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1   Introduction 
One of the most important tools for solving 
problems in science and engineering is the integral 
equation. Both Volterra and Fredholm integral 
equations are widely used, and offer useful solutions 
for a variety of initial and boundary value issues. 
Integral equations have advanced greatly as a result 
of advancements in potential theory, [1]. Integral 
equations have many applications in different fields 
of science and engineering, because of these 
applications, they got great interest from authors and 
specially mathematicians, they appeared in quantum 
mechanics astrophysics, conformal mapping, 
scattering, and water waves, [2], [3], [4] and [5].  

The importance of studying nonlinear integral 
differential has been increased due to the different 
branches of applications that could be handled. 
Queuing theory and chemical kinetics, and it is 
expanded now in many other scientific disciplines. 
[6], [7], [8], [9] and [10]. So, researchers, 
established many methods to solve these problems, 
such as the homotopy analysis approach, [11], the 
variation method, the iteration method, [12], the 
least squares method, [13] and Adomian’s method, 

[14]. Utilizing these methods, we can overcome the 
difficulty in the process of solving nonlinear integral 
equations. 

By offering useful approximate analytical series 
solutions for such complex problems, the 
decomposition method has established itself as one 
of the most effective strategies for solving nonlinear 
differential and integral equations. The method of 
Adomian decomposition, first presented by [15] and 
[16], was created especially for solving integral 
equations. The authors in [17], [18], [19] and [20], 
improved this research to resolve the Volterra 
integral differential equation successfully. The 
strategy has been used later to address a variety of 
issues in several different domains in response to 
time, as stated in [21], [22], [23], [24] and [25].   

Integral equations have become more than an 
essential tool for solving integral equations, but also 
crucial in deriving solutions for intricate situations. 
The Laplace transform is one of these 
transformations that has shown to be quite helpful, 
[26]. To further expand the scope of solving integral 
equations and improve the overall effectiveness of 
the decomposition method in addressing various 
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scientific and engineering challenges, other 
transforms, such as the ARA transform, [27], a lot 
of scientific transforms such as formable transform, 
and others, [28], [29] and [30], have also been 
checked and verified. 

Once introduced in 2013, [31], the Mohanad 
transform is a significant literary transformation 
with a huge number of mathematical issues. Given 
by the following integral formula is the Mohanad 
transform: 

𝑀[𝜑(𝑤)] = 𝑢2 ∫ 𝑒−𝑢𝑤𝜑(𝑤)𝑑𝑤

∞

0

, 𝑢 > 0. 

The transform can answer a wide range of 
problems, academics are paying close attention to it. 
To overcome the difficulty in nonlinear cases, we 
can easily merge the transform with one of the 
numerical methods, such as, [32], [33] and [34]. 
This will introduce a new hybrid method called: The 
Mohanad-decomposition method (MDM), it merges 
the two powerful techniques, the Mohanad 
transform and decomposition method which is the 
main objective of this article.  

This article investigates solving nonlinear 
Volterra IDE of the form: 

 

𝜑(𝑛)(𝑤) = 𝑓(𝑤) + ∫ 𝑅(𝑤 − 𝑣)𝐺(𝜑(𝑣))𝑑𝑣,

𝑤

0

 

 
where 𝑅(𝑤 − 𝑣) is the difference kernel of the 
equation, 𝑓(𝑤) is piecewise continuous function, 
and 𝐺(𝜑(𝑣 ))is a given analytic function of the 
unknown 𝜑(𝑤), that could be 𝑐𝑜𝑠 𝜑(𝑤), 𝜑3(𝑤),
𝑠𝑖𝑛 ℎ 𝜑(𝑤) and etc. 

The paper follows the following structure: In 
Section 2, we introduce the definition of Mohanad 
transform along with its basic properties, and we 
also explain the core concept of the Adomian 
decomposition method. Section 3 presents the 
application of the Mohanad decomposition method 
(MDM) for handling nonlinear Volterra integral 
differential equations (IDEs). To demonstrate the 
method's effectiveness, we solve several numerical 
examples of IDEs. Lastly, in Section 5, we provide 
the concluding remarks for this article. 
 

 

2   Basic Facts 
In this section, the needed properties and theorems 
of the Mohanad transform and the decomposition 
method are presented. 
 
