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1   Introduction 
In 2007, [1], restructured the concept of metric 
spaces by introducing cone metric spaces, wherein 
the traditional real numbers were replaced with an 
ordering Banach space. Through their pioneering 
work, they established several fixed-point theorems 
for contractive mappings within these spaces, 
effectively extending analogous results previously 
established in conventional metric spaces. This 
innovative approach not only broadened the scope 
of metric space theory but also provided a fresh 
perspective on the convergence properties of 
mappings in the realm of cone metric spaces. 
Based on the metric cone spaces, many authors have 
generalized them and studied the results of fixed 
points in them, as in [2], [3], [4]. 

Among the generalized cone metric spaces are 
the extended b-metric cone spaces conceived by [5], 
and [6]. The authors relied on the concept of 
extended b-metric spaces given by [7] and studied in 
them the existence and uniqueness of fixed points 
for Kannan contractions, [8]. Recently, these spaces 
have been placed as the focus of study for some 
mathematicians, such as in [9] and [10]. 

In 2012, [11], introduced a new contraction to 
fixed point theory by introducing the concept of F-
contraction. This new contraction was studied by 

many other authors in different metric spaces such 
as in [12], [13], [14], [15], [16], [17], [18], [19], 
[20]. 

In this paper, a generalization of F-contractions 
in extended cone metric spaces is given and the 
existence and uniqueness of common fixed points 
for two functions that complete this generalized F-
contraction are studied. Also, a result on the 
existence and uniqueness of a fixed point for a 
contraction where an ultra-altering function is used 
is verified. The methodology used throughout this 
paper is proof. To prove the main results, we use 
Cauchy and convergent sequences, respectively. 
Concrete examples accompany the main results of 
the paper. In addition, our results generalize some 
theorems of given references. 
 
 
2  Preliminaries 
Definition 2.1. [1] Let 𝑃 be a non-empty subset of 
𝐸, where 𝐸 is an ordered Banach space. The set 𝑃 is 
called cone if and only if: 
(i) 𝑃 is closed, nonempty, and 𝑃 ≠ {0}, 
(ii) 𝑎, 𝑏 ∈ ℝ,   𝑎, 𝑏 ≥ 0,   𝑥, 𝑦 ∈ 𝑃  implies  𝑎𝑥 +
𝑏𝑦 ∈ 𝑃,  
(iii) 𝑥 ∈ 𝑃 and − 𝑥 ∈ 𝑃 implies 𝑥 = 0.  
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When a cone 𝑃 ⊂ 𝐸 is given, a partial ordering 
≤ concerning P is defined by the relation 𝑥 ≤  𝑦 if 
and only if 𝑦 − 𝑥 ∈ 𝑃. To indicate 𝑥 ≤  𝑦 but 𝑥 ≠
 𝑦, we denote 𝑥 ≤  𝑦, while 𝑥 ≪  𝑦 will stand for 
𝑦 − 𝑥 ∈ int 𝑃, where int P denotes the interior of P. 
The cone 𝑃 is called normal if, there is a positive 
real number 𝐾 such that, for all 𝑥, 𝑦 in 𝑃 we have: 
  0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖  
 

The last positive number satisfying the above is 
called the normal constant of 𝑃.  

The cone P is called regular if every increasing 
sequence that is bounded from above is convergent. 
That is, if {𝑥𝑛} is a sequence such that 𝑥1 ≤ 𝑥2 ≤
⋯ ≤ 𝑥𝑛 ≤ ⋯ ≤ 𝑦 for some 𝑦 ∈ 𝐸, 𝑥 ∈ 𝐸 such that 
‖𝑥𝑛 − 𝑥‖ → 0 (𝑛 → ∞). Equivalently, the cone P is 
regular if and only if any decreased sequence that is 
bounded from below is convergent. A regular cone 
is a normal cone.  

 In the following, we always suppose E is a 
Banach space, P is a cone in E with int 𝑃 ≠ ∅ , and 
≤ is partial ordering concerning P. 

Giving generalizations of metric spaces has 
been an open challenge for mathematicians. One of 
the most interesting generalizations of metric spaces 
was introduced in [1].  
 

Definition 2.2. [2], Let 𝑃 be a cone and X a non-
empty set. The function 𝑑: 𝑋 × 𝑋 → 𝑃 is called a 
cone metric if it satisfies the following conditions: 
(c1) 𝑑(𝑥, 𝑦) ∈ 𝑃 that is 0 ≤ 𝑑(𝑥, 𝑦) for𝑥, 𝑦 ∈ 𝑋, and 
𝑑(𝑥, 𝑦) = 0  iff 𝑥 = 𝑦,  
(c2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋, 
(c3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.   
The pair (𝑋, 𝑑) is called a cone metric space. 
 

The concept of cone metric space and fixed 
point theory on these spaces has been developed by 
many authors in their works.   

In 1998, [21], introduced the following 
interesting concept. 
 

Definition 2.3. [21], Let X be a non-empty set and  
𝑠 ≥ 1 be a given real number. A function 𝑑:𝑋 ×
𝑋 → ℝ+ is called a b-metric if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 it 
satisfies the conditions: 
(b1) 𝑑(𝑥, 𝑦) = 0 iff  𝑥 = 𝑦,  
(b2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 
(b3) 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)] where 𝑠 ≥ 1. 
 

The pair (𝑋, 𝑑) is called b-metric space with 
parameter s.  

Authors in [6], introduced a new type of 
generalized metric space by taking a two-variables 
function 𝜃(𝑥, 𝑦) instead of the parameter s.  
 

Definition 2.4. [6], Let X be a nonempty set and 
𝜃: 𝑋 × 𝑋 → [1,+∞). A function 𝑑𝜃: 𝑋 × 𝑋 →
[0,+∞) is an extended b-metric, if for all 𝑥, 𝑦, 𝑧 ∈
𝑋 it satisfies: 
( 1)d

𝑑𝜃(𝑥, 𝑦) = 0  iff 𝑥 = 𝑦, 
( 2)d

𝑑𝜃(𝑥, 𝑦) = 𝑑𝜃(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋, 
( 3)d

𝑑𝜃(𝑥, 𝑧) ≤ 𝜃(𝑥, 𝑧)(𝑑𝜃(𝑥, 𝑦) + 𝑑𝜃(𝑦, 𝑧)) for 
all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
 

The pair (𝑋, 𝑑𝜃) is called an extended b-metric 
space. 

