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1   Introduction 
Functional–differential equations (FDEs) with 
proportional delays are usually indicated as 
pantograph equations. The term "pantograph" was 
first introduced by Ockendon and Tayler in their 
study, [1]. These equations frequently appear in 
industry and studies based on economy, biology, 
electrodynamics, and control theory among others, 
[2]. One noteworthy characteristic of such equations 
is the presence of compactly supported solutions, 
[3]. Pantograph equations play a significant role in 
describing various phenomena and are distinguished 
by the presence of a linear functional argument. 
They become especially essential when the ODEs-
based models fail. Recently, numerous methods 
have been established for solving pantograph 
differential equations including the Taylor operation 
method, perturbation iteration algorithms, and the 
Adomian decomposition method, [4], [5], [6], [7], 
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], 
[18], [19], [20], [21], [22], [23], [24], [25], [26], 
[27]. 

HPM, [28], [29], is an efficient and reliable 
technique for solving enormous classes of 
differential problems. HPM does not require any 
discretization, perturbation, or linearization. This 
strategy yields the solution in the form of a 
polynomial. Lately, HPM has been utilized to obtain 

approximate solutions for numerous classes of 
differential problems, [30], [31], [32]. It also has 
been demonstrated that HPM is a fast and 
trustworthy method compared to other methods. 
More details regarding HPM can be found in, [33], 
and references within. 

In 2019, the work of, [34] proposed a new 
integral transform, known as the Sawi transform 
(ST). This transform is very simple to implement, 
requiring no assumptions in its procedure, [35]. 
Recently, the Sawi transform has been widely 
utilized for solving various integral and differential 
equations, [35], [36], [37], [38], [39], [40], [41]. 

In this study, we combined the ST and HPM to 
create the strategy of the Sawi homotopy 
perturbation transform method (SHPTM) and find 
the analytic results of FDEs with proportional 
delays, in convergent series form. HPM is utilized to 
handle delay components. ST is used to minimize 
the computational work and to provide more 
accurate results. We observe that HPM is an 
efficient method for addressing various phenomena. 
Outcomes demonstrate that the approach is simple 
and easy to employ. 
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2   Sawi Transform 
In this section, we outline the fundamental concepts 
and properties of the Sawi transform, [42], [43]. 
Definition 1. The Sawi transform for a function 
𝜌(𝜏) is given by  

𝑆[𝜌(𝜏)] = ℘[𝜗] =
1

𝜗2
∫ 𝜌(𝜏) 𝑒−

𝜏

𝜗𝑑𝜏

∞

0

, 

where S is designated as Sawi transform. If ℘[𝜗] is 
the Sawi transform of a function 𝜌(𝜏), then 𝜌(𝜏) is 
the inverse of ℘[𝜗] so that,  
℘−1[𝜗] = 𝜌(𝜏), where ℘−1 is said to be inverse 
Sawi transform. 
Definition 2. If 𝑆[𝜌1(𝜏)] = ℘1[𝜗] and 𝑆[𝜌2(𝜏)] =
℘2[𝜗], then 

𝑆[𝛿𝜌1(𝜏) + 𝜀𝜌2(𝜏)] = 𝛿℘1[𝜗] + 𝜀℘2[𝜗], 
where 𝛿 and 𝜀 are arbitrary constants. 
 

Table 1. Sawi Transforms of Some Fundamental 
Functions 

 𝜌(𝜏) 𝑆[𝜌(𝜏)] = ℘[𝜗] 
1.  1 1/𝜗 
2.  𝜏 1 
3.  𝜏2 2𝜗 
4.  𝜏𝑛 𝑛! 𝜗𝑛−1 
5.  𝜏𝛾 Γ(𝛾 + 1)𝜗𝛾−1 
6.  𝑒𝛿𝜏 1/(𝜗(1 − 𝛿𝜗)) 
7.  sin 𝛿𝜏 𝛿/((1 + 𝛿2𝜗2)) 
8.  cos 𝛿𝜏 1/(𝜗(1 + 𝛿2𝜗2)) 
9.  sinh 𝛿𝜏 𝛿/((1 − 𝛿2𝜗2)) 
10.  cosh 𝛿𝜏 1/(𝜗(1 − 𝛿2𝜗2)) 

 
Definition 3. If 𝑆[𝜌(𝜏)] = ℘[𝜗], we can consider 
the following differential properties as 

i. 𝑆[𝜌′(𝜏)] =
℘[𝜗]

𝜗
−

𝜌(0)

𝜗2 , 

ii. 𝑆[𝜌′′(𝜏)] =
℘[𝜗]

𝜗2 −
𝜌(0)

𝜗3 −
𝜌′(0)

𝜗2 , 

iii. 𝑆[𝜌(𝑚)(𝜏)] =
℘[𝜗]

𝜗𝑚 − ∑
𝜌(𝑟)(0)

𝜗𝑚+1−𝑟
𝑚−1
𝑟=0 . 