 

2.1  Mohanad Transform 
In this section of the article, we introduce some 
definitions and properties of Mohanad integral 
transform. 
Definition 1. Assume that 𝜑(𝑤) is a continuous 
function with domain subset of (0, ∞), then 
Mohanad integral transform of 𝜑(𝑤) is given by the 
formula  

𝑀[𝜑(𝑤)] = Φ(𝑢) = 𝑢2 ∫ 𝑒−𝑢𝜏𝜑(𝑤)𝑑𝑤

∞

0

,

𝑤 > 0. 
The Mohanad transform inverse of a function Φ(𝑢) 
is defined as: 
𝑀−1[Φ(𝑢)] = 𝜑(𝑤)

=
1

2𝜋𝑖
∫

1

𝑢2
𝑒𝑢𝑤Φ(𝑢)𝑑𝑢

𝑐+𝑖∞

𝑐−𝑖∞

, 𝑐𝜖𝑅. 

Theorem 1. Assume that 𝜑(𝑤) is a piecewise 
continuous function with domain [0, ∞), and 
assume that the following condition holds:  
|𝜑(𝑤)| ≤ 𝑀𝑒𝑏𝑤, for a real number 𝑀 > 0. Then, 
Mohanad integral transform 𝑀[𝜑(𝑤)] is well 
defined for 𝑅𝑒(𝑢) > 𝑏. 
Proof. The formula of Mohanad transform implies: 

|Φ(𝑢)| = |𝑢2 ∫ 𝑒−𝑢𝑤𝜑(𝑤)𝑑𝑤

∞

0

|

≤ 𝑢2 ∫ 𝑒−𝑢𝑤|𝜑(𝑤)|𝑑𝑤

∞

0

 

≤ 𝑢2 ∫ 𝑒−𝑢𝑤𝑀𝑒𝑏𝑤𝑑𝑤

∞

0

= 𝑢2𝑀 ∫ 𝑒−𝑤(𝑢−𝑏)𝑑𝑤

∞

0

=
𝑀𝑢2

(𝑢 − 𝛼)
, 𝑅𝑒(𝑢) > 𝑏 > 0. 

 
Thus, Mohanad transform is well defined and 

exists for 𝑅𝑒(𝑢) > 𝑏 > 0. 
We present some properties and the values of 

Mohanad transform to some elementary functions. 
Assume that Φ1(𝑢) = 𝑀[𝜑1(𝑤)] and Φ2(𝑢) =
𝑀[𝜑2(𝑤)]and 𝑎, 𝑏 ∈ ℝ, then 
 𝑀[𝑎𝜑1(𝑤) + 𝑏𝜑2(𝑤)] = 𝑎Φ1(𝑢) + 𝑏Φ2(𝑢). 
 𝑀−1[𝑎Φ1(𝑢) + 𝑏 Φ2(𝑢)] = 𝑎𝜑1(𝑤) +

𝑏 𝜑2(𝑤). 
 

Table 1, presents some quantities of Mohanad 
integral transform to the standard basic functions. 
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Table 1.  Mohanad integral transform 
𝜑(𝑤) 𝑀[𝜑(𝑤)] = 𝛷(𝑢) 

1 𝑢 

𝑤𝑎 
𝛤(𝑎 + 1)

𝑢𝑎−1
, 𝛼 > −1. 

𝑒𝑎𝑤 
𝑢2

(𝑢 − 𝑎)
, 𝑢 > 𝑎 

𝑠𝑖𝑛 𝑎𝑤 
𝑎 𝑢2

(𝑢2 + 𝑎2)
 

𝑐𝑜𝑠 𝑎𝑤 
𝑢3

𝑢2 + 𝑎2
 

𝑠𝑖𝑛ℎ 𝑎𝑤 
𝑎 𝑢2

(𝑢2 − 𝑎2)
 

𝑐𝑜𝑠ℎ 𝑎𝑤 
𝑢3

𝑢2 − 𝑎2
 

𝜑′(𝑤) 𝑢 𝛷(𝑢) − 𝑢2𝜑(0) 

𝜑(𝑚)(𝑤) 𝑢𝑛𝛷(𝑢) − ∑ 𝑢𝑚−𝑘+1𝜑(𝑘)(0)

𝑛−1

𝑘=0

 

(𝜑 ∗ 𝜓)(𝑤) 
1

𝑢2
𝑀[𝜑(𝑤)]𝑀[𝜓(𝑤)] 