Authors in [5], in their generalization, extended 
the domain of the function 𝜃 from 𝑋 × 𝑋 to 𝑋 × 𝑋 ×
𝑋 thus giving this definition as follows.  
 

Definition 2.5. [5], Let X be a non-empty set, and 
𝜃: 𝑋 × 𝑋 × 𝑋 → [1 + ∞). Let 𝑑𝜃: 𝑋 × 𝑋 → ℝ+ be a 
function that satisfies the following conditions: 
( 1)d

𝑑𝜃(𝑥, 𝑦) ≥ 0 for all x, y and 𝑑𝜃(𝑥, 𝑦) = 0 iff 
𝑥 = 𝑦,  
( 2)d

𝑑𝜃(𝑥, 𝑦) = 𝑑𝜃(𝑦, 𝑥) for all x, y in X, 
( 3)d

𝑑𝜃(𝑥, 𝑦) ≤ 𝜃(𝑥, 𝑦, 𝑧)[𝑑𝜃(𝑥, 𝑧) + 𝑑𝜃(𝑧, 𝑦)] for 
all x, y, z in X. 
 

The function 𝑑𝜃 is called extended cone metric 

on X and the pair (𝑋, 𝑑𝜃) is called extended cone 
metric space. 

Convergence, Cauchy sequences, continuity, 
and completeness on extended cone metric spaces 
are defined as follows: 
 

Definition 2.6. [5], Consider a sequence {𝑥𝑛} in an 
extended cone metric space (X, d) and let P be a 
normal cone in E with normal constant K.  
Then 
(i) {𝑥𝑛} converges to x if for every 𝑐 ∈ 𝐸 with c > 0, 
there exists 𝑁 > 0 such that for all 𝑛 ≥ 𝑁, 𝑑(𝑥𝑛 , 𝑥) 
< c. Denoted by lim 

𝑛→∞
𝑥𝑛 = 𝑥 or 𝑥𝑛

 𝑛→∞ 
→      𝑥. 

(ii) {𝑥𝑛} is said to be Cauchy in X if for every 𝑐 ∈ 𝐸 
with c > 0, there exists a positive integer 𝑁 such that 
for all 𝑛,𝑚 ≥ 𝑁 ⇒ 𝑑(𝑥𝑛, 𝑥𝑚) < c. 
(iii) The mapping 𝑇: 𝑋 → 𝑋 is said to be continuous 
at a point 𝑥 ∈ 𝑋if for every sequence {𝑥𝑛} 
converging to x it follows that 𝑙𝑖𝑚

𝑛→∞
𝑇𝑥𝑛 =

𝑇(𝑙𝑖𝑚
𝑛→∞

𝑥𝑛 = 𝑇𝑥. )   

(iv) (X, d) is said to be a complete cone metric space 
if every Cauchy sequence is convergent in X. 
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3  Main Results 
In this section, we present a new class of functions 
denoted 𝔉𝜃  where every element 𝐹 ∈ 𝔉𝜃 satisfies 
the following conditions: 
(1) 𝐹: 𝑃 → ℝ is strictly increasing 
(2) For every sequence {𝑡𝑛} ⊂ 𝑃, the following 
equivalence holds: 
 𝑙𝑖𝑚

𝑛→+∞
𝐹(𝑡𝑛) = −∞ iff  𝑙𝑖𝑚

𝑛→+∞
𝑡𝑛 = 0  

(3) For every sequence {𝑡𝑛} ⊂ 𝑃, where 𝑙𝑖𝑚
𝑛→+∞

𝑡𝑛 =

0, there exists a number 𝑠 ∈ (0,1) such that 
𝑙𝑖𝑚
𝑛→+∞

‖𝑡𝑛‖
𝑠𝐹(𝑡𝑛) = −∞.  

(4) If {𝑡𝑛} ⊂ 𝑃 is a sequence that 𝜏 + 𝐹(𝜃𝑛𝑡𝑛) ≤
𝐹(𝑡𝑛−1) for 𝑛 ∈ ℕ and 𝜏 ≥ 0 then 
 𝜏 + 𝐹(∏ 𝜃𝑖

𝑛
𝑖=1 𝑡𝑛) ≤ 𝐹(∏ 𝜃𝑖

𝑛−1
𝑖=1 𝑡𝑛−1).  

 

Theorem 3.1. Let (𝑋, 𝑑𝜃) be a complete extended 
cone metric space and 𝑇, 𝑆: 𝑋 → 𝑋 two functions 
that satisfy the following implication: 
If 𝑑(𝑥, 𝑦) > 0 then  
𝜏 + 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥, 𝑆𝑦) < 𝐹(𝑀(𝑥, 𝑦) + 𝐿 ⋅
𝑚( 𝑥, 𝑦))  (1) 
  
where 𝜏 > 0,  𝐿 > 0, 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥 {
𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑇𝑥, 𝑥), 𝑑𝜃(𝑦, 𝑆𝑦),

𝑑𝜃(𝑇𝑥,𝑦)+𝑑𝜃(𝑥,𝑇𝑦)

2𝜃(𝑥,𝑦,𝑧)

},  

𝑚(𝑥, 𝑦) = 𝑚𝑖𝑛 {
𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑇𝑥, 𝑥), 𝑑𝜃(𝑆𝑦, 𝑦),

𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑥, 𝑆𝑦)
} 

and 𝜃 is a convergent function used in extended b-
metric for each 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
 
Then S and T have a unique common fixed point. 
 

Proof. Let 𝑥0 be an arbitrary point in X. Define the 
sequence {𝑥𝑛} by taking 𝑥1 = 𝑇𝑥0, 2 1,x Sx 𝑥3 =

𝑇𝑥2, 𝑥4 = 𝑆𝑥3 and so on, or, more generally, 
𝑥2𝑛−1 = 𝑇𝑥2𝑛−2 and 𝑥2𝑛 = 𝑆𝑥2𝑛−1 for all 𝑛 ∈ ℕ. 
Beginning with the inequality expressed in 
inequality (1), we proceed: 
𝜏 + 𝐹(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1) <
𝐹(𝑀(𝑥2𝑛−1, 𝑥2𝑛−2) + 𝐿𝑚(𝑥2𝑛−1, 𝑥2𝑛−2)).  (2) 
 
We observe that 𝑀(𝑥2𝑛−1, 𝑥2𝑛−2) and 
𝑚(𝑥2𝑛−1, 𝑥2𝑛−2) are respectively: 

