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1 Introduction

The research on Ergodic theory began in the 1930s,
initiated in [1] and [2], and originated from applied
physics and statistical mechanics. The fundamental
problem in Ergodic theory is to study and find the nec-
essary conditions for when the sequences of Cesaro

n
averages » T (-) are convergent where 7" was a
j=1

mapping defined on a suitable space. The theorem
of mean ergodicity was extended for bounded linear
operators on Banach spaces in [3]] and implemented
to Markoff processes in [4]. Moreover, Lorentz-
invariant Markoff processes in relativistic phase space
is studied in [5]]. Thenceforward, ergodic theory
and its applications have certainly evolved in various
mathematical and statistical problems and has been
studied by many researchers. For a systematic prepa-
ration and development of ergodic theorems, we can
refer to the classic book [l6], which contains rich liter-
ature in this area. In [7, Section VIIL5], the averages
of iterates of a linear operator 7" is examined and dis-
cussed and then tried to throw some light upon the
problems which are occured in probability and statis-
tical mechanics. The conditions of an operator 7" in an
arbitrary complex Banach space Y were given which
are necessary and sufficient for the convergence in Y
of the averages

1 n—1 '
An) = > T
j=0

of the iterates of 1. These general conditions have
been interpreted for operators in Lebesgue spaces
which occur in statistical mechanics and probability.

BC-valued functions arise naturally in various
mathematical fields, including probability theory,
mathematical analysis, and functional analysis, and
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understanding their properties is crucial for advanc-
ing these areas of study. Indeed, the study of mod-
ules with bicomplex scalars in the context of func-
tional analysis has gained significant attention in re-
cent years. One influential work that has contributed
to this area is the book [I8]. The book likely presents
groundbreaking results and insights related to this
topic. Functional analysis traditionally deals with
vector spaces over a field, such as the complex num-
bers or the real numbers. However, by considering
modules with bicomplex scalars, where the scalars are
elements of the bicomplex numbers, a broader frame-
work is introduced. This extension allows for the
exploration of new mathematical structures and the
investigation of properties beyond the classical set-
ting. The book [{&] is likely a valuable resource for
researchers and enthusiasts interested in this area. It
likely presents notable results, techniques, and appli-
cations pertaining to the study of modules with bi-
complex scalars in the context of functional analy-
sis. These results may encompass various aspects of
functional analysis, such as operator theory, function
spaces, and spectral theory, among others. They may
shed light on the behavior of modules with bicomplex
scalars, reveal connections to other areas of mathe-
matics, and potentially find applications in physics,
engineering, or other disciplines.

The series of articles mentioned in the references
highlight the systematic study of topological bicom-
plex modules and various fundamental theorems re-
lated to them. Here is a breakdown of the articles and
their contributions:

In [9], the authors studied of topological bicom-
plex modules, likely exploring their topological prop-
erties and investigating concepts such as conver-
gence, continuity, and compactness in this context.

Fundamental theorems, including the principle of
uniform boundedness, open mapping theorem, inte-
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rior mapping theorem for bicomplex modules and
closed graph theorem are presented in [[10]].

In [[11]], collaboration with [[10]], the study of fun-
damental theorems are extended to the setting of topo-
logical bicomplex modules. The focus may be on
generalizing classical results from functional analy-
sis to the bicomplex module framework, providing a
deeper understanding of their properties. Also the au-
thors likely delve further into the study of topological
hyperbolic modules, topological bicomplex modules,
exploring the properties of linear operators, continu-
ity, and related topological concepts specific to these
settings.

The Hahn-Banach theorem for bicomplex mod-
ules and hyperbolic modules are examined in [12]].

The book [[13]] likely provides an in-depth explo-
ration of bicomplex analysis and geometry. It may
cover a wide range of topics, including holomorphic
functions, integration, differential equations, and ge-
ometric properties specific to the bicomplex domain.