 
2.2  Iterative Decomposition Technique 
The Adomian decomposition method is well-known 
for its efficiency in solving several types of 
nonlinear differential equations, ordinary or partial. 
It is a commonly used technique in the domains of 
engineering, physics, and applied mathematics. The 
Adomian decomposition method's main idea is to 
divide the equation's nonlinear term into a number 
of elements. When these elements are added 
together, the result is represented astonishingly 
accurately. To use the method, we assume the series 
representation for the solution of the required 
equation, given by: 

𝜑(𝑤) = ∑ 𝜑𝑛(𝑤)

∞

𝑛=0

= 𝜑0(𝑤) + 𝜑1(𝑤) + ⋯. 

 
The nonlinear term in the considered problem is 

then given in the form of a recursive formula. The 
series answer is then entered into the equation. We 
proceed to solve the resultant equation recursively 
to identify the series components 𝜑𝑛(𝜏) after 
simplifying it. We may approximate the solution 
more precisely with each iteration, which produces 
results that are highly accurate in real-world 
applications. 
 

 

3   Nonlinear Volterra IDEs   
In this section, we apply the Mohanad integral 
transform to the required IDE, and then we operate 
the decomposition technique, that considered the 
basic part of the MDM. In addition, the given 

kernels in the equation are assumed to be in the 
difference form. 
Now, let us construct the solution of the following 
IDE of the form: 

𝜑(𝑚)(𝑤) = 𝑓(𝑤) + ∫ 𝑅(𝑤 − 𝑣)𝐺(𝜑(𝑣))𝑑𝑣

𝑤

0

, (1) 

associated with the initial conditions (ICs) 
𝜑(𝑖)(0) = 𝑎𝑖, 𝑖 = 0,1, … , 𝑚 − 1. (2) 

 
To solve the problem (1) by MDM, firstly, apply 
Mohanad transform to it, to get: 

𝑀[𝜑(𝑚)(𝜏)] = 𝑀[𝑓(𝑤)]

+ 𝑀 [∫ 𝑅(𝑤 − 𝑣)𝐺(𝜑(𝑣))𝑑𝑣

𝑤

0

]. 

 
Using the convolution and the differential properties 
from Table 1 of Mohanad transform, we can 
simplify the equation to: 
𝑢𝑚𝑀[𝜑(𝑤)] − 𝑢𝑚+1𝑎0 − 𝑢𝑚𝑎1 − ⋯

− 𝑢2𝑎𝑚−1

= 𝑀[𝑓(𝑤)]

+
1

𝑢2
𝑀[𝑘(𝑤)] 𝑀[𝐺(𝜑(𝑤))]. 

(3) 

 
Following that, we substituting the ICs (2) in 
Equation (3) to obtain: 

𝑀[𝜑(𝑤)]

= 𝑢 𝑎0 + 𝑎1 + ⋯ +
1

𝑢𝑚−2
𝑎𝑚−1

+
1

𝑢𝑚
𝑀[𝑓(𝑤)]

+
1

𝑢𝑚+2
𝑀[𝑘(𝑤)] 𝑀[𝐺(𝜑(𝑤))]. 

(4) 

 
Now, using the decomposition method to handle the 
analytic function 𝐺(𝜑(𝑤)), express the analytic 
function 𝜑(𝑤) in a form of infinite series of the 
form: 

𝜑(𝑤) = ∑ 𝜑𝑖(𝑤)

∞

𝑖=0

= 𝜑0(𝑤) + 𝜑1(𝑤) + ⋯, (5) 

where 𝜑𝑖(𝑤), 𝜏 = 0,1, …, can be calculated and 
expand the function 𝐺(𝜑(𝜏)) in the form: 

𝐺(𝜑(𝑤)) = ∑ 𝐴𝑖(𝑤)

∞

𝑖=0

, (6) 

noting that  𝐴𝑖(𝑤), 𝑖 = 0,1,2, … are given by 

𝐴𝑖 =
1

𝑖!

𝑑𝑖

𝑑𝜆𝑖 
(𝐺 [∑ 𝜆𝑗𝜑𝑗  

𝑖

𝑗=0

]|

𝜆=0 

),  

𝑖 = 0,1,2, ⋯. 