𝑀(𝑥2𝑛−1, 𝑥2𝑛−2) =

𝑚𝑎𝑥 {

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛),

𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑛−1),
𝑑𝜃(𝑥2𝑛,𝑥2𝑛−1)+𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛−2)

2𝜃(𝑥2𝑛−1,𝑥2𝑛−2,𝑧)

}          (3) 

 

= 𝑚𝑎𝑥 {
𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛),

𝑑𝜃(𝑥2𝑛,𝑥2𝑛−1)

2𝜃(𝑥2𝑛−1,𝑥2𝑛−2,𝑧)

}  

= 𝑚𝑎𝑥{𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)},        (4)  
 for all 𝑛 ∈ ℕ 

 
meanwhile, 
 
 𝑚(𝑥2𝑛−1, 𝑥2𝑛−2) =

𝑚𝑖𝑛 {

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛),

𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑛−1), 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1),

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−1)
} = 0   (5) 

for all  𝑛 ∈ ℕ. 
 
Applying equalities (3) and (4) over (1) we derive 
the following inequality 
𝜏 + 𝐹(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1) <

𝐹(𝑚𝑎𝑥{(𝑑𝜃𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)})   (6) 
for all 𝑛 ∈ ℕ.   (6) 
We distinguish the following cases: 
 

Case 1.  
If 𝑚𝑎𝑥{𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)} =
𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2),  
inequality (5) takes the form: 
𝜏 + 𝐹(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)

< 𝐹(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2)) for all 𝑛
∈ ℕ. 

 
Thus, for 𝑛 = 1, our last inequality is derived:  
𝜏 + 𝐹(𝜃(𝑥1, 𝑥0, 𝑧) ⋅ 𝑑𝜃(𝑥2, 𝑥1) < 𝐹(𝑑𝜃(𝑥1, 𝑥0)). 

 
For 𝑛 = 2, the following assessments hold: 
𝐹(𝜃(𝑥2, 𝑥1, 𝑧) ⋅ 𝜃(𝑥1, 𝑥0, 𝑧)𝑑𝜃(𝑥3, 𝑥2))

< 𝐹(𝜃(𝑥1, 𝑥0, 𝑧)𝑑𝜃(𝑥2, 𝑥1) − 𝜏
< 𝐹(𝑑𝜃(𝑥1, 𝑥0)) − 2𝜏. 

 
Continuing iteratively, it is observed that the 

function F satisfies the following condition: 
 𝐹(∏ 𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧)𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)

2𝑛
𝑖=1 ) <

𝐹(𝑑𝜃(𝑥1, 𝑥0)) − 𝑛𝜏.    (7) 
 
Taking the limit on both sides as 𝑛 tends toward 
infinity, we ascertain that: 
 𝑙𝑖𝑚
𝑛→∞

𝐹(∏ 𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧)𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)
2𝑛
𝑖=1 ) = −∞. 

\Exploiting the condition (2) from the determination 
of the function F, it follows that: 
𝑙𝑖𝑚
𝑛→+∞

𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛) = 0  and 

𝑙𝑖𝑚
𝑛→+∞

∏ 𝜃(𝑥𝑖 , 𝑥𝑖−1,, 𝑧)
2𝑛
𝑖=1 ‖𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)‖ = 0 (8) 

 
The fulfillment of this equation along with the 

condition (3) of the function F implies that: 
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𝑙𝑖𝑚
𝑛→+∞

(∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

‖𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)‖)

𝑠

⋅ 𝐹 (∏𝜃(𝑥𝑖 , 𝑥𝑖−1,𝑧)

2𝑛

𝑖=1

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)) = 0.   (9) 

 
Now, we multiply both sides of the above inequality 
(6) by [(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1,𝑧)

2𝑛
𝑖=1 )‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖]

𝑠
, 

thus obtaining:  

[(∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

)‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖]

𝑠

⋅ 𝐹(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)

< [(∏𝜃(𝑥𝑖 , 𝑥𝑖−1,𝑧)

2𝑛

𝑖=1

)‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖]

𝑠

⋅ 𝐹(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2))

− 𝜏 [(∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

)‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖]

𝑠

. 

 
Taking limits on both sides of this inequality 

and using the equalities (7) and (8) it follows that:   

𝑙𝑖𝑚
𝑛→+∞

𝑛 [∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖]

𝑠

= 0. 

 
By employing the definition of the convergent 
sequence, we note that for 𝜀 = 1, there exists 𝑛0 ∈
ℕ, such that for all 𝑛 > 𝑛0 we have: 
 𝑛(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)

2𝑛
𝑖=1 ‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖)

𝑠
< 1. 

Therefore, we obtain this inequality: 

∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

‖𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛)‖ <
1

𝑛
1

𝑠

  (10) 

for each 𝑛 ∈ ℕ.  
 
Below, we demonstrate that {𝑥2𝑛} is a Cauchy 
sequence on the extended cone metric space (𝑋, 𝑑𝜃). 
To do so, for 𝑛 > 𝑚  we can derive that: 

𝑑𝜃(𝑥2𝑛, 𝑥2𝑚)
≤ 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚)(𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)
+ 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑚))
≤ 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚)𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)
+ 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚)𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑥2𝑚) 
(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2) + 𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑚)) 
= 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚)𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)

+ 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚) 
𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑥2𝑚)𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2)

+ 𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚) 
𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑥2𝑚)𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑚) 

≤ ⋯ ≤
∑ (∏ 𝜃(𝑥2𝑖, 𝑥2𝑖−1𝑥2𝑚)

𝑛
𝑖=1 )∞

𝑛=1 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1). 
Taking the norm of both sides, we obtain 
‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑚)‖

≤ ∑(∏𝜃(𝑥2𝑖, 𝑥2𝑖−1𝑥2𝑚)

𝑛

𝑖=1

)𝐾‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)‖

∞

𝑛=1

 

≤ 𝐾∑
1

𝑛
1
𝑠

∞
𝑛=1 . 

As a consequence: 
𝑙𝑖𝑚
𝑛→∞
𝑚→∞

‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑚)‖ = 0. 

 
Then, {𝑥2𝑛} is a Cauchy sequence on (𝑋, 𝑑𝜃). Given 
the completeness of (𝑋, 𝑑𝜃), there exists a point 
𝑥∗ ∈ 𝑋, such that 𝑑𝜃(𝑥2𝑛, 𝑥∗)

 𝑛→∞ 
→      0.  