Table 1 provides Sawi transforms of various 
essential functions that are useful in solving 
significant issues in the fields of science and 
engineering. 
 
 
3  Method of Solution 
In this section, we introduce the new SHPTM to 
solve the following FDEs with proportional delays, 
[23],  

(𝜌(𝜏) + 𝑎(𝜏)𝜌(𝜁𝜈𝜏))
(𝜈)

= 𝛼𝜌(𝜏) +

∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 + 𝑓(𝜏), 𝜏 ≥ 0,    

                   (1) 
with the initial conditions 

𝜌(𝑟)(0) = 𝜆𝑟, 𝑟 = 0,1, ⋯ , 𝜈 − 1,  
where 𝑎, 𝑓, and 𝑏𝑟 (𝑟 = 0,1, ⋯ , 𝜈 − 1) denote given 
analytic functions, and 𝛼, 𝜁𝑟, 𝜆𝑟 designate given 
constants, with 0 < 𝜁𝑟 < 1 for 𝑟 = 0,1, ⋯ , 𝜈. 
Notably, this approach does not rely on integration 
or any assumptions in its formulation. We express 
(1) as: 
𝜌(𝜈)(𝜏) = 𝛼𝜌(𝜏) − (𝑎(𝜏)𝜌(𝜁𝜈𝜏))

(𝜈)
+

∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 + 𝑓(𝜏), 𝜏 ≥ 0.                      (2) 

 
Applying ST to (2) yields: 
𝑆[𝜌(𝜈)(𝜏)] = 𝑆 [𝛼𝜌(𝜏) −

(𝑎(𝜏)𝜌(𝜁𝜈𝜏))
(𝜈)

+ ∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 + 𝑓(𝜏)] (3) 

 
Using ST properties, we have: 
℘[𝜗]

𝜗𝑚 −
𝜌(0)

𝜗𝑚+1 −
𝜌′(0)

𝜗𝑚 − ⋯ −
𝜌(𝑚−1)(0)

𝜗2 = 𝛼℘[𝜗] +

𝑆 ⌈−(𝑎(𝜏)𝜌(𝜁𝜈𝜏))
(𝜈)

+ ∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 +  

𝑓(𝜏)⌉.                                                                      (4) 
 
Thus, using the initial conditions in (4), we obtain: 
℘[𝜗] =

𝜆0

𝜗(1−𝛼𝜗𝑚)
+

𝜆1

(1−𝛼𝜗𝑚)
+ ⋯ +

𝜗𝑚−1

(1−𝛼𝜗𝑚)
𝜆𝑚−1 +

𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆 [−(𝑎(𝜏)𝜌(𝜁𝜈𝜏))

(𝜈)
+

∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 + 𝑓(𝜏).                                 (5) 

 
Operating inverse ST on (5), we get: 

𝜌(𝜏) = 𝜇(𝜏) + 𝑆−1 [
𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆 [(𝑎(𝜏)𝜌(𝜁𝜈𝜏))

(𝜈)
+

∑ 𝑏𝑟(𝜏)𝜌(𝑟)(𝜁𝑟𝜏)𝜈−1
𝑟=0 ]]                                           (6) 

 
where  
𝜇(𝜏) = 𝑆−1 [

𝜆0

𝜗(1−𝛼𝜗𝑚)
+

𝜆1

(1−𝛼𝜗𝑚)
+ ⋯ +

 
𝜗𝑚−1

(1−𝛼𝜗𝑚)
𝜆𝑚−1] +

𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆[𝑓(𝜏)].  