(7) 
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The Adomian polynomials are the components 𝐴𝑖 's, 
are used to handle the nonlinear function 𝐺(𝜑(𝜏)) 
as: 

𝐴0 = 𝐺(𝜑0), 
𝐴1 = 𝜑1𝐺′(𝜑0), 

𝐴2 = 𝜑2𝐺′(𝜑0) +
1

2!
𝜑1

2𝐺′′(𝜑0), 
𝐴3 = 𝜑3𝐺′(𝜑0) + 𝜑1𝜑2𝐺′′(𝜑0)

+
1

3!
𝜑1

3𝐺′′′(𝜑0), 

𝐴4 = 𝜑4𝐺′(𝜑0) + (
1

2!
𝜑2

2 + 𝜑1𝜑3) 𝐺′′(𝜑0)

+
1

2!
𝜑1

2𝜑2𝐺′′′(𝜑0)

+
1

4!
𝜑1

4𝐺(4)(𝜑0).   

(8) 

 
Thus, substituting Equation (5) and (6) into 
Equation (4), to get: 

𝑀 [∑ 𝜑𝑖(𝑤)

∞

𝑖=0

] = 𝑢 𝑎0 + 𝑎1 + ⋯ +
1

𝑢𝑚−2
𝑎𝑚−1 

+
1

𝑢𝑚 𝑀[𝑓(𝑤)] +
1

𝑢𝑚+2 𝑀[𝑘(𝑤)]  𝑀[∑ 𝐴𝑖(𝑤)∞
𝑖=0 ].  

                                                                           (10) 

(3.9) 

 
The relation of Adomian decomposition technique 
gives us: 

𝑀[𝜑0(𝑤)] = 𝑢 𝑎0 + 𝑎1 + ⋯ +
1

𝑢𝑚−2
𝑎𝑚−1

+
1

𝑢𝑚
𝑀[𝑓(𝑤)]. 

(11) 

 
Equation (9), implies: 

𝑀[𝜑𝑛+1 (𝑤)] =
1

𝑢𝑚+2
𝑀[𝑘(𝑤)] 𝑀[𝐴𝑛(𝑤)]. (12) 

 
Remark 1. Equation (12) is well defined if the 
condition  

lim
𝑢→∞

1

𝑢𝑚+2
𝑀[𝑘(𝑤)] = 0, 

is satisfied. Applying the inverse Mohanad 
transform to Equations (11) and (12) respectively, 
we get the values of 𝜑0(𝑤), 𝜑1(𝑤), ⋯  . 

The solution of the required equation Volterra 
IDE (1) can be expressed in the form: 

 
𝜑(𝑤) = 𝜑0(𝑤) + 𝜑1(𝑤) + ⋯. 

 
The proposed method is effective in expressing 

approximate numerical results of Volterra IDEs 
(linear and nonlinear). To show accuracy of the 
proposed technique, we present some numerical 
examples and solve them by MDM. Moreover, we 
calculate the absolute error, given by the formula: 

  
𝐴𝑏𝑠𝐸𝑟𝑟 = max|𝜑𝑒𝑥𝑎𝑐𝑡 − 𝜑𝑎𝑝𝑝|, 

 
defined on some interval. 
 
 
4   Numerical Examples 
This section presents some examples of integral 
equations: (IE)s and IDEs that are solved by MDM, 
the maximum absolute error is computed to each 
example to verify the efficiency of the proposed 
results. 
 
Example 4.1 
Take the nonlinear Volterra IE: 
𝜑(𝑤) = 2𝑤 −

𝑤4

12
+

1

4
∫ (𝑤 − 𝑣)𝜑2(𝑤)𝑑𝑤

𝑤

0
. 𝑚  (13)    (4.1) 

 

Solution. The accurate solution of problem (4.1) is 
𝜑(𝑤) = 2𝑤. To solve Equation (13) by MDM, the 
Mohanad transform is operated to Equation (13) to 
get: 

Φ(𝑢) = 𝑀 [2𝑤 −
𝑤4

12
] +

1

4
𝑢 𝑀[𝜏] 𝑀[𝜑2(𝑤)] 

          = 2 −
2

 𝑢3 +
1

4𝑢2 𝑀[𝜑2(𝑤)].                        (14) 

(4.2) 

 
The substitution of the series Φ(𝑢) and the usage of 
the Adomian polynomials for 𝜑2(𝑤), give: 

𝑀[𝜑0(𝑤)] = 2 −
2

 𝑢3
, 

𝑀[𝜑𝑛+1(𝑤)] =
𝑢

4
𝑀[𝑀𝑛(𝑤)], 𝑛 ≥ 0. 