Subsequently, we must demonstrate that 𝑥∗ is a 
common fixed point of the functions S and T. Since 
F is strictly increasing, we can write that 𝜏 +
𝐹(𝜃(𝑥2𝑛−1, 𝑥

∗, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑆𝑥
∗)) ≤

𝐹(𝑀(𝑥2𝑛−1, 𝑥
∗) + 𝐿𝑚(𝑥2𝑛−1, 𝑥

∗)). From here it 
follows that:  
𝜃(𝑥2𝑛−1, 𝑥

∗, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑆𝑥
∗) ≤ 𝑀(𝑥2𝑛−1, 𝑥

∗) +
𝐿𝑚(𝑥2𝑛−1, 𝑥

∗)                                                      (11)       
 
where 
 𝑀(𝑥2𝑛−1𝑥∗) =

𝑚𝑎𝑥 {
𝑑𝜃(𝑥2𝑛−1, 𝑥

∗), 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1), 𝑑𝜃(𝑆𝑥
∗, 𝑥∗),

𝑑𝜃(𝑥2𝑛,𝑥
∗)+𝑑𝜃(𝑥2𝑛−1,𝑆𝑥

∗)

2𝜃(𝑥2𝑛−1,𝑥∗)

}             

and  
𝑚(𝑥2𝑛−1, 𝑥

∗)

= 𝑚𝑖𝑛 {
𝑑𝜃(𝑥2𝑛−1, 𝑥

∗), 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1), 𝑑𝜃(𝑆𝑥
∗, 𝑥∗),

𝑑𝜃(𝑥2𝑛−1, 𝑥
∗), 𝑑𝜃(𝑥2𝑛−1, 𝑆𝑥

∗)
}. 

 
Taking the limits on both sides of (10) we derive 
that:  

𝑙𝑖𝑚
𝑛→+∞

𝜃(𝑥2𝑛−1, 𝑥
∗, 𝑧) ⋅ 𝑑𝜃(𝑥2𝑛, 𝑆𝑥

∗ ≤

𝑙𝑖𝑚
𝑛→+∞

(𝑀(𝑥2𝑛−1, 𝑥
∗ + 𝐿𝑚(𝑥2𝑛−1, 𝑥

∗))  
or,  

𝜃0𝑑𝜃(𝑥
∗, 𝑆𝑥∗) ≤ 𝑑𝜃(𝑥

∗, 𝑆𝑥∗) + 𝐿 ⋅ 0. 
 
Consequently, (𝜃0 − 1)𝑑𝜃(𝑥

∗, 𝑆𝑥∗) ≤ 0. Hence, 
𝑑𝜃(𝑥

∗, 𝑆𝑥∗) = 0 or 𝑆𝑥∗ = 𝑥∗.  
Similarly, if we see the inequality 𝜏 +

𝐹(𝜃(𝑥∗, 𝑥2𝑛−2, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥
∗, 𝑥2𝑛−1)) ≤

𝐹(𝑀(𝑥∗, 𝑥2𝑛−2) + 𝐿𝑚(𝑥
∗, 𝑥2𝑛−2)), we derive that 

𝑑𝜃(𝑇𝑥
∗, 𝑥∗) = 0 or 𝑇𝑥∗ = 𝑥∗. As a consequence, 

𝑆𝑥∗ = 𝑥∗ = 𝑇𝑥∗thus, 𝑥∗ is a common fixed point of 
S and T. Finally, we must show that 𝑥∗ is the unique 
common fixed point for S and T. Suppose that there 
exists another point 𝑦∗ ∈ 𝑋, where 𝑥∗ ≠ 𝑦∗ such 
that 𝑇𝑦∗ = 𝑦∗ = 𝑆𝑦∗. We start from the inequation 
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𝜏 + 𝐹(𝜃(𝑥∗, 𝑦∗, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥
∗, 𝑆𝑦∗)) ≤

𝐹(𝑀(𝑥∗, 𝑦∗) + 𝐿𝑚(𝑥∗, 𝑦∗)) where, 𝑀(𝑥∗, 𝑦∗) =

𝑚𝑎𝑥 {

𝑑𝜃(𝑥
∗, 𝑦∗), 𝑑𝜃(𝑇𝑥

∗, 𝑥∗), 𝑑𝜃(𝑆𝑦
∗, 𝑦∗),

𝑑𝜃(𝑇𝑥
∗,𝑦∗)+𝑑𝜃(𝑥

∗,𝑇𝑦∗)

2𝜃(𝑥∗,𝑦∗,𝑧)

} =

𝑑𝜃(𝑥
∗, 𝑦∗) 

and 
 𝑚(𝑥∗, 𝑦∗) =

𝑚𝑖𝑛 {
𝑑𝜃(𝑥

∗, 𝑦∗), 𝑑𝜃(𝑇𝑥
∗, 𝑥∗), 𝑑𝜃(𝑆𝑦

∗, 𝑦∗),
𝑑𝜃(𝑥2𝑛−1, 𝑦

∗), 𝑑𝜃(𝑥2𝑛−1, 𝑆𝑦
∗)

} = 0.  

 
After replacing 
𝑀(𝑥∗, 𝑦∗) and 𝑚(𝑥∗, 𝑦∗) in the last inequality, we 
get:  

𝜏 + 𝐹(𝜃(𝑥∗, 𝑦∗, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥
∗, 𝑆𝑦∗)) 

≤  𝐹(𝑑𝜃(𝑥
∗, 𝑦∗) + 𝐿 ⋅ 0) 

 
which implies:  
𝑑𝜃(𝑥

∗, 𝑦∗) ≤ 𝜃(𝑥∗, 𝑦∗, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥
∗, 𝑆𝑦∗) =

𝜃(𝑥∗, 𝑦∗, 𝑧) ⋅ 𝑑𝜃(𝑥
∗, 𝑦∗).  

Thus 𝑑𝜃(𝑥∗, 𝑦∗) ≤ 𝜃(𝑥∗, 𝑦∗, 𝑧) ⋅ 𝑑𝜃(𝑥∗, 𝑦∗). This 
inequality can be true only if 𝑑𝜃(𝑥∗, 𝑦∗) = 0 or 
𝑥∗ = 𝑦∗. Then the fixed point 𝑥∗ is unique. 
 