 
Let us introduce HPM as 
𝜌(𝜏) = ∑ 𝑝𝑟𝜌𝑟(𝜏)∞

𝑟=0 .                                            (7) 
 
Substituting (7) in (6) and matching terms with the 
same power of 𝑝, we obtain: 
𝑝0: 𝜌0(𝜏) = 𝜇(𝜏),   
𝑝1: 𝜌1(𝜏) = 𝑆−1 [

𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆 [−(𝑎(𝜏)𝜌0(𝜁𝜈𝜏))

(𝜈)
  

+ ∑ 𝑏𝑟(𝜏)𝜌0
(𝑟)(𝜁𝑟𝜏)𝜈−1

𝑟=0 ] ],  

𝑝2: 𝜌2(𝜏) = 𝑆−1 [
𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆 [−(𝑎(𝜏)𝜌1(𝜁𝜈𝜏))

(𝜈)
  

+∑ 𝑏𝑟(𝜏)𝜌1
(𝑟)(𝜁𝑟𝜏)𝜈−1

𝑟=0 ] ],  

𝑝3: 𝜌3(𝜏) = 𝑆−1 [
𝜗𝑚

(1−𝛼𝜗𝑚)
𝑆 [−(𝑎(𝜏)𝜌2(𝜁𝜈𝜏))

(𝜈)
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+ ∑ 𝑏𝑟(𝜏)𝜌2
(𝑟)(𝜁𝑟𝜏)𝜈−1

𝑟=0 ] ],  
⋮  
 
Following this process, we can calculate 
𝜌0(𝜏), 𝜌1(𝜏), 𝜌2(𝜏),  and so on. These functions can 
be combined to derive a solution for (1) as: 

𝜌(𝜏) = lim
𝑝→1

∑ 𝑝𝑟𝜌𝑟(𝜏)∞
𝑟=0 = 𝜌0(𝜏) + 𝜌1(𝜏) + ⋯  

(8) 
 

To prove the convergence of the solution in (8), 
we illustrate the following theorem. 
Theorem. Assume that Ω and Υ are Banach spaces 
and Κ: Ω ⟶ Υ is a contraction function, that is 
∀δ, δ̃ ∈ Ω; ‖Κ(δ) − Κ(δ̃)‖ ≤ 𝜀‖δ − δ̃‖, 0 < 𝜀 < 1. 
Then, according to Banach’s fixed point theorem, 
the existence of a unique fixed point γ is guaranteed. 
Moreover, suppose that the sequence produced by 
the HPM can be written as  
μ𝑖 = Κ(μ𝑖−1), μ𝑖−1 = ∑ 𝜌𝑗

𝑖−1
𝑗=0 , 𝜌𝑗 ∈ Ω, 𝑖 = 1,2, ⋯,  

and suppose that μ0 = 𝜌0 ∈ 𝐵𝛼(γ) where 𝐵𝛼(γ) =
{𝜌∗ ∈ Ω: ‖𝜌∗ − γ‖ ≤ 𝛼}, then we have  
a. ‖μ𝑖 − γ‖ ≤ 𝜀𝑖‖𝜌0 − γ‖, 
b. μ𝑖 ∈ 𝐵𝛼(γ), 
c. lim

𝑖→∞
μ𝑖 = 𝜌. 

Proof.  

a. By the mathematical induction method on 𝑖, for 
𝑖 = 1 we have 
‖μ1 − γ‖ = ‖Κ(𝜌0) − Κ(γ)‖ ≤ 𝜀‖𝜌0 − γ‖.  
Assume that ‖μ𝑖 − γ‖ ≤ 𝜀𝑖‖𝜌0 − γ‖ for some 𝑖 ∈ ℕ 
as an induction assumption, then 
‖μ𝑖+1 − γ‖ = ‖Κ(𝜌𝑖) − Κ(γ)‖ ≤ 𝜀‖𝜌𝑖 − γ‖  
                      ≤ 𝜀 𝜀𝑖‖𝜌0 − γ‖ = 𝜀𝑖+1‖𝜌0 − γ‖.  
Hence 

‖μ𝑖+1 − γ‖ ≤ 𝜀𝑖+1‖𝜌0 − γ‖. 
b. Using (a), we have 
‖μ𝑖 − γ‖ ≤ 𝜀𝑖‖𝜌0 − γ‖ ≤ 𝜀𝑖𝛼 < 𝛼.  
Therefor, μ𝑖 ∈ 𝐵𝛼(γ). 
c. Since ‖μ𝑖 − γ‖ ≤ 𝜀𝑖‖𝜌0 − γ‖, and lim

𝑖→∞
𝜀𝑖 = 0 (as 

0 < 𝜀 < 1), we have lim
𝑖→∞

‖μ𝑖 − γ‖ = 0, that is, 
lim
𝑖→∞

μ𝑖 = 𝜌.                                                               
 
 
4   Numerical Examples 
In this section, we provide several examples to 
demonstrate the effectiveness of the method 
introduced in Section 3. All examples are 
implemented using MATHEMATICA 12. 

