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1 Introduction
The exponential (Exp) distribution plays a pivotal role
in reliability analysis owing to its constant hazard rate,
signifying a consistent probability of an event oc-
curring within a specific time interval, regardless of
elapsed time. This characteristic harmonizes seam-
lessly with scenarios where failure rates are time-
independent, rendering it a fundamental model across
diverse fields such as engineering, medicine, finance,
among others (see, e.g., [1], [2], [3], [4]). The hazard
function within the exponential distribution frame-
work plays a crucial role in predicting and addressing
risks tied to system reliability. It enables proactive
planning to boost performance and mitigate potential
failures.

On another note, generalized mixtures distribu-
tions emerge as valuable tools in statistics for achiev-
ingmore flexible distributions to better model random
phenomena. These mixtures, characterized by a dis-
tribution function that is a weighted average of other
distribution functions, allow for the incorporation of
negative weights, expanding the scope of modeling
possibilities. Preliminary work on this subject has
explored non-convex mixtures of exponentials (e.g.,
[5], [6], [7]) and Gaussian mixtures, [8], with recent
applications in various domains such as cluster analy-
sis, bioinformatics, biology, epidemiology, social sci-
ences, and finance (e.g., [9], [10], [11], [12]).

Further advancements include pseudo-convex
mixtures generated by the exponential distribution
(see, [13], [14]), which offer increased flexibility in
hazard functions while converging to the exponen-
tial distribution’s hazard function. However, estima-

tion techniques such as the method of moments or
maximum likelihoodmay exhibit limitations, prompt-
ing an evaluation of estimation performance using
the Expectation-Maximization (EM) algorithm. This
work aims to delve into such assessments, present-
ing parameter estimators and conducting a simulation
study to compare their performance.

Hence, Section 2 provides some preliminary con-
cepts and notations concerned with stable distribu-
tions for extremes, generalized mixtures and pseudo-
convexmixtures (PCM) generated by shape-extended
stable distributions for extremes. Afterwards, Section
3 delineates the pseudo-convex mixtures generated
by the exponential distribution and furnishes estima-
tors for the parameters derived through the method
of moments (MM), maximum likelihood (ML), and
Expectation-Maximization (EM) algorithm. In Sec-
tion 4, a simulation study is conducted to assess and
compare the performance of the provided estimators.
Lastly, Section 5 encapsulates the key findings and
provides final remarks.

2 Pseudo-convex Mixtures Generated
by Shape-extended Stable
Distributions for Extremes

To establish pseudo-convex mixtures generated by
shape-extended stable distributions for extremes, this
section first outlines the definitions of min-stable and
max-stable distributions. Subsequently, it introduces
the concept of shape-extended stable distributions to
broaden the spectrum of available distributions, [14].
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2.1 Distributions Stable for Extremes
Consider a sequence of independent and identically
distributed (i.i.d.) absolutely continuous random vari-
ables (r.v.) denoted as X1, . . . , Xn, with distribution
function (d.f.) F and survival function (s.f.) F , i.e.,
F (x) := 1 − F (x). Furthermore, let Xi:n represent
the i-th ascending order statistic associated with these
random variables. Consequently, X1:n denotes the
minimum ofX1, ..., Xn, whileXn:n denotes the max-
imum of X1, ..., Xn.

A r.v. X with d.f. F is stable for minima or min-
stable (minS) if there exist normalizing sequences
{αn ∈ R+} and {βn ∈ R} such that the equality in
distribution X1:n

d
= αnX + βn holds ∀n ∈ N, with

X ∼ F . This is equivalent to stating that the s.f. F
satisfies

FX1:n
(x) = F

n
(x) = F

(
x− βn
αn

)
,

for all x ∈ R where FX1:n
denotes the s.f. of X1:n.

Therefore, if F is minS, the minima of n independent
copies of X ∼ F also follow the F distribution (po-
tentially with a scale and location adjustment). The
Extreme Value Distribution for minima (EVmγ), with
s.f. given by

FGEVmγ
(x) ={

exp
{
− [1− γx]−1/γ

}
, 1 + γx > 0 γ ̸= 0

exp {− exp(x)} , x ∈ R γ = 0,

represents the sole potential min-stable distribu-
tion. This distribution applies αn = nγ and
βn = γ−1 (1− nγ) if γ ̸= 0 or αn = 1 and
βn = − ln (n) if γ = 0.