In [[14]], the authors focused on BC bounded linear
operators and bicomplex functional calculus. It may
provide a detailed study of operators acting on bicom-
plex modules and explore the construction and prop-
erties of functional calculi specific to the bicomplex
framework.

These references collectively represent significant
contributions to the study of bicomplex modules,
functional analysis, and related areas. They showcase
the exploration of properties, the development of new
theorems, and the application of functional analysis
techniques in the context of bicomplex numbers. Re-
searchers and readers interested in these topics can re-
fer to these articles and the books for detailed insights
into the respective areas of study.

2 Preliminaries on BC and BC

Lebesgue spaces
Now, we will give a small summary of bicomplex
numbers with some basic properties .The set bicom-
plex numbers BC which is a four-dimensional exten-
sion of the complex numbers is defined as

BC := {W = w; + jwa| wi,ws € C(i)}

where ¢ and Jj are imaginary units satisfying ij = jt,

i? = j2 = —1. Here C(i) is the field of complex
numbers with the imaginary unit 7. According to ring
structure: For any Z = 21 4+ jz2, W = wy + jwsy in
BC usual addition and multiplication are defined as

Z+W =
ZW =

The set BC forms a commutative ring under the usual
addition and multiplication of bicomplex numbers.

(21 +w1) + j (22 + w2)

(lel — Zng) + ] (22w1 + leg) .
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The bicomplex numbers have a unit element denoted
as lgc := 1 and this acts as the identity for mul-
tiplication, such that for any bicomplex number W,
1W = W1 = W. In the sense of module structure,
the set BC is a module over itself. This means that BC
satisfies the properties of a module, including scalar
multiplication and distributivity. The product of the
imaginary units ¢ and j bring out a hyperbolic unit &,
such that k2 = 1. This implies that & is a square root
of 1 and is distinct from ¢ and j. The product opera-
tion of all units ¢, j, and k in the bicomplex numbers
is commutative. Specifically, the following relations
hold:
ij = k,jk = —iand ik = —j.

These properties summarize the basic characteristics
of bicomplex numbers and their algebraic structure.

Hyperbolic numbers D are a two-dimensional ex-
tension of the real numbers that form a number system
known as the hyperbolic plane or hyperbolic plane
algebra. They can be represented in the form a =
B, + kB4, where 3, and 3, are real numbers, and & is
the hyperbolic unit. In the hyperbolic number system,
for any two hyperbolic numbers o = 3 + kB, and
v = 1 + kd2, addition and multiplication are defined
as follows:

(B1+61) + k(By + 02)
ay = (8101 + Bod2) + k(8162 + Ba61) -

The hyperbolic numbers form a ring, however, un-
like the complex numbers, the hyperbolic numbers do
not have a multiplicative inverse for all nonzero el-
ements. The nonzero hyperbolic numbers that have
multiplicative inverses are called units. The bicom-
plex numbers contain two imaginary units ¢ and j, and
the hyperbolic numbers can be taken as a subset of the
bicomplex numbers by restricting the imaginary part
of j to be zero.

Let W = w; + jwy € BC where wy, wy € C(1).
By the notation of W with imaginary units ¢ and 7,
the conjugations are formed for bicomplex numbers
in [8]], [13] as W1 = w1 + jws, Wa = w1 — jws
and W3 = w; — jwy where w; and w3 are the
usual complex conjugates of wy, wy € C(i). For
any bicomplex number W, they also wrote the three
moduli of W in [, [13]] and [[15]. Furthermore,
BC is a normed space with the norm |||z =

|wi|? + |we|? for any W = w; + jws in BC. Ac-
cording to this, |W1W2gc < v2 [Willpc [W2llzc
for every Wi, Wy € BC, and finally BC is a quasi-
Banach algebra [§]].