 
The nonlinear term 𝜑2(𝑤) is decomposed by 
Equation (7), to get the components as follows: 

𝐴0 = 𝜑0
2, 

𝐴1 = 2𝜑0𝜑1, 
𝐴2 = 𝜑1

2 + 2𝜑0𝜑2, 
𝐴3 = 2𝜑1𝜑2 + 2𝜑0𝜑3, 

𝐴4 = 𝜑2
2 + 2𝜑1𝜑3 + 2𝜑0𝜑4.   

(15) 

 
Comparing the terms obtained in equation (7) and 
operating the inverse Mohanad transform, to get: 

𝑀 [∑ 𝜑𝑖(𝑤)

∞

𝑖=0

]

= 𝑢 𝑎0 + 𝑎1 + ⋯ +
1

𝑢𝑚−2
𝑎𝑚−1

+
1

𝑢𝑚
𝑀[𝑓(𝑤)]

+
1

𝑢𝑚+2
𝑀[𝑘(𝑤)]  𝑀 [∑ 𝐴𝑖(𝑤)

∞

𝑖=0

]. 

(9) 
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𝜑0(𝜏) = 2𝑤 −
𝑤4

12
, 

𝜑1(𝑤) =
𝑤4

12
−

𝑤7

126
+

𝑤10

51840
, 

𝜑2(𝑤) =
𝑤7

504
−

𝑤10

181440
+

127𝑤13

56609280

−
𝑤16

298598400
, 

 
𝜑3(𝑤)

=
𝑤4

12
−

𝑤7

504
+

𝑤10

2792
−

19𝑤13

14152320
+

71𝑤16

2264371200

−
7893𝑤19

575787643000000
.                                       (16) 

 
Thus, the numerical approximation series solution is 
given by:  

𝜑(𝑤) = 𝜑0(𝑤) + 𝜑1(𝑤) + 𝜑2(𝑤) + 𝜑3(𝑤) + ⋯

= 2𝑤 +
𝑤4

12
−

𝑤7

126
−

𝑤10

362880

+
51𝑤13

56609280
+ ⋯.                 (17) 

 
Table 2 proposes comparisons between the 

accurate solution and obtained numerical 
approximated solution to Example 4.1. To prove the 
accuracy of the MDM, we calculate the absolute 
error. 

 
Table 2. Approximate and exact solutions of 

Example (4.1) 

Nodes 
Exact  

Solution 

Approximate  

Solution 

Absolute  

Error 

0.0 0.0 0.0000000000 0.0000000000 

0.1 0.2 0.2000083325 0.0000083325 

0.2 0.4 0.4001332317 0.0001332317 

0.3 0.6 0.6006732643 0.0006732643 

0.4 0.8 0.8021203322 0.0021203322 

0.5 1.0 1.0051463480 0.0051463480 

0.6 1.2 1.2105779450 0.0105779450 

0.7 1.4 1.4193552730 0.0193552730 

0.8 1.6 1.6328034650 0.0328034650 

0.9 1.8 1.8508857190 0.0508857190 

1.0 2.0 1.8833526250 0.1166473750 

 

Figure 1 below, presents the graph of 
approximate and exact solutions. The absolute error 
is presented in Figure 2, of Example 4.1. 

 

 
 

Fig. 1: The exact and approximate solutions of 
Example 4.1 
 
 

 
Fig. 2: The graph of absolute error of Example 4.1 
 
Example 4.2. Take the nonlinear Volterra IE: 

𝜑′(𝑤) =
3

2
𝑒𝑤 −

1

2
𝑒3𝑤 + ∫ 𝑒𝑤−𝑣𝜑3(𝑣)𝑑𝑣

𝑤

0

. (19) 

𝜑(0) = 1 (20) 
 

Solution. Operating Mohanad integral transform to 
Equation (19), we obtain: 

Φ(𝑢) = 𝑢2 +
3𝑢2

2(𝑢 − 1)
−

𝑢2

2(𝑢 − 3)

+
𝑢3

(𝑢 − 1)
𝑀[𝜑3(𝑤)], 

 
which can be simplified to: 

Φ(𝑢) = 𝑢 +
3𝑢2

2(𝑢 − 1)
−

𝑢2

2(𝑢 − 3)

+
𝑢3

𝑢 − 1
𝑀[𝜑3(𝑤)]. 