The EVmγ encompasses the Gumbel (γ = 0),
Fréchet (γ > 0), and Weibull (γ < 0) minimum
distributions. The parameter γ serves as the extreme
value index, gauging the heaviness of the left tail
function F . Introducing location (µ) and scale (σ)
parameters allows for the generalization of EVmγ

through FEVmγ
(x;µ, σ) = FEVmγ

((x− µ)/σ).
Moreover, this distribution holds paramount impor-
tance in Extreme Value Theory (EVT), as per the Ex-
treme Value Theorem (Fisher-Tippett-Gnedenko): if
the minima of n random variables converge to a non-
degenerate distribution as n increases to infinity, it
must converge to the EVmγ distribution.

All results pertaining to the minima of a sequence
of i.i.d. continuous r.v. can be similarly applied to
the maxima due to the relationship Y1:n = −Xn:n,
and also Yn:n = −X1:n, if Y = −X . Therefore, a
r.v. X with a d.f. F is stable for maxima, or max-
stable (maxS), if there exist normalizing sequences
{αn ∈ R+} and {βn ∈ R} such that the equality in

distribution Xn:n
d
= αnX + βn holds for all n ∈ N,

meaning the d.f. F satisfies

FXn:n
(x) = F n(x) = F

(
x− βn
αn

)
,

for all x ∈ R where FXn:n
denotes the d.f. of Xn:n.

The only possible max-stable distribution is the Ex-
treme Value Distribution for maxima (EVMγ), with
its d.f. given by FGEVMγ

(x) = FGEVmγ
(−x). EVMγ

includes the Gumbel (γ = 0), Fréchet (γ > 0),
and Weibull (γ < 0) maximum distributions, and
can also incorporate location and scale parameters
through FGEVMγ

(x;µ, σ) = FGEVMγ
((x− µ)/σ).

Indeed, in many statistical applications, the focus
lies not on studying typical occurrences (events with
higher probability) but on modelling extreme events,
which tend to have lower probabilities. Therefore,
the primary objective of Extreme Value Theory is to
characterize theminimum and/or maximum of a set of
random variables. Fundamental concepts in this do-
main include order statistics, distributions stable for
extremes, and the Extreme Value Theorem. Key re-
sults and advancements in this theory are documented
in various sources (see, e.g., [15], [16], [17], [18],
[19], [20]). Presently, this theory finds numerous ap-
plications in fields like biostatistics, climatology, fi-
nance, hydrology, industry and insurance (see, e.g.,
[20], [21], [22], [23], [24]), and continues to be an
active area of research, as evidenced by works like,
[25], [26], [27], and their associated references.

2.2 Shape-extended Stable Distributions
The class of stable distributions can be expanded to
accommodate variations in the shape parameter, cf.,
[13], [14]. Consequently, F qualifies as a shape-
extended min-stable (SEminS) distribution if there
exist normalizing sequences {αn ∈ R+}, {βn ∈ R},
and {γn ∈ R} such that the equality in distribution
X1:n

d
= αnX + βn holds for all n ∈ N, where

X ∼ Fγn
, and Fγn

signifies the same distribution as
F but with a modified shape parameter value (γn de-
notes the new shape parameter value). Therefore, this
equivalence in distribution can be expressed as:

FX1:n
(x) = 1− F

n
(x) = Fγn

(
x− βn
αn

)
,

for all x ∈ R. Apart from the EVmγ distribution,
further examples of SEminS distributions encompass
the generalized logistic type II (GL2) distribution and
the Generalized Pareto (GP) distribution. For ex-
ample, considering the sequence X1, . . . , Xn of i.i.d.
random varibles with Generalized Pareto distribution,
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GP(µ, σ, γ), where µ ∈ R, σ, γ ∈ R+, and

F (x) =

[
1 +

x− µ

γσ

]−γ

, x > µ,

then the s.f. of the minimum X1:n is given by

FX1:n
(x) =

[
1 +

nx+ (1− n)µ− µ

nγσ

]−nγ

.

Thus, GP is a SEminS distribution with α
n
= n−1,

β
n
= n−1(n− 1)µ and γ

n
= nγ, or analogously

nX1:n + (1− n)µ ∼ GP (µ, σ, nγ). The GP distri-
bution indeed holds significance in EVT, particularly
in modelling excesses, [28].