Example 1. Consider the following first-order 
neutral FDEs with proportional delays: 
𝜌′(𝜏) = −𝜌(𝜏) +

1

2
𝜌 (

𝜏

2
) +

1

2
𝜌′ (

𝜏

2
),                     (9) 

 0 < 𝜏 < 1, 𝜌(0) = 1  

 
Applying ST to (9), we get: 
𝑆[𝜌′(𝜏)] = 𝑆 [−𝜌(𝜏) +

1

2
𝜌 (

𝜏

2
) +

1

2
𝜌′ (

𝜏

2
)].         (10) 

 
Using the properties of ST, we have: 
℘[𝜗]

𝜗
−

1

𝜗2 = −℘[𝜗] + 𝑆 [
1

2
𝜌 (

𝜏

2
) +

1

2
𝜌′ (

𝜏

2
)].       (11) 

 
Thus, ℘[𝜗] yields: 
℘[𝜗] =

1

𝜗(1+𝜗)
+

𝜗

(1+𝜗)
 𝑆 [

1

2
𝜌 (

𝜏

2
) +

1

2
𝜌′ (

𝜏

2
)].     (12) 

 
Operating inverse ST on (12), we obtain: 

𝜌(𝜏) = 𝑒−𝜏 + 𝑆−1 [
𝜗

(1+𝜗)
 𝑆 [

1

2
𝜌 (

𝜏

2
) +

1

2
𝜌′ (

𝜏

2
)]].(13) 

 
Substituting (7) into (13), we get: 
∑ 𝑝𝑟𝜌𝑟(𝜏)∞

𝑟=0 = 𝑒−𝜏 +

𝑆−1 ⌈
𝜗

(1+𝜗)
 𝑆 [

1

2
∑ 𝑝𝑟𝜌𝑟 (

𝜏

2
)∞

𝑟=0 +
1

2
∑ 𝑝𝑟𝜌𝑟

′ (
𝜏

2
)∞

𝑟=0 ]  
                                                                             (14) 
 
Equating the coefficients of 𝑝 that have the same 
exponent leads to: 
𝑝0: 𝜌0(𝜏) = 𝑒−𝜏,  
which is the analytical solution of (9). 

Example 2. Consider the following first-order 
neutral FDEs with proportional delays: 
𝜌′(𝜏) = −𝜌(𝜏) + 0.1𝜌(0.8𝜏) + 0.5𝜌′(0.8𝜏) +
(0.32𝜏 − 0.5)𝑒−0.8𝜏 + 𝑒−𝜏, 𝜏 ≥ 0, 𝜌(0) = 0.    (15) 
 
 
Applying ST on (15), we have: 
𝑆[𝜌′(𝜏)] = 𝑆[−𝜌(𝜏) + 0.1𝜌(0.8𝜏) + 0.5𝜌′(0.8𝜏) +
(0.32𝜏 − 0.5)𝑒−0.8𝜏 + 𝑒−𝜏].                                (16) 
 
Using the properties of ST, we get: 
℘[𝜗]

𝜗
= −℘[𝜗] +

1

2𝜗
−

1

1+𝜗
+

0.5

1.25+𝜗
+

0.5

(1.25+𝜗)2 +

𝑆[0.1𝜌(0.8𝜏) + 0.5𝜌′(0.8𝜏)].                             (17) 
 
Thus, ℘[𝜗] yields: 
℘[𝜗] =

𝜗

1+𝜗
(

1

2𝜗
−

1

1+𝜗
+

0.5

1.25+𝜗
+

0.5

(1.25+𝜗)2) +

𝜗

1+𝜗
𝑆[0.1𝜌(0.8𝜏) + 0.5𝜌′(0.8𝜏)].                       (18) 

 
Operating inverse ST on (18), we get: 
𝜌(𝜏) = (10.5  + 𝜏)𝑒−𝜏 + (−10.5 + 1.6𝜏)𝑒−0.8𝜏 +

𝑆−1 [
𝜗

1+𝜗
𝑆[0.1𝜌(0.8𝜏) + 0.5𝜌′(0.8𝜏)]].             (19) 