 
 

𝑀[𝜑0(𝑤)] = 𝑢2 +
3𝑢2

2(𝑢 − 1)
−

𝑢2

2(𝑢 − 3)
  , 

𝑀[𝜑𝑛+1(𝑤)] =
𝑢3

𝑢 − 1
𝑀[𝐴𝑛(𝑤)], 𝑛 ≥ 0.  

(18) 
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Also, we get: 
The Adomian components of the polynomials 
𝐴𝑛(𝑤) of  𝜑3(𝑤), can be obtained by: 

𝐴0 = 𝜑0
3, 

𝐴1 = 3𝜑0
2𝜑1, 

𝐴2 = 3𝜑0
2𝜑2 + 3𝜑0𝜑1

3, 
𝐴3 = 3𝜑0

2𝜑3 + 6𝜑0𝜑1𝜑2 + 𝜑1
3.   

 
Applying the inverse Mohanad transform to the 
functions in (19) and using the recursive formula, 
we have: 

𝜑0(𝑤) = 1 + 𝑤 −
1

2
𝑤3 −

𝑤4

2
−

13

40
𝑤5 + ⋯, 

𝜑1(𝑤) =
1

2
𝑤2 +

2

3
𝑤3 +

5

12
𝑤4 +

7

120
𝑤5 + ⋯, 

𝜑2(𝑤) =
1

8
𝑤4 +

11

40
𝑤5 + ⋯ 

. 
Thus, the approximate solution of Example 4.2 is:  

𝜑(𝑤) = 1 + 𝑤 +
𝑤2

2!
+

𝑤3

3!
+

𝑤4

4!
+ ⋯, 

that converges directly to the exact solution 𝜑(𝜏) =
𝑒𝜏. 

In Table 3, we introduce the accurate and 
approximate solutions of Example 4.2, and to prove 
the accuracy of the method, we calculate the 
absolute error. 
 

Table 3. The exact and approximate solutions of 
Example 4.2, and the absolute error 

 
In Figure 3, we sketch the exact and 

approximate solutions. We also sketch the absolute 

error of the exact and approximate solutions of 
Example 4.2 in Figure 4. 

 

 
 

Fig. 3: The approximate and exact solutions of the 
Example 4.2 
 

 
Fig. 4: The graph of absolute error of Example 4.2. 
 
 
5   Conclusion 
The main objective of this study was to introduce an 
innovative and efficient approach for solving 
nonlinear Volterra integral differential equations 
(IDEs). We achieved this by presenting approximate 
solutions for a family of nonlinear IDEs in the form 
of infinite series solutions, employing the MDM 
(Mohanad transform combined to Adomian’s 
decomposition method). Several examples of 
Volterra IDEs were examined to validate and 
demonstrate the simplicity and efficiency of the 
proposed method. The findings of this research 
article indicate that MDM is a straightforward and 
effective method for handling nonlinear IDEs. The 
accuracy and efficiency in providing approximate 
solutions proposed in this article offer promising 
prospects for solving a wide range of challenging 
problems. In future research, we plan to further 
enhance and refine the method to tackle nonlinear 
fractional integral equations. This extension would 
broaden the scope of its applicability and could 
potentially open up new opportunities for solving 
more complex mathematical models. 

Nodes 
Exact 

Solution 

Approximate 

Solution 

Absolute 

Error 

0.0 1 1 0 

0.1 1.1051709181 1.1051709181 2.2204460493
× 10−16 

0.2 1.2214027582 1.2214027582 0 

0.3 1.3498588076 1.3498588076 2.2204460493
× 10−16 

0.4 1.4918246976 1.4918246976 2.2204460492
× 10−16 

0.5 1.6487212707 1.6487212707 8.8817841970
× 10−16 

0.6 1.8221188004 1.8221188004 9.5479180118
× 10−15 

0.7 2.0137527075 2.0137527075 8.1268325403
× 10−14 

0.8 2.2255409285 2.2255409285 5.3290705182
× 10−13 

0.9 2.4596031112 2.4596031112 2.7911006839
× 10−12 

1.0 2.7182818285 2.7182818284 1.228617207
× 10−11 
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