Example 3.2. Given the sets 𝑋 = {1

𝑛
, 𝑛 ∈ ℕ} ∪ {0}, 

𝐸 = ℝ and 𝑃 = {𝑥 ∈ 𝐸:  𝑥 ≥ 0}. Define 𝑑𝜃: 𝑋 ×
𝑋 → 𝑃 by 𝑑𝜃(𝑥, 𝑦) =

1

𝑝
(𝑥 − 𝑦)2 where 𝑝 ≥ 5, 

𝜃(𝑥, 𝑦, 𝑧) = 1 + 𝑥 + 𝑦 + 𝑧 and 𝐹: 𝑃 → ℝ, such that 
𝐹(𝑡) = 𝑙𝑛 𝑡 ,  𝜏 = ln 𝑝. Also, let T and S be 
respectively given by 𝑇(𝑥) = 𝑥

𝑝
, and 𝑆(𝑦) = 𝑦

𝑝2
. 

Firstly, we derive that 𝑑𝜃(𝑇(𝑥), 𝑆(𝑦)) =

𝑑𝜃(
𝑥

𝑝
,
𝑦

𝑝2
) =

1

𝑝
(
𝑥

𝑝
−

𝑦

𝑝2
)2 =

1

𝑝3
(𝑥 −

𝑦

𝑝
)2. Evaluating 

the distances between respective points, we have  
𝑑𝜃(𝑥, 𝑦) =

1

𝑝
(𝑥 − 𝑦)2.  

On the other hand, we notice that  
𝑑𝜃(𝑇(𝑥), 𝑥) =

1

𝑝
(
𝑥

𝑝
− 𝑥)2 =

(1−𝑝)2𝑥2

𝑝2
 , 

𝑑𝜃(𝑦, 𝑆(𝑦)) =
(1−𝑝2)2𝑦2

𝑝3
, 𝑑𝜃(𝑇(𝑥), 𝑦) =

1

𝑝
(
𝑥

𝑝
− 𝑦)2, 

and 𝑑𝜃(𝑥, 𝑆(𝑦)) =
1

𝑝
(𝑥 −

𝑦

𝑝2
)2, 

 

Theorem 3.3. Let (𝑋, 𝑑𝜃) be a complete extended 
cone metric space and 𝑇: 𝑋 → 𝑋 a function that 
satisfies the following implication  
If 𝑑(𝑥, 𝑦) > 0 then 𝜏 + 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥, 𝑇𝑦) <
𝐹(𝑀(𝑥, 𝑦) + 𝐿 ⋅ 𝑚( 𝑥, 𝑦))  (12) 
 
where 𝜏 > 0,  𝐿 > 0, 𝑀(𝑥, 𝑦) =
𝑚𝑎𝑥 {𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑇𝑥, 𝑥), 𝑑𝜃(𝑦, 𝑇𝑦),

𝑑𝜃(𝑇𝑥,𝑦)+𝑑𝜃(𝑥,𝑇𝑦)

2𝜃(𝑥,𝑦,𝑧)
}, 

𝑚(𝑥, 𝑦) =
𝑚𝑖𝑛{𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑇𝑥, 𝑥), 𝑑𝜃(𝑇𝑦, 𝑦), 𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑥, 𝑇𝑦)} 
and 𝜃 is a convergent function used in extended b-
metric for each 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
Then T has a unique fixed point. 
 

Proof. Taking the function 𝑆 = 𝑇 in inequality (1) 
we obtain the condition (12). As a result, the 
function 𝑇 has a unique fixed point in 𝑋. 
 

Example 3.4 Let us take the sets 𝑋 = [0,1], 𝐸 = ℝ 
and 𝑃 = {𝑥 ∈ 𝐸:  𝑥 ≥ 0}. Define 𝑑𝜃: 𝑋 × 𝑋 → 𝑃 by 
𝑑𝜃(𝑥, 𝑦) = (𝑥 − 𝑦)

2, 𝜃(𝑥, 𝑦, 𝑧) = 1 + 𝑥 + 𝑦 + 𝑧 
and 𝐹: 𝑃 → ℝ, such that 𝐹(𝑡) = 𝑡 + 𝑙𝑛 𝑡 ,  𝜏 = 𝑙𝑛4. 
Let T be given by 𝑇(𝑥) = 𝑥+1

5
. 

Initially we see that for 𝑥, 𝑦 ∈ [0,1) a 
𝑑𝜃(𝑇(𝑥), 𝑇(𝑦)) = 𝑑𝜃(

𝑥+1

5
,
𝑦+1

5
) = (

𝑥−𝑦

5
)2 =

(𝑥−𝑦)2

25
.  

 
Calculating the distances between respective points 
𝑥, 𝑦, 𝑇𝑥, 𝑇𝑦 we have  𝑑𝜃(𝑥, 𝑦) = (𝑥 − 𝑦)2, 
 𝑑𝜃(𝑇(𝑥), 𝑥) = (

𝑥−1

5
− 𝑥)2 =

1+4𝑥

25
, 𝑑𝜃(𝑦, 𝑇(𝑦)) =

1+4𝑦

25
, 𝑑𝜃(𝑇(𝑥), 𝑦) = (

𝑥

5
− 𝑦)2, and 𝑑𝜃(𝑥, 𝑇(𝑦)) =

(𝑥 −
𝑦

5
)2, 
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Then, make the following comparison between 

𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇(𝑥), 𝑆(𝑦)) = ln 𝜃(𝑥, 𝑦, 𝑧)
1

𝑝3
(𝑥 −

𝑦

𝑝
)2 

= ln(1 + 𝑥 + 𝑦 + 𝑧)
1

𝑝3
(𝑥 −

𝑦

𝑝
)
2
≤ ln 4

1

𝑝3
(𝑥 −

𝑦

𝑝
)
2
≤ ln

1

𝑝2
(𝑥 −

𝑦

𝑝
)
2
 

and  

𝐹(𝑀(𝑥, 𝑦) + 𝐿 ⋅ 𝑚(𝑥, 𝑦)) = 𝑙𝑛(𝑀(𝑥, 𝑦) + 𝐿 ⋅ 𝑚(𝑥, 𝑦)) >

ln(
1

𝑝
(𝑥 − 𝑦)2 +𝐿 ⋅ 𝑚(𝑥, 𝑦) > ln

1

𝑝
(𝑥 −

𝑦

𝑝
)
2
= ln

1

𝑝2
(𝑥 −

𝑦

𝑝
)
2
+

ln 𝑝 > 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇(𝑥), 𝑆(𝑦)) + 𝜏 . 