 
Substituting (7) into (19), we get: 
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∑ 𝑝𝑟𝜌𝑟(𝜏)∞
𝑟=0 = (10.5  + 𝜏)𝑒−𝜏 + (−10.5 +

1.6𝜏)𝑒−0.8𝜏 +

𝑆−1 [
𝜗

1+𝜗
𝑆 [0.1 ∑ 𝑝𝑟𝜌𝑟(0.8𝜏)∞

𝑟=0 +

𝜏

2
∑ 𝑝𝑟𝜌𝑟

′ (0.8𝜏)∞
𝑟=0 ]].                                            

(20) 
 
Matching terms with the same power of 𝑝, we 
obtain: 
𝑝0: 𝜌0(𝜏) = (10.5  + 𝜏)𝑒−𝜏 + (−10.5 +
1.6𝜏)𝑒−0.8𝜏,  
𝑝1: 𝜌1(𝜏) − 3.43519𝑒−𝜏 + 𝑒−0.8𝜏(−10.5 −
1.6𝜏) + 𝑒−0.64𝜏(13.9352  − 1.06667𝜏),  
𝑝2: 𝜌2(𝜏) = −2.27171𝑒−𝜏 + 6.87037𝑒−0.8𝜏 +
𝑒−0.512𝜏(−8.16347 + 0.384699𝜏) +
𝑒−0.64𝜏(3.56481  + 1.06667𝜏),  
⋮  

 

In Table 2 we compare the absolute errors of 
the 5 and 6-term solutions with those of the 
VIM, [23], HPM, [24], two-stage order-one 
Runge-Kutta method (RK method), [25], and the 
one-leg𝜃-method (leg𝜃-method), [26], [27]. In 
Figure 1 we show the comparison of the 3, 4, 
and 5-term solutions with the exact solution 
𝜌(𝜏) = 𝜏𝑒−𝜏.  

Example 3. Consider the following second-
order neutral FDEs with proportional delays: 
𝜌′′(𝜏) = 𝜌′ (

𝜏

2
) −

1

2
𝜏𝜌′′ (

𝜏

2
) + 2, 0 < 𝜏 < 1,   

𝜌(0) = 1, 𝜌′(0) = 0.                                           
(21) 
Applying ST on (21), we have: 
𝑆[𝜌′′(𝜏)] = 𝑆 [𝜌′ (

𝜏

2
) −

1

2
𝜏𝜌′′ (

𝜏

2
) + 2].              

(22) 
Utilizing the properties of ST, we get: 

 
Table 2. Comparison of the absolute errors for Example 2. 

𝜏𝑖 leg𝜃-method RK method 
VIM HPM SHPTM 

𝑛 = 5 𝑛 = 6 𝑛 = 5 𝑛 = 6 5-term solution 6-term solution 
0.1 4.65 × 10−3 8.68 × 10−4 2.62 × 10−3 1.30 × 10−3 2.17 × 10−3 1.06 × 10−3 1.29 × 10−3 6.45 × 10−4 
0.2 1.45 × 10−2 1.49 × 10−3 4.36 × 10−3 2.14 × 10−3 2.87 × 10−3 1.35 × 10−3 2.14 × 10−3 1.05 × 10−3 
0.3 2.57 × 10−2 1.90 × 10−3 5.40 × 10−3 2.63 × 10−3 2.63 × 10−3 1.18 × 10−3 2.62 × 10−3 1.28 × 10−3 
0.4 3.60 × 10−2 2.16 × 10−3 5.89 × 10−3 2.84 × 10−3 1.83 × 10−3 7.61 × 10−4 2.83 × 10−3 1.37 × 10−3 
0.5 4.43 × 10−2 2.28 × 10−3 5.96 × 10−3 2.83 × 10−3 7.67 × 10−4 2.32 × 10−4 2.83 × 10−3 1.35 × 10−3 
0.6 5.03 × 10−2 2.31 × 10−3 5.71 × 10−3 2.67 × 10−3 3.33 × 10−4 2.98 × 10−4 2.66 × 10−3 1.25 × 10−3 
0.7 5.37 × 10−2 2.27 × 10−3 5.23 × 10−3 2.39 × 10−3 1.35 × 10−3 7.64 × 10−4 2.39 × 10−3 1.10 × 10−3 
0.8 5.47 × 10−2 2.17 × 10−3 4.59 × 10−3 2.04 × 10−3 2.20 × 10−3 1.12 × 10−3 2.03 × 10−3 9.20 × 10−4 
0.9 5.35 × 10−2 2.03 × 10−3 3.84 × 10−3 1.64 × 10−3 2.82 × 10−3 1.37 × 10−3 1.63 × 10−3 7.11 × 10−4 
1.0 5.03 × 10−2 1.86 × 10−3 3.04 × 10−3 1.22 × 10−3 1.22 × 10−3 3.21 × 10−3 1.21 × 10−3 4.93 × 10−4 

 
Table 3. Comparison of the absolute errors for Example 4. 