If the hyperbolic numbers e; and e defined as

a+y=

1—-k

Ltk
e1 = —— and ey = ,
! 9 2 2

Volume 23, 2024



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.6

then it is easy to see that the set {e1,es} is a funda-
mental set in C (¢)-vector space BC and linearly inde-
pendent. The set {eg, ea} also satisfies the following
properties:

(e1); =e1, (e2); = ez,
e1t+e=1, ej-ea=0

2 2
€] = €1, €3 =e,

with [le1|[gc = [le2llpc = @ By using this linearly
independent set {e1, ea}, any W = wy + jwy € BC
can be written as a linear combination of e; and es
uniquely. That is, W = w; + jws can be written as

(1

where z1 = w1 —iws and zo = w1 + tws [8]]. Here 21
and z3 are elements of C (i) and the formula in (1)) is
called the idempotent representation of the bicomplex
number W.

Besides the Euclidean-type norm ||-||p., another
norm named with (ID-valued) hyperbolic-valued norm
|W |, of any bicomplex number W = e 21 + ep2s is
defined as

W =wi + jwa = €121 + €222

(W, = e1]z1] + ezl

For any hyperbolic number o« = 5, + k85 € D, an
idempotent representation can also be written as

o =e1aq + et

where ay = 1 + (B9 and apy = [, — [, are real
numbers. If ¢y > 0 and ap > 0 for any o =
B, + kB, € D, then we say that « is called a posi-
tive hyperbolic number. Thus, the set of non-negative
hyperbolic numbers D™ U {0} can be defined by

D*U{0} = {51+k621ﬁ%—5520>5120}
= {eja; +egag: g,y > 0}.

Now, let o and ~ be any two elements of ID. In [§],
[12] and [13]], a relation =< is defined on D by

a=xy & y—acDtuU{0}.

It is showed in [[8] that this relation <" has reflexive,
anti-symmetric and transitive properties. Therefore
”=<" defines a partial order on D. If idempotent rep-
resentations of the hyperbolic numbers « and ~ are
written as &« = ejay + exap and v = ey + €29,
then o = « implies that oy < v, and ag < 7,. By
o < v, wemean oy < 7 and ag < y9. For more de-
tails on hyperbolic numbers ID and partial order "<,
one can refer to [8, Section 1.5], [13]] and [[15]].

Definition 1 Let A be a subset of D. A is called a D-
bounded above set if there is a hyperbolic number o
suchthat 6 = o foralla € A. If A C D is D-bounded
from above, then the D-supremum of A is defined as

the smallest member of the set of all upper bounds of
A [13).
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In other words, the hyperbolic number A = e; A1 +
eaAo, where A\ and Ay are real numbers, is the -
supremum of A if

(1) e1ag+esas = eg A1 +exdg foreacha = ejaq +
egaip € A

(2) For any ¢ = eje1 + egea > 0, there exists
0 = e101 + eafy € A such that e107 + esfs >
e1 (A1 —e1) + ea (A2 — e2) are satisfied.

Remark 2 Let A be a D-bounded above subset of
D and A1 = {)\1 te1A] +eghg € A}, Ay =
{2 1 e1 A1 + e2 Xy € A}. Then the supp A is given by

suppA = e1 sup A; + ez sup As.

Similarly, for any D-bounded below set A, D-infimum
of A is defined as

infpA = ey inf A1 + eg inf Ay
where A1 and As are as above [[8, Remark 1.5.2].

Definition 3 4 BC-module (X, +,-), where (X, +)
is an abelian group, is called a topological BC-
module, if there is a topology Tx in X, so that the
operations + : X X X = X and - : BC x X — X
are continuous.

The following result is known from [[11]].

Remark 4 4 BC-module space or D-module space
Y can be decomposed as

Y =e1Y1 +eaYs ()

where Y1 = e1Y and Yo = e3Y are R-vector or
C (i) —vector spaces. The spelling in (2) is called as
the idempotent decomposition of the space Y. There-
fore, any element y in'Y can be uniquely inscribed as
Yy = e1y1 + eays with yy € Y1 and y2 € Ya.