Hence, the inequality (1) holds, then the functions 

have a common fixed point 𝑥 = 0. 

 
 

 

  

 

 

 

 

Then, making the following comparison, we obtain 

𝜏 + 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇(𝑥), 𝑆(𝑦)) 

= 𝑙𝑛4 + 𝜃(𝑥, 𝑦, 𝑧)
(𝑥 − 𝑦)2

25
+ ln 𝜃(𝑥, 𝑦, 𝑧)

(𝑥 − 𝑦)2

25
 

= (1 + 𝑥 + 𝑦 + 𝑧)
(𝑥 − 𝑦)2

25

+ ln 4(1 + 𝑥 + 𝑦 + 𝑧)
(𝑥 − 𝑦)2

25

≤ 5
(𝑥 − 𝑦)2

25
+ ln 20

(𝑥 − 𝑦)2

25

=
(𝑥 − 𝑦)2

5
+ ln

4(𝑥 − 𝑦)2

5
≤ (𝑥 − 𝑦)2 + ln(𝑥 − 𝑦)2

≤ 𝐹(𝑀(𝑥, 𝑦) + 𝐿 ⋅ 𝑚(𝑥, 𝑦)) 
 

Since the inequality (12) holds, then the function 

𝑇 has a unique fixed point 𝑥 =
1

4
. 

 

 



Theorem 3.5 Let (𝑋, 𝑑𝜃) be a complete extended 
cone metric space and 𝑇, 𝑆: 𝑋 → 𝑋 two functions 
that satisfy the following inequality  
If 𝑑(𝑥, 𝑦) > 0 then 𝜏 + 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅
𝑑𝜃(𝑇𝑥, 𝑆𝑦)) < 𝐹(𝜑(𝑀(𝑥, 𝑦)))  (13) 
 
for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 𝜑:𝑃 → 𝑃 is a function 
which satisfies 𝜑(𝑡) < 𝑡, 𝜏 > 0, 𝑀(𝑥, 𝑦) =

𝑚𝑎𝑥 {
𝑑𝜃(𝑥, 𝑦), 𝑑𝜃(𝑇𝑥, 𝑥), 𝑑𝜃(𝑦, 𝑆𝑦),

𝑑𝜃(𝑇𝑥,𝑦)+𝑑𝜃(𝑥,𝑇𝑦)

2𝜃(𝑥,𝑦,𝑧)

}, and 𝜃 is a 

convergent function used in extended b-metric for 
each 𝑥, 𝑦, 𝑧 ∈ 𝑋. 
Then S and T have a unique common fixed point. 
 

Proof. We use 𝜑(𝑀(𝑥, 𝑦)) < 𝑀(𝑥, 𝑦) and the fact 
that the function 𝐹 is strictly increasing in inequality 
(13). As a consequence, we derive 
𝜏 + 𝐹(𝜃(𝑥, 𝑦, 𝑧) ⋅ 𝑑𝜃(𝑇𝑥, 𝑆𝑦)) < 𝐹 (𝜑(𝑀(𝑥, 𝑦)))

< 𝐹(𝑀(𝑥, 𝑦)) 
 
for every 𝑥, 𝑦 ∈ 𝑋. Using the same scheme of proof 
as Theorem 3.1, the result is clear. 
 

Theorem 3.6 Let (𝑋, 𝑑𝜃) be an extended cone b-
metric space and 𝑇, 𝑆 two functions that satisfy the 
following inequality 
𝜏 + 𝐹(𝜑(𝜃(𝑥, 𝑦, 𝑧) ∙ 𝑑𝜃(𝑇𝑥, 𝑆𝑦)) ≤

𝐹(𝜑(𝑀(𝑥, 𝑦)) − 𝜓(𝑀(𝑥, 𝑦) + 𝐿 ∙ 𝑚(𝑥, 𝑦))       (14) 
 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝜏 > 0, 𝐿 > 0 and 𝜑 is a 
sublinear altering, 𝜑:𝑃 → 𝑃, 𝜓: 𝑃 → 𝑃 with 
𝜓(0) = 0. 
Then 𝑆 and 𝑇 have a common fixed point. 
 

Proof. Let's construct the sequence {𝑥𝑛} as in the 
proofing procedure of Theorem 3.1 by choosing 𝑥0 
an arbitrary point in X. Define the sequence {𝑥𝑛} by 
taking 𝑥1 = 𝑇𝑥0, 2 1,x Sx 𝑥3 = 𝑇𝑥2, 𝑥4 = 𝑆𝑥3 and 
so on, or, more generally, 𝑥2𝑛−1 = 𝑇𝑥2𝑛−2 and 
𝑥2𝑛 = 𝑆𝑥2𝑛−1 for all 𝑛 ∈ ℕ. 
We can see that for each 𝑛 ∈ ℕ, the following 
inequality holds 
𝜏 + 𝐹(𝜑(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑧) ∙ 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2))

≤ 𝐹(𝜑(𝑀(𝑥2𝑛−1, 𝑥2𝑛−2))
− 𝜓(𝑀(𝑥2𝑛−1, 𝑥2𝑛−2)) + 𝐿
∙ 𝑚(𝑥2𝑛−1, 𝑥2𝑛−2) 

 

where 𝑀(𝑥2𝑛−1, 𝑥2𝑛−2) =

𝑚𝑎𝑥 {

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛),
𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑛−1),

𝑑𝜃(𝑥2𝑛,𝑥2𝑛−1)+𝑑𝜃(𝑥2𝑛−1,𝑥2𝑛−2)

2𝜃(𝑥2𝑛−1,𝑥2𝑛−2,𝑧)

} =

𝑚𝑎𝑥{𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛)} 
for all 𝑛 ∈ ℕ,𝑚(𝑥2𝑛−1, 𝑥2𝑛−2)

= 𝑚𝑖𝑛 {

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2), 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛),

𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑛−1), 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1),

𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−1)
} = 0   

Thus, we obtain this inequality 
𝜏 + 𝐹(𝜑(𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑧) ∙ 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛))

≤ 𝐹 (𝜑(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2))

− 𝜓(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2)))

≤ 𝐹(𝜑(𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2))) 
 
Replacing 𝑛 = 1 in the final inequality, we derive 

𝜏 + 𝐹(𝜑(𝜃(𝑥1, 𝑥0, 𝑧) ∙ 𝑑𝜃(𝑥2, 𝑥1))
≤ 𝐹(𝜑(𝑑𝜃(𝑥1, 𝑥0))) 

which implies 
𝐹(𝜑(𝜃(𝑥1, 𝑥0, 𝑧) ∙ 𝑑𝜃(𝑥2, 𝑥1))