𝜏𝑖 leg𝜃-method RK method 
VIM HPM SHPTM 

𝑛 = 5 𝑛 = 6 𝑛 = 5 𝑛 = 6 5-term solution 6-term solution 
0.1 6.10 × 10−3 1.00 × 10−3 3.34 × 10−4 1.67 × 10−4 3.33 × 10−4 1.67 × 10−4 1.66 × 10−4 8.34 × 10−5 
0.2 2.58 × 10−2 2.02 × 10−3 1.43 × 10−3 7.15 × 10−4 1.42 × 10−3 7.15 × 10−4 7.13 × 10−4 3.57 × 10−4 
0.3 6.47 × 10−2 3.07 × 10−3 3.45 × 10−3 1.73 × 10−3 3.44 × 10−3 1.18 × 10−3 1.71 × 10−3 8.59 × 10−4 
0.4 1.37 × 10−1 4.17 × 10−3 6.58 × 10−3 3.30 × 10−3 6.57 × 10−3 7.61 × 10−4 3.26 × 10−3 1.63 × 10−3 
0.5 2.81 × 10−1 5.34 × 10−3 1.11 × 10−2 5.55 × 10−3 1.10 × 10−2 5.55 × 10−3 5.45 × 10−3 2.73 × 10−3 
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Fig. 1: Comparison of the exact solution with the 
approximate solutions for Example 2. 
 
℘[𝜗]

𝜗2 −
1

𝜗3 =
2

𝜗
+ 𝑆 [𝜌′ (

𝜏

2
) −

1

2
𝜏𝜌′′ (

𝜏

2
)].              (23) 

 
Therefore, ℘[𝜗] yields: 
℘[𝜗] =

1

𝜗
+ 2𝜗 + 𝜗2𝑆 [𝜌′ (

𝜏

2
) −

1

2
𝜏𝜌′′ (

𝜏

2
)].       (24) 

 
Upon applying inverse ST to (24), we obtain: 

𝜌(𝜏) = 1 + 𝜏2 + 𝑆−1 [𝜗2𝑆 [𝜌′ (
𝜏

2
) −

1

2
𝜏𝜌′′ (

𝜏

2
)]].          

                                                                             (25) 
 
Substituting (7) into (25) and equating the 
coefficients of 𝑝 with the same exponent gives: 
𝑝0: 𝜌0(𝜏) = 1 + 𝜏2,  
which coincides with the analytical solution of (21).  

Example 4. Consider the following second-order 
neutral FDEs with proportional delays: 
𝜌′′(𝜏) =

3

4
𝜌(𝜏) + 𝜌 (

𝜏

2
) + 𝜌′ (

𝜏

2
) +

1

2
𝜌′′ (

𝜏

2
) − 𝜏2 −

𝜏 + 1, 0 < 𝜏 < 1, 𝜌(0) = 0, 𝜌′(0) = 0.               (26) 
 
Using ST on (26), and utilizing the properties of ST, 
we have: 
℘[𝜗]

𝜗2 =
3

4
℘[𝜗] − 2𝜗 − 1 +

1

𝜗
+ 𝑆 [𝜌 (

𝜏

2
) + 𝜌′ (

𝜏

2
) +

1

2
𝜌′′ (

𝜏

2
)].                                                              (27) 

 
Thus, ℘[𝜗] yields: 
℘[𝜗] =

4𝜗2

4−3𝜗2 (−2𝜗 − 1 +
1

𝜗
) +

4𝜗2

4−3𝜗2 𝑆 [𝜌 (
𝜏

2
) +

𝜌′ (
𝜏

2
) +

1

2
𝜌′′ (

𝜏

2
)].                                               (28) 