Similarly, F is regarded as a shape-extended
max-stable (SEmaxS) distribution if there exist nor-
malizing sequences {αn ∈ R+}, {βn ∈ R}, and
{γn ∈ R} such that the equality in distribution
Xn:n

d
= αnX + βn, with X ∼ Fγn

, holds for all
n ∈ N, i.e.,

FXn:n
(x) = F n(x) = Fγn

(
x− βn
αn

)
,

for all x ∈ R. In addition to the EVMγ distribu-
tion, other examples of SEmaxS distributions include
the Generalized Logistic (type I) distribution and the
Power function distribution.

The shape-extended stable class of distributions
allows the generalization of stable distributions.
However, this shape-extended definition does not re-
tain the same properties. Another drawback is the ab-
sence of a precise definition of a shape parameter (un-
like the location and scale parameters that have pre-
cise meanings). Nevertheless, this generalization pro-
vides a richer family of distributions able to generate
the pseudo-convex mixtures (PCM).

2.3 PCM Generated by Shape-extended
Stable Distributions for Extremes

Let F be SEminS distribution, then the r.v. Xm with
d.f. FXm

defined by

FXm
(x) = (1 + ω)F (x)− ωFX1:2

(x),

with ω ∈ [−1, 1], is a pseudo-convex mixture (PCM)
generated by the SEminS distribution F . FXm

is a
mixture between F and FX1:2

, which is convex for
ω < 0 and non-convex for ω > 0. The same rea-
soning can be applied to the maximum. Let F be a
SEmaxS distribution, then the r.v.XM with d.f. FXM

defined by

FXM
(x) = (1− ω)F (x) + ωFX2:2

(x),

with ω ∈ [−1, 1], is a PCM generated by the SEmaxS
distribution F . Hence, FXM

is a mixture between F

and FX2:2
, convex for ω > 0 and non-convex for

ω < 0. The formulas of FXm
and FXM

can be sim-
plified to

FXm
(x) = FXM

(x) = F (x)
[
1− ωF (x)

]
, (1)

with ω ∈ [−1, 1], which only depends on F (x) and
ω.

Note that in generalized mixtures, when there is
one negative weight, as in equation (1), FXm

is not
guaranteed to be a d.f., [29]. Nevertheless, [13],
proves that if F is a shape-extended stable distribu-
tions for extremes then FXm

defined by equation (1)
is a d.f.. Thus, PCM have the same parameters as F
plus the ω parameter. Consequently, it is more flex-
ible than the convex mixtures without raising the es-
timation cost. Figure 1 and Figure 2 illustrate the re-
markable flexibility inherent in this distribution fam-
ily, showing the density function of PCM generated
by the standard Gumbel and the standard Logistic II
distributions for different omega values. The main
properties of PCM generated by shape-extended sta-
ble distributions are provided in [14].

Fig. 1: Density function of PCM generated by the
standard Gumbel distribution with ω = −1 + 0.25k,
k = 0, 1, . . . , 8.

In this study, we confine our focus to a specific
scenario: PCM generated by the exponential distri-
bution. The exponential distribution, as an ESminS
distribution, serves as the foundation for our inves-
tigation. It’s worth noting that the exponential dis-
tribution represents a particular case of the Weibull
distribution and holds significance across various do-
mains of reliability analysis due to its flexibility and
simplicity, [30].

3 PCM Generated by the Exponential
Distribution

Let X be a r.v. with exponential (Exp) distribution
with parameter λ ∈ R+ and d.f. F (x) = 1− e−λx,
x ∈ R+, which is a SEminS distribution as
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Fig. 2: Density function of PCM generated
by the standard Logistic II distribution with
ω = −1 + 0.25k, k = 0, 1, . . . , 8.

X1:n ∼ Exp (nλ). The density function and the d.f.
of the PCM generated by the exponential distribution
(PCMExp) Xm are given by

FXm
(x) = 1−

[
1 + ω

(
1− e−λx

)]
e−λx

and

fXm
(x) = (1 + ω)λe−λx − ω2λe−2λx.

Figure 3 shows the shape of density functions of the
PCM generated by the standard exponential distribu-
tion for different values of ω, with ω = −1 + 0.25k,
k = 0, 1, . . . , 8.

Fig. 3: Density function of PCMExp with
ω = −1 + 0.25k, k = 0, 1, . . . , 8.

The hazard rate rX(x) := fX(x) F
−1

X (x), of the

PCMExp is given by

rXm
(x) = λ

(
1− ωe−λx

1 + ω − ωe−λx

)
= r(x)

(
1− ω

F (x)

1 + ωF (x)

)
.