Definition 5 Let 91 be a o-algebra on a set Q). A
bicomplex-valued function p = pie; + pqgea de-
fined on Q is called a BC-measure on M if py, po
are complex measures on M. In particular if 1y, po
are positive measures on N i.e range of both iy, Lo
are [0, 00| then p is called a D-measure on MM and
if uy, po are real measures on MM i.e range of both
1, po are [0,00) then p is called a D -measure on

M [I16].

Assume that Q2 = (2,90, i) is a o-finite complete
measure space and f1, f, are complex-valued (real-
valued) measurable functions on 2. The function hav-
ing idempotent decomposition f = fie; + foeo
is called as a BC-measurable function and |f|, =
|f1] e1+ | f2| e2 is called a D-valued measurable func-
tion on €2 [17]. Thus for any given complex valued
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function space (F'(12), ||-||), one can create a BC-
valued function space (F (2, BC), ||-||c) by com-
bining all f, f2 and bringing out functions of the type
[ = fiei+ foeg where fi and fyarein (F (), ||-|l)

with [|£13c = % (I3 + 11212 Similar defini-

tion can be given for any hyperbolic measurable func-
tion.

For any BC-valued measurable function f =
fie1 + fae, it is easy to see that |f|, = |fi]e1 +
| f2| e2 is D-valued measurable. Because if f =
fie1+ foes is a BC-valued measurable function, then
f1 and fo are C-measurable functions. Therefore
real and imaginary parts of f; and fy are R-valued
measurable and so does |f1]| and |fz]. As a result,
| f|;. is D-measurable. Also for any two BC-valued
measurable functions f and g, it can be easily seen
that their sum and multiplication functions are also
BC-measurable functions [[16]], [17]. More results on
ID-topology such as D-limit, D-continuity, D-Cauchy
and D-convergence etc. can be found in [16]], [18]],
[19] and the references therein.

Definition 6 Let 91 be a o-algebra on a set §) and
W = eipy + eapy be a BC-measure on M. Then
two bicomplex valued BC-measurable functions f =
e1f1 + eafo and g = e1g1 + eags on Q) are called to
be equal (p-a.e) if fi = g1 (ni-a.e) and fo = go
(L9-a.e.).

Definition 7 Let i1 = ey 41 +eapy be a D-measure on
an arbitrary measure space (2, M) and 1 < p < oo.
Suppose LP (Q, uy) and LP (Q, uy) denote the lin-
ear space of all equivalence classes of complex val-
ued,measurable functions fi and fo on Q with

/|f1 ()P dpy < 0o and /|f2 ()P dpgy < oo.
Q Q

Then Ly (Q, 9, u) = LY () consists of all bicom-
plex valued, bicomplex measurable functions (equiv-
alence classes) f = ei1fi + eafa on Q such that

f1 € LP (1) and fo € LP (9, 1) f19].

Proposition 8 For 1 < p < oo, LL (u) is a BC-
module under usual addition operation in functions
and bicomplex scalar multiplication [19)].

Let 1 < p < oco. By using Definition [3] and Re-
mark [4] we may write an idempotent decomposition

Lige (1) = erLP (py) + ea L (1)

for LE. (u) where LP (1) and LP (p1,) are usual
Lebesgue spaces [[19]. Therefore a hyperbolic (D-
valued) norm can be defined on the BC-module
L (p) with

1fllpp = evllfrll, + ez f2ll,
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forany e1 fi +eafo = f € Lic (1)

Proposition9 Let 1 < p < oo The space

(Lﬁ(C (), ”'Hm@) is a bicomplex Banach module

[19].
3 Mean Ergodic Theorem

In [20], the mean ergodic theorem in bicomplex Ba-
nach modules is studied. Also, a result on ergodic-
ity is given for bounded bicomplex strongly contin-
uous semigroups in bicomplex Banach modules. In
this section, we will prove a mean ergodic theorem, in
the Von Neumann sense, which can be written for av-
erages of iterates of an operator 7" acting on L (1)
where 1 < p < oo.