≤  𝐹(𝜑(𝑑𝜃(𝑥1, 𝑥0))) − 𝜏           (15) 
 
For 𝑛 = 2, the following assessments, hold 
𝜏 + 𝐹(𝜑(𝜃(𝑥2, 𝑥1, 𝑧) ∙ 𝜃(𝑥1, 𝑥0, 𝑧) ∙ 𝑑𝜃(𝑥3, 𝑥2)))

≤  𝐹(𝜑(𝜃(𝑥1, 𝑥0, 𝑧) ∙ 𝑑𝜃(𝑥1, 𝑥2)))
≤ 𝐹(𝜑(𝑑𝜃(𝑥1, 𝑥0)))
− 𝜏.                                               (16) 

 
To summarize, we have: 

𝐹(𝜑(𝜃(𝑥2, 𝑥1, 𝑧) ∙ 𝜃(𝑥1, 𝑥0, 𝑧) ∙ 𝑑𝜃(𝑥3, 𝑥2)))
≤ 𝐹(𝜑(𝑑𝜃(𝑥1, 𝑥0))) − 2𝜏. 

 
By using this procedure iteratively, we obtain: 

𝐹 (𝜑(∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑(𝑥2𝑛, 𝑥2𝑛+1)

2𝑛

𝑖=1

))

≤ 𝐹 (𝜑(𝑑𝜃(𝑥1, 𝑥0)))

− 2𝑛𝜏                                 (17) 
 
Taking the limit when 𝑛 → +∞ in inequality (17) 
lim
𝑛→∞

𝐹 (𝜑(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑(𝑥2𝑛, 𝑥2𝑛+1)
2𝑛
𝑖=1 )) =

−∞                                                                  (18) 
 
we have:  
lim
𝑛→∞

𝜑(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑(𝑥2𝑛, 𝑥2𝑛+1)
2𝑛
𝑖=1 ) = 0                       

                                                                                (19) 
 
Now, by leveraging the third property of function 𝐹, 
there exists 𝑠 ∈ (0,1) such that: 
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lim
𝑛→∞

𝜑 (∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧) ∙ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)

2𝑛

𝑖=1

)

𝑠

 

𝐹 (𝜑(∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)

2𝑛

𝑖=1

))

= −∞.  (19) 
 
Multiplying (19) in both sides with: 
 𝜑(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧) ∙ ‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖

2𝑛
𝑖=1 )

𝑠 we get 
 

[𝜑(∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧) ∙ ‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖

2𝑛

𝑖=1

)

𝑠

] 

𝐹 (𝜑(∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)𝑑(𝑥2𝑛, 𝑥2𝑛+1)

2𝑛

𝑖=1

))

− 𝐹 (𝜑(𝑑𝜃(𝑥1, 𝑥0)))

≤ −2𝑛𝜏 [𝜑(∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧)

2𝑛

𝑖=1

∙ ‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖)

𝑠

] ≤ 0.    (20) 

Since the map 𝜑 does not take negative values, as a 
result, we conclude that 
lim
𝑛→∞

𝑛[𝜑(∏ 𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧) ∙
2𝑛
𝑖=1

‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖)
𝑠
] = 0 from which we can say 

that for 𝜀 = 1, there exists 𝑛1 ∈ ℕ, such that, for all  
𝑛 ∈ ℕ with 𝑛 > 𝑛1, we get 

𝑛 [𝜑 (∏𝜃(𝑥𝑖, 𝑥𝑖−1, 𝑧) ∙ ‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖

2𝑛

𝑖=1

)

𝑠

] < 1 

or, 

𝜑 (∏𝜃(𝑥𝑖 , 𝑥𝑖−1, 𝑧) ∙ ‖𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)‖

2𝑛

𝑖=1

)

<
1

𝑛
1
𝑠⁄
                                     (21) 

 
Next, let’s show that the sequence {𝑥2𝑛} is a Cauchy 
sequence. Supposing 𝑛 > 𝑚 we have 

𝜑(𝑑(𝑥2𝑛, 𝑥2𝑚))

≤ 𝜑 (𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚)(𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)

+ 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑚)))

≤ 𝜑(𝜃(𝑥2𝑛, 𝑥2𝑛−1, 𝑥2𝑚) ∙ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛−1)

+ 𝜃(𝑥2𝑛, 𝑥2𝑛−1) ∙ 𝜃(𝑥2𝑛−1, 𝑥2𝑛−2, 𝑥2𝑚)

∙ 𝑑𝜃(𝑥2𝑛−1, 𝑥2𝑛−2) ∙ 𝑑𝜃(𝑥2𝑛−2, 𝑥2𝑚)) 
 

≤ ⋯

≤ 𝜑(∑ (∏𝜃(𝑥2𝑖, 𝑥2𝑖−1, 𝑥2𝑚)

𝑘

𝑖=𝑚

)

𝑛

𝑘=𝑚

)

∙ 𝑑𝜃(𝑥2𝑘 , 𝑥2𝑘+1)

≤ 𝜑 (∑(∏𝜃(𝑥2𝑖, 𝑥2𝑖−1, 𝑥2𝑚)

𝑛

𝑖=1

)

∞

𝑛=1

)

∙ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1) ≤ ∑
1

𝑛
1
𝑠⁄

∞

𝑛=1

.                            (22) 

 
Applying the property of 𝜑 we obtain: 

∑𝜑(∏𝜃(𝑥2𝑖, 𝑥2𝑖−1, 𝑥2𝑚)

𝑛

𝑖=1

)

∞

𝑛=1

∙ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)

≤ ∑
1

𝑛
1
𝑠⁄

∞

𝑛=1

                               (23) 

 
which implies: 

lim
𝑛→∞

𝜑 (∑(∏𝜃(𝑥2𝑖, 𝑥2𝑖−1, 𝑥2𝑚)

𝑛

𝑖=1

)

∞

𝑛=1

)

∙ 𝑑𝜃(𝑥2𝑛, 𝑥2𝑛+1)

= 0 and lim
𝑛→∞

𝜑(𝑑𝜃(𝑥2𝑛, 𝑥2𝑚))

= 0.                                        (24) 
 