Additionally, when ω = −1, the PCM hazard rate be-
comes equal to 2r(x), where r(x) = λ represents the
hazard rate of a exponential distribution. It’s impor-
tant to note that when ω = −1, this implies that Xm

equals X1:2, and consequently, rX1:2
(x) = 2r(x).

Conversely, if ω is not equal to −1, then the PCM
hazard rate will tend to converge to r(x) = λ as
x approaches infinity. Figure 4 illustrates the vari-
ations in the shape of the hazard rate functions of
the PCM, which are generated by the standard expo-
nential distribution, across different values of ω, with
ω = 1 + 0.25k, k = 0, 1, . . . , 8.

Fig. 4: Hazard rate of PCMExp with
ω = −1 + 0.25k, k = 0, 1, . . . , 8.

3.1 Method of Moments Estimation
The k-th order raw moment of Xm, with k ∈ N, is
given by

E
(
Xk

m

)
= k!

λk

[
1 + ω

(
1− 1

2k

)]
.

Thus, the method of moments (MM) estimators can
be given by

w̃ = 2
(
λX − 1

)
and

λ̃ =
3X +

√
9X

2 − 4m2

2m2
,

with

X =
1

n

n∑
i=1

Xi
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and

m2 =
1

n

n∑
i=1

X2
i .

3.2 Maximum Likelihood Estimation
The log-likelihood function of λ and ω given the ran-
dom sample X = (X1, · · · , Xn) is

ℓ (λ, ω|X) = lnL (λ,w|X) =

= n ln(λ)− nλX +
n∑

i=1

ln (1 + w − 2w exp (−λXi)) ,

and its first partial derivatives are

∂ℓ (λ, ω|X)

∂λ
=

n

λ
− nX +

n∑
i=1

2ωXi exp (−λXi)

1 + ω − 2ω exp (−λXi)

and

∂ℓ (λ, ω|X)

∂ω
=

n∑
i=1

1− 2 exp (−λXi)

1 + ω − 2ω exp (−λXi)
.

Hence, it is not straightforward to find the vector
(λEMV, ωEMV) that maximizes the likelihood function.
Nevertheless, iterativemethods for numerical approx-
imation can be applied in order to achieve (an approx-
imate value of) the maximum likelihood estimates
(ML).

3.3 Expectation-maximization Algorithm
The expectation-maximization (EM) algorithm, [31],
can be applied to estimate the unknown parameter θ =
(ω, λ) ∈ [−1, 1] × ]0,+∞[ in the PCMExp. In this
case, for ω ≤ 0,

fXm
(x) = (1 + ω)λe−λx − ω2λe−2λx

is a convex mixture between λe−λx (Exp(λ) distribu-
tion) and 2λe−2λx (Exp(2λ) distribution). Thus, the
expectation step (E-step) in the k-th iteration can be
obtained by

γ0

(
xi, θ

(k)
)
=

(1 + ω̂(k)) exp(−λ̂(k)xi)

(1 + ω̂(k)) exp(−λ̂(k)xi) + 2ω̂(k) exp(−2λ̂(k)xi)
,

where θ̂(k) = (ω̂(k), λ̂(k)). For the maximization step
(M-step) in the k-th iteration we get

Q
(
θ, θ(k)

)
=

n∑
i=1

γ0

(
xi, θ

(k)
)
[ln(1 + ω) + ln(λ)− λxi] +

n∑
i=1

[
1− γ0

(
xi, θ

(k)
)]

[ln(−ω) + ln(2λ)− 2λxi] ,

which is maximized by

ω̂
(k+1)
i =

1

n

n∑
i=1

γ0

(
xi, θ

(k)
)
− 1

and

λ̂
(k+1)
i =

−n∑n
i=1 xi

[
γ0

(
xi, θ(k)

)
− 2

] .
However, EM algorithm does not converge with

negative weights, [32], as when ω > 0 in the PCMExp.
Therefore, whenever ω̂(k) > 0, the density mixture
was rewritten in the following convex mixture

fXm
(x) = ω2λe−λx

(
1− e−λx

)
+ (1− ω)λe−λx.