Proposition 10 Let 1 < p < co. The set
S ={s = si1e1 + s2e2 | s1, s2 € S}

is D—dense in Li (1) where S is the set of simple
functions.

Proof. Letc = e1e1 + €260 > Oand f = e f1 +
e2 f be any element of L (). By the definition of
LY (), the functions f; and fo belong to LP (p1;)
and LP (uy). Since the set of simple functions S is
dense in LP (pq) and LP (u,), then there exist simple
functions h; and h9 such that

Hfl - hl”p <ep and ||f2 — h2||p < €2.

If one call ethy + eahy as h, then h € S and
|f —hll,p < e This means that S is D—dense in

Lic (). w

Lemma 11 Let (X,9M,9) be a finite positive mea-
sure space, X # 0 be a complex Banach space and
p be a map of X into itself which satisfies the follow-
ing conditions:

(i) o 1 (BE) € Mforall E €M
(ii) If9(E) = Othend (¢ ' (E)) =0.

Then for every function u from X to RN the following
operator T defined as

T (u) () =ule()) “4)

maps measurable functions into measurable functions
and V-equivalent functions into V-equivalent func-
tions. Furthermore T is a continuous linear map of
the space of all N-valued YV—measurable functions
into itself.

3

Proof. See [7, VIII.5.6, Lemma 6] m
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Lemma 12 Let (X,9M, 1) be a finite positive mea-
sure space, Y # 0 be a bicomplex Banach space. As-
sume that @ is a map of X into itself which satisfies
(l) Then for any p > 1, the linear operator T defined
in the bicomplex linear space Y X of all functions on
XintoY by

Tu(x) =u(p(x)), ©)

maps LY (p) into itself if and only if there exists
M = Mie; + Mseg = 0 such that

r € X, uey™X

M= ©
— sup i (o7 (B)) er+pg (97! (E)) e2
EEDI% py (E)er + py (E) e '

Furthermore, when this condition is satisfied T is
a D—continuous D—linear map on Li (1) and

1T se = M.

Proof. Let pu (-) = pq () €14 415 (+) €2 be a DT —mea-
sure. If u(E) = pq (E)er + puy(E)es = 0 for
any E € 9, then M will be taken zero. Now as-
sume that 1 (E) = py (E)e1 + pg (E) ez = 0. If u
is a BC-measurable function and @ is defined as in
(3), then is easy to see that Tu is BC-measurable
by (5). Firstly suppose that T maps LY. (1) into
1tself It will be shown that T" is D— closed and
hence D—continuous by [[10]]. Since 7" is defined on
Ly (1), then it maps pi-equivalent functions into p-
equivalent functions and also BC—measurable func-
tions into BC—measurable functions. Now let o # 0
be a fixed vector in Y and let £ be a pu-null set in 9.
Then 1 (E) = py (E)er + pg (E)e2 = 0, xp =0
(a.e.) and
T (axg) = AXp-1(E)

by the definition of 7. Also, linearity of 7' im-
plies that 1 (¢! (E)) = 0. This means that ¢ is
a measure-preserving map of X into itself and satis-
fies (3). Since S is D—dense in L. (u), for any u =
uje|+uges € Lﬁc (1) asequence of simple functions

(up) = (ug)) e1 + ( (2 )) eo C S can be formed
(1)

such that ||u, — u|| pp 50, ie. ’ U,

and )

convergence in y—measure and so the graph of 7" is
closed. Therefore 7" is D—bounded and D—continu-
ous on Lf (1) by Closed graph theorem [11, Theo-
rem 5.5]. On the other hand, for any 0 # a € Y and
E € 9, we have