From the above result, it follows that 
lim
𝑛→∞

𝑑𝜃(𝑥2𝑛, 𝑥2𝑚) = 0, which means that {𝑥2𝑛} is 
Cauchy. By using the completeness of (𝑋,  𝑑𝜃), 
there exists 𝑥∗ ∈ 𝑋, such that  lim

𝑛→∞
𝑥2𝑛 = 𝑥

∗. 
Now, let us show that 𝑥∗ is a common fixed point of 
S and T.   
Applying the inequality from the condition of the 
theorem for the triple (𝑥2𝑛−1, 𝑥∗, 𝑧) we have  

𝜏 + 𝐹(𝜑(𝜃(𝑥2𝑛−1, 𝑥
∗, 𝑧) ∙ 𝑑𝜃(𝑥2𝑛, 𝑆𝑥

∗))

≤ 𝐹 (𝜑(𝑀(𝑥2𝑛−1, 𝑥
∗)))

− 𝜓(𝑀(𝑥2𝑛−1, 𝑥
∗) + 𝐿

∙ 𝑚(𝑥2𝑛−1, 𝑥
∗)) 

 
which implies: 
𝜑(𝜃(𝑥2𝑛−1, 𝑥

∗, 𝑧) ∙ 𝑑𝜃(𝑥2𝑛, 𝑆𝑥
∗)) ≤

 𝜑(𝑀(𝑥2𝑛−1, 𝑥
∗)) − 𝜓(𝑀(𝑥2𝑛−1, 𝑥

∗) + 𝐿 ∙

𝑚(𝑥2𝑛−1, 𝑥
∗)).     (25)    

Taking the limits on both sides in the inequality (23) 
for 𝑛 → ∞, we obtain: 
𝜑(𝜃0 ∙ 𝑑𝜃(𝑥

∗, 𝑆𝑥∗)) ≤  𝜑(𝑑𝜃(𝑥
∗, 𝑆𝑥∗)) −

𝜓(𝑑𝜃(𝑥
∗, 𝑆𝑥∗) + 𝐿 ∙ 0) ≤ 𝜑(𝑑𝜃(𝑥

∗, 𝑆𝑥∗)).Since 𝜑 
is increasing, it follows that 𝜃0 ∙ 𝑑𝜃(𝑥∗, 𝑆𝑥∗) ≤
𝑑𝜃(𝑥

∗, 𝑆𝑥∗) or (𝜃0 − 1) ∙ 𝑑𝜃(𝑥∗, 𝑆𝑥∗) ≤ 0. 
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Next, using the fact that 𝜃0 > 1 we obtain 
𝑑𝜃(𝑥

∗, 𝑆𝑥∗) = 0, and 𝑆𝑥∗ = 𝑥∗. 
Similarly, applying the inequality for the triple 
(𝑥∗, 𝑥2𝑛−2, 𝑧) we have 

𝜏 + 𝐹(𝜑(𝜃(𝑥∗, 𝑥2𝑛−2, 𝑧) ∙ 𝑑𝜃(𝑇𝑥
∗, 𝑥2𝑛−2))

≤ 𝐹 (𝜑(𝑀(𝑥∗, 𝑥2𝑛−2)))

− 𝜓(𝑀(𝑥∗, 𝑥2𝑛−2) + 𝐿

∙ 𝑚(𝑥∗, 𝑥2𝑛−2)). 
 

Following the same procedure as in the case of 
the function S, we obtain 𝑇𝑥∗ = 𝑥∗ = 𝑆𝑥∗ showing 
that 𝑥∗ is a common fixed point of S and T. 

To complete the proof, we must show the 
uniqueness of 𝑥∗. 

If 𝑦∗ ∈ 𝑋 is another common fixed point of S 
and T, then 𝑆𝑦∗ = 𝑦∗ = 𝑇𝑦∗. Using the condition of 
theorem we have 
𝜏 + 𝐹(𝜑(𝜃(𝑥∗, 𝑦∗, 𝑧) ∙ 𝑑𝜃(𝑇𝑥

∗, 𝑆𝑦∗))
≤ 𝐹(𝜑(𝑀(𝑥∗, 𝑦∗))

− 𝜓(𝑀(𝑥∗, 𝑦∗) + 𝐿 ∙ 𝑚(𝑥∗, 𝑦∗)). 
 
which implies:  
𝐹 (𝜑(𝜃(𝑥∗, 𝑦∗, 𝑧) ∙ 𝑑𝜃(𝑥

∗, 𝑦∗)))

≤ 𝐹 ((𝜑(𝑑𝜃(𝑥
∗, 𝑦∗)))

− 𝜓(𝑑𝜃(𝑥
∗, 𝑦∗) + 𝐿 ∙ 0) − 𝜏

≤ 𝐹 (𝜑(𝑑𝜃(𝑥
∗, 𝑦∗)))

− 𝜓(𝑑𝜃(𝑥
∗, 𝑦∗)). 

 
and  
𝜑(𝜃(𝑥∗, 𝑦∗, 𝑧) ∙ 𝑑𝜃(𝑥

∗, 𝑦∗)) ≤  𝜑(𝑑𝜃(𝑥
∗, 𝑦∗)) 

 
which follows 𝜃(𝑥∗, 𝑦∗, 𝑧) ∙ 𝑑𝜃(𝑥

∗, 𝑦∗) ≤
𝑑𝜃(𝑥

∗, 𝑦∗). Since 𝜃(𝑥∗, 𝑦∗, 𝑧) ≥ 1, the last 
inequality holds only when 𝑑𝜃(𝑥∗, 𝑦∗) = 0 which 
implies 𝑥∗ = 𝑦∗, and the proof is done. 
 

 

4   Conclusions 
In this paper, we present some fixed point results for 
functions that satisfy several inequalities related to 
generalized F-contraction in extended cone b-metric 
space are studied. Theorem 3.1 and Theorem 3.6 are 
the highlights of this study. Theorem 3.1 is a 
generalization of Theorem 2.4 in [16], since we 
have proved the existence and uniqueness of a 
common fixed point for two functions in extended 
cone b-metric space, which is more general than 
metric space. Theorem 3.3 generalizes Theorem 2.8 
in [22], because of the use of maximum and 
minimum respective distances in the function F in 
extended cone b-metric space. Theorem 3.6 is an 

extension of Theorem 2.1 in [23], using the 
generalized function. In future work, authors 
recommend the applications of their results to 
Integral Equations to prove the existence and 
uniqueness of various equations. 
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