 
Applying inverse ST to (28), we obtain: 
𝜌(𝜏) =

4

9
(3𝜏2 + 3𝜏 + 5 − 2√3 sinh

√3𝜏

2
−

5 cosh
√3𝜏

2
) + 𝑆−1 [

4𝜗2

4−3𝜗2 𝑆 [𝜌 (
𝜏

2
) + 𝜌′ (

𝜏

2
) +

1

2
𝜌′′ (

𝜏

2
)]].                                                            (29) 

 

Substituting (7) into (29) and matching the 
coefficients of 𝑝 with the same exponent results in: 
𝑝0: 𝜌0(𝜏) =

4

9
(3𝜏2 + 3𝜏 + 5 − 2√3 sinh

√3𝜏

2
−

5 cosh
√3𝜏

2
),  

𝑝1: 𝜌1(𝜏) = −
4

81
(9𝜏2 + 54𝜏 + 156 −

84√3 sinh
√3𝜏

4
+ 6√3 sinh

√3𝜏

4
− 158 cosh

√3𝜏

2
+

2 cosh
√3𝜏

2
),  

𝑝2: 𝜌2(𝜏) =
4

3645
(135𝜏2 + 2160𝜏 + 13500 −

8408√3sinh 
√3𝜏

8
+ 740√3sinh 

√3𝜏

4
+

292√3sinh 
√3𝜏

2
− 15092cosh 

√3𝜏

8
+ 940cosh 

√3𝜏

4
+

652cosh 
√3𝜏

2
),  

⋮  
 

 
Fig. 2: Comparison of the exact solution with the 
approximate solutions for Example 4. 
 

In Table 3 we compare the absolute errors of the 
5 and 6-term solutions with the VIM, [23], HPM, 
[24], RK method, [25], and the leg𝜃-method, [26], 
[27]. In Figure 2 we show the comparison of the 3, 
4, and 5-term solutions with the exact solution 
𝜌(𝜏) = 𝜏2. 

Example 5. Consider the following third-order 
neutral FDEs with proportional delays: 
𝜌′′′(𝜏) = 2𝜏𝜌′ (

𝜏

2
) −

𝜏3

6
𝜌′′′ (

𝜏

4
) + 24𝜏, 0 < 𝜏 < 1,

𝜌(0) = 𝜌′(0) = 𝜌′′(0) = 0.                                (30) 
 
Applying ST to (30), and using the properties of ST, 
we have: 
℘[𝜗]

𝜗3 = 𝑆 [2𝜏𝜌′ (
𝜏

2
) −

𝜏3

6
𝜌′′′ (

𝜏

4
) + 24𝜏].              (31) 

 
Thus, ℘[𝜗] yields: 
℘[𝜗] = 𝜗3 𝑆 [2𝜏𝜌′ (

𝜏

2
) −

𝜏3

6
𝜌′′′ (

𝜏

4
) + 24𝜏].       (32) 

 
Operating inverse ST on (32), we obtain: 
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𝜌(𝜏) = 𝜏4 + 𝑆−1 [𝜗3 𝑆 [2𝜏𝜌
′(

𝜏

2
)

−
𝜏3

6
𝜌′′′(

𝜏

4
)
]].  

                                                                             (33) 
 
Substituting (7) into (33) and equating the 
coefficients of 𝑝 that have the same exponent leads 
to: 
𝑝0: 𝜌0(𝜏) = 𝜏4,  
 
which is the analytical solution of (30). 

 
Moreover, we demonstrate that the proposed 

method is quite simple and efficient in solving such 
problems. The graphical illustrations expose that the 
obtained results are extremely close, and in some 
cases are identical, to the exact results. 
 
 
 
5   Conclusion 
In this study, we confirm the capability of the 
SHPTM for solving neutral FDEs with proportional 
delays. This approach does not rely on integration or 
any assumptions in its formulation. The approach 
starts by first applying ST to the considered problem 
and using HPM to generate a series solution. This 
series yields accurate approximations, or in some 
cases exact solutions, with a few number of 
iterations. All the computations and the graphical 
illustration are made using MATHEMATICA 12. 
The proposed examples demonstrate that the results 
of the SHPTM agree excellently with the exact 
solution and with those of some other methods. 
Furthermore, the findings seem to indicate that the 
SHPTM is an efficient and convenient approach to 
approximate the solution of such problems. We 
expect that this method can be easily used as a 
viable alternative for various problems in science 
and engineering that lack exact solutions. 
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