—U1HP—>O

uff) — ugH p» — 0. This convergence implies

1T (axp)llpp=IIT (crxp)lle, +IT (caxg)l e
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= /‘0(1)(%0—1
v P
+ /‘02X¢—1(E) (90)’ duy | e2

o () el
+ \042’,“2(
“(B))

’ )| dpy | e

= \01|H1(
o (E))" e

= Jal,u (e

by [18 Definition 2.2]. Therefore, one can get that

S
I

(D) 1T (axp)llpm
|y 1T llge lIxE

|y 1T || 1 (E)» €1

\a\k/‘(SO

IA

p,D

+ lafy 1 Tge po (E)»

1T | ge e (E) 7

which means M < HTH%C

Conversely, let s =
a p-integrable function

Bier + B0 ea, 8y er + B

sie1 + sgeg be
in S having values

e , ..,87(11)61 —i—,@g)e

on the disjoint sets FEi,FEs,...,E, of D—pos-
1t1ve mea?lgre Then( )Ts has the V%lgles
51 €1 ‘1‘51 62752 614‘52 €2 5n €1 +Bn €2
onthe sets 0~ (E1), 0 ' (Ba),...,¢ L (E,).

Since the family { £}, E», . .., E,} is a decompo-
sition of X, property 3) of 1mphes that the family

{o Y (B, o7 (Ea),...,o "t (E,)} is also a de-
composition of X. Therefore, if we use the nota-

tion 3° ( 8We; + 51(2)62> X, for s where x5 (-) =
i=1

e1Xg, (+) +e2xg, (+), then

Ts(x) = s(p(a))
= 3 (BVer+ 57 ea) w0 (1))
i=1
N (8D 4 5P,
Z(/Bz e1+p5; ez)X ) ()
i=1
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and

ITsll,p

Q sy (2)Pduy | e

/ sy (2)Pdpy | e

D =

P

dHl €1

(B

p

dM2 €2

p

IA

€1

T =

€2

can be ertten Since the elements of the family

{7 (E), o7  (B2),...,0 "  (Ey)} are disjoint,
P
HTSHp,ID) = / Z i ch—l(Ei)) d,ul e
a =1
(B

Xgo E)’ dpip
& / ]
z*l
A% ] e
i=1 Y(E;)
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< Y| Mups (B | e
=1
n 2) » P
+< ‘ M2~M2((Ez'))> €2
i=1
= Mr|[s|,p
is found.

Since the p-integrable simple functions S are
dense in L{ (1) and T is a D—continuous opera-
tor acting on a dense subset of Lf (1), we can say
that T" possesses a unique D—bounded, D—continu-

ous extension 7' defined on all of L (1) with norm

HTH - =M i Furthermore, by the definition of M,
B
Moo= supsl (1 (B)

FEem M (E)

m (e~

"(B) er +pg (¢ (B)) e2

= e ()
) Il e
= Supp - £
Eem Ixellper + [Ixell} e
B ITx 5l p
a Eem HXEH?]D)
= T

can be found. Therefore || 1’|z = M v.om

Proposition 13 Assume that (X, p) be a finite

1 positive measure space and let p be a mapping of X

into itself with =1 (M) C M. Also, suppose that
eathere is a D—constant M for which

(7

foralln € Nand E € 9. Then, for every p €
(1,00), the operator T defined in (5) maps L ()

n—1

into itself. Also the averages A (n) = 1 3" T as op-
§=0

erators acting on L (1) are uniformly D—bounded.

