1, we can represent the dual code C⊥

by

C⊥ = ((φ∗
1(ε), φ

∗
2(ε) + vφ∗

3(ε) + v2φ∗
4(ε))).

It result that C⊥ ⊆ C. Then, by Theorem 4, it
is possible to construct a QECC parameterized by
[28, 24.3.5, 2] over F5 × (F5 + vF5 + v2F5).

7 Discussion
We used PARI GP and Magma to create some new
QECC compared with pre-existing research. Table
1 (Appendix 8), Table 2 (Appendix 8), Table 3 (Ap-
pendix 8), Table 4 (Appendix 8), Table 5 (Appendix
8), Table 6 (Appendix 8), and Table 7 (Appendix 8),
indicate our results of constructing QECC from cyclic
codes over Fp × (Fp + vFp + v2Fp) for 3 ≤ p ≤ 19,
respectively. We varied i from 4 to 40 and we took
deg(χj) = 2 for j = 1, 2, 3, 4. As a result, we ob-
tained QECC over Fp × (Fp + vFp + v2Fp) which its
dimensions 2k–4n is divided by p and 24. The first
column 2i represents the length of cyclic code C over
Fp × (Fp + vFp + v2Fp), The parameters of the Γ(C)
are denoted in the second column and the third col-
umn stands for the characteristics of the QECC over
Fp × (Fp + vFp + v2Fp).

8 Conclusion
In this study, we use the Calderbank, Shor, and Steane
(CSS) building to create QECC from cyclic codes
over the finite nonlocal ring R. In addition, we or-
ganize and provide several interesting examples. The
results ensure that cyclic codes over finite nonlocal
rings are an excellent resource for building QECC.
This study is extremely important for quantum com-
munication. We will build better QECC in the fu-
ture using cyclic codes over-generalized finite non-
local rings.
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Appendix

Table 1: QECC over F3 × (F3 + vF3 + v2F3)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

24 [26, 23.7, 2] [26, 24.3, 2]

26 [26, 23.31, 2] [28, 24.3.5, 2]

28 [210, 23.127, 2] [210, 24.32.7, 2]

210 [212, 23.7.73, 3] [212, 24.3.5.17, 3]

212 [214, 23.23.89, 2] [212, 24.3.11.31, 2]

214 [216, 23.8191, 4] [216, 24.32.5.7.13, 4]

216 [218, 23.7.31.151, 2] [218, 24.3.43.127, 2]

218 [220, 23.131071, 2] [220, 24.3.5.17.257, 2]

220 [222, 23.524287, 2] [222, 24.33.7.19.73, 2]

222 [224, 23.72.127.137, 2] [224, 24.3.52.11.31.41, 2]

224 [226, 23.47.178481, 2] [226, 24.3.23.89.683, 2]

226 [228, 23.31.601.1801, 2] [228, 24.32.5.7.13.17.241, 2]

228 [230, 23.7.73.262657, 2] [230, 24.3.2731.8191, 2]

230 [232, 23.233.1103.2089, 2] [232, 24.3.5.29.43.113.127, 2]

232 [234, 23.2147483647, 2] [234, 24.32.7.11.31.151.331, 2]

234 [236, 23.7.23.89.599479, 2] [236, 24.3.5.17.257.65537, 2]

236 [238, 23.31.71.127.122921, 2] [238, 24.3.43691.131071, 2]

238 [240, 23.223.616318177, 2] [240, 24.3.174763.524287, 2]

240 [242, 23.7.79.8191.121369, 2] [242, 24.3.174763.524287, 2]

Table 2: QECC over F5 × (F5 + vF5 + v2F5)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

26 [28, 23.31, 2] [28, 24.3.5, 2]

210 [212, 23.7.73, 2] [212, 24.3.5.17, 2]

214 [216, 23.8191, 2] [216, 24.32.5.7.13, 2]

218 [220, 23.131071, 3] [220, 24.3.5.17.257, 3]

222 [224, 23.72.127.337, 2] [224, 24.3.52.11.31.41, 2]

226 [228, 23.31.601.1801, 3] [228, 24.32.5.7.13.17.241, 3]

230 [232, 23.233.1103.2089, 2] [232, 24.3.5.29.43.113.127, 2]

234 [236, 23.7.23.89.599479, 2] [236, 24.3.5.17.257.65537, 2]

238 [240, 23.223.616318177, 2] [240, 24.33.5.7.13.19.37.73.109, 2]
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Table 3: QECC over F7 × (F7 + vF7 + v2F7)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

25 [27, 23.3.5, 2] [27, 24.7, 2]

28 [210, 23.127, 2] [210, 24.32.7, 2]

211 [213, 23.3.11.31, 2] [213, 24.7.73, 2]

214 [216, 23.8191, 2] [216, 24.32.5.7.13, 2]

217 [219, 23.3.5.17.257, 2] [219, 24.7.31.151, 2]

220 [222, 23.524287, 2] [222, 24.33.7.19.73, 2]

223 [225, 23.3.23.89.683, 2] [225, 24.72.127.337, 2]

226 [228, 23.31.601.1801, 2] [228, 24.32.5.7.13.17.241, 2]

229 [231, 23.3.5.29.43.113.127, 2] [231, 24.33.7.73.262657, 2]

232 [234, 23.2147483647, 2] [234, 24.32.7.11.31.151.331, 2]

235 [237, 23.3.43691.131071, 2] [237, 24.7.23.89.599479, 2]

238 [240, 23.223.616318177, 2] [240, 24.33.5.7.13.19.37.73.109, 2]

Table 4: QECC over F11 × (F11 + vF11 + v2F11)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

212 [214, 23.23.89, 3] [214, 24.3.11.31, 3]

222 [224, 23.72.127.337, 3] [224, 24.3.52.11.31.41, 3]

232 [234, 23.2147483647, 3] [234, 24.32.7.11.31.151.331, 3]

Table 5: QECC over F13 × (F13 + vF13 + v2F13)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

214 [216, 23.8191, 3] [216, 24.32.5.7.13, 3]

226 [228, 23.31.601.1801, 3] [228, 24.32.5.7.13.17.241, 3]

238 [240, 23.223.616318177, 3] [240, 24.33.5.7.13.19.37.73.109, 3]
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Table 6: QECC over F17 × (F17 + vF17 + v2F17)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

210 [212, 23.7.73, 2] [212, 24.3.5.17, 2]

218 [220, 23.131071, 2] [220, 24.3.5.17.257, 2]

226 [228, 23.31.601.1801, 2] [228, 24.32.5.7.13.17.241, 2]

234 [236, 23.7.23.89.599479, 3] [236, 24.3.5.17.257.65537, 3]

Table 7: QECC over F19 × (F19 + vF19 + v2F19)

2i Γ(C) : [4n, k, dL] QECC: [n, 2k − 4n, dL]

220 [222, 23.524287, 3] [222, 24.33.7.19.73, 3]

238 [240, 23.223.616318177, 2] [240, 24.33.5.7.13.19.37.73.109, 2]
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