Proof. If we writte n = 2 in (7), then we get
p(et(E) = (2M —1)pu(E) for any E € M.
Therefore 7' is bounded by (6)). This inequality also
shows that 1 (¢! (E)) = 0 whenever p (E) = 0.
Now let £ € 91 be any set, n € N and j
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1,2,...,n— 1. Since

T (xp) () = 1971 (T () () =T (g (9)) ()
= 7771 <X¢—1(E)>()
= 77T (%)) O
= 17 (xyom)) () =

we can conclude that 77 (yp) () =
Thus, for any simple function

m

s() =2 (8er+ 8% e2) x, ().
i=1
we have
1 n—1 '
A(n)(s) () = gZT](S)()
=0
n—1 m
=15 (S e ) ) 0
=0 i=1
m ) 1 n—1
—61255) n T'xp, | ()
i=1 j=0

m n—1
m (1
=e Zﬁi (n ) X~ (Er) ()
i=1 7=0
m 1 n—1
+eay B EZXW—J(E) ()
i=1 =0
m 1 n—1
1
= Z (ﬂz( et + ﬁf )62) - ZX@—.7(Ei) ()
=1 7=0

E-ISSN: 2224-2880
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by (8). Hence
1A () (), p =
m 1 n—1
1 2
= Z (,81( e —l—ﬁf )€2> EZXW—J(EI-)
=1 7=0 ».D
_ o (15
- Zﬁl n ZXW*J(EE) @1
i=1 7=0 »
m 1 n—1
2
+( 87 2 Xemimy ||| €2
i=1 §=0 »
m 1 n—1
1
<3| | e | @
i=1 j=0 ,
m 1 n—1
2
20|87 | s e
i=1 j=0
P

m 1 n—1
= 1Bl | =)D X
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forall s € S. By using the D—density of S in L (1)
and Tietze extension theorem, ||A (n)|zc= M for
any n € N. The averages of iterates, namely
A (n), are uniformly bounded as operators acting on

LB (p). w

Theorem 14 (Mean Ergodic Theorem) Assume that
(X, M, w) is a finite positive measure space and @ is
a mapping of X into itself which satisfies o1 (M) C
. If the inequality

n—1
%Zu(cp*j (E)) < My (B) (8)
7=0

is satisfied for all n € N and E € N, then for every
p € (1,00), the operator T defined by the equation
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is a D—continuous linear map on LY (1) and the
sequence of averages A (n), as operators acting on
LY (), is strongly D—convergent. Here M is inde-

pendent of E, n and ©° (E) = E.
Proof. With (8), it can be written that

% {1 (" (E)) +p(e (E)} X Mu(E)

for any F € 9. Therefore the linear operator 7' de-
fined by the equation (5)) is a D—bounded and D—con-
tinuous map on L5 (i) by Lemma If we denote
the space of all D—linear and D—continuous opera-
tors on L§ (p) by B (L5 (), then it can be eas-
ily seen that A (n), the averages, are in this complete
space. Since the averages A (n) are D—uniformly
bounded while operating on LE (1), we can write
that the sequence {4 (n) f} C LE. (u) D—converges
forall f € L (1) by Riesz-Thorin convexity theo-
rem. By the way, when the averages A (n) are operat-
ing on LE . (1), we obtained that A (n) f € LE- (1)
for all n € N and for each f € LE.(p). It is
known that the characteristic functions of elements of
9 form a fundamental set for L - (11). Then, for any
E € Mand z € X, since we have [yz|, = 1and

TR S () @l
_ % (e1 |xm (¢") (2)] + €2 [x5 (™) (2)])
= % — 0,

we can say that the sequence {A (n)} D—converges
in strongly operator topology by [7, VIIL.5.1]. =

Remark 15 it should be observed that a measure
preserving transformation ¢ (i.e. one for which
1 ((p*I(E)) = w(E), forevery E in c—algebra ) sat-
isfies the hypothesis of the preceding theorem. This
type of maps arise in the study of conservative me-
chanical systems. Also if the map o is metrically tran-
sitive (i.e. p(EAe™!(E)) = 0 implies p(E) = 0
or n (X — E) = 0) then ¢ is completely dissipative
as in [21)]. So by [21], ¢ admits a o—finite invari-
ant measure v ~ . Then ¢ became a v—measure
preserving transformation.
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