Thus, for positive values of ω, fXm
can also be seen

as a convex mixture between λe−λx (Exp(λ) distri-
bution) and 2λe−λx

(
1− e−λx

)
(density of the maxi-

mum of two independent Exp(λ) distributions).
Therefore, in these cases (ω̂(k) > 0), the E-step in

the k-th iteration is given by

γ′0

(
xi, θ

(k)
)
=

2ω (1− exp(−λxi))

2ω (1− exp(−λxi)) + 1− ω
,

and for the M-step in the k-th iteration

Q′
(
θ, θ(k)

)
=

n∑
i=1

γ′0

(
xi, θ

(k)
)
[ln(2ωλ)− λxi+

ln (1− exp(−λxi))] +
n∑

i=1

(
1− γ′0

(
xi, θ

(k)
))

[ln(1− ω) + ln(λ)− λxi]

which is maximized by

ω̂
(k+1)
i =

1

n

n∑
i=1

γ′0

(
xi, θ

(k)
)
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and

λ̂
(k+1)
i =[
x− 1

n

n∑
i=1

γ′0

(
xi, θ

(k)
)
xi (exp(λxi)− 1)−1

]−1

.

The EM algorithms repeat the E-step and the M-step
until a fixed point is reached, i.e.,∥∥∥θ̂(k+1)

i − θ̂
(k)
i

∥∥∥ < ε,

for some fixed small enough ε > 0.
The EM algorithm’s sensitivity to initial values is

a well-known phenomenon, [31]. In this scenario,
where the PCM is divided into two different convex
mixtures, the problem is even worse as the sign of the
initial omega value will almost surely define the sign
of the final omega estimate. Hence, to address this is-
sue, two estimates were computed, each initiated with
different omega values: one with ω0 = −0.5 and the
other with ω0 = 0.5. Regarding the initial λ value, as
w̃ = 2

(
λX − 1

)
by the MM, it follows that

λ =
1 + 0.5 w̃

X
.

Thus, the chosen initial values (λ0, ω0) are(
0.75x−1,−0.5

)
and (1.25x−1, 0.5). Ultimately,

the two resulting estimates are compared using the
Akaike Information Criterion (AIC), [33]. The
estimate yielding the best fit (lowest AIC value) will
be designated as the final EM estimate.

4 Simulations
In this section, the performance of parametric es-
timators for PCMExp through Monte Carlo simu-
lation (104 replicas) is analysed. This evaluation
was carry out in software R version 4.3.1, a lan-
guage and environment for statistical computing,
[34]. To this end, PCMExp were simulated with
λ ∈ {1, 10}, ω ∈ {−.75,−.50,−.25, 0, .25, .50, .75}
and n ∈ {100, 1000}. The parameters have been
estimated using the MM, the ML based on numeri-
cal iterative methods using package maxLik, [35], on
R (Newton-Raphson algorithm) with starting points
(λ0, ω0) =

(
x−1, 0

)
, and on the EM algorithm using

as starting points (λ0, ω0) =
(
0.75x−1,−0.5

)
and

(λ0, ω0) = (1.25x−1, 0.5), cf. Section 3.3. The EM
algorithm stops when

∥∥∥θ̂(k+1)
i − θ̂

(k)
i

∥∥∥ < 10−6. To
assess the performance of the estimators, the bias
(Bias), the absolute relative bias (ARB) and the mean
square error (MSE) were used. The results obtained
are presented in Table 1 and Table 2, and Figure 5.

Table 1. λ estimation in PCMExp with 104 replicas
ω −.75 −.50 −.25 .00 .25 .50 .75

MM, with λ = 1, n = 100
Bias .3683 .1291 .0557 .0332 .0306 .0222 .0235
ARB .4249 .2741 .2235 .1768 .1438 .1232 .1088
MSE .3005 .1170 .0739 .0493 .0338 .0244 .0191

ML, with λ = 1, n = 100
Bias .4017 .1523 .0509 .0096 .0047 .0047 .0059
ARB .4219 .2380 .1936 .1602 .1272 .1008 .0819
MSE .2896 .0973 .0578 .0404 .0273 .0169 .0107

EM, with λ = 1, n = 100
Bias .3649 .1366 .0331 .0054 −.0027 .0033 .0056
ARB .3950 .2352 .1936 .1584 .1310 .1037 .0812
MSE .2662 .0970 .0574 .0405 .0293 .0189 .0108

MM, with λ = 1, n = 1000
Bias .1953 .0150 −.0035 .0030 .0024 .0023 .0026
ARB .2031 .1199 .0833 .0567 .0453 .0387 .0342
MSE .0693 .0196 .0131 .0052 .0033 .0024 .0018

ML, with λ = 1, n = 1000
Bias .1708 .0198 −.0127 −.0012 .0002 .0009 .0007
ARB .1973 .1125 .0862 .0516 .0381 .0306 .0253
MSE .0705 .0190 .0135 .0046 .0023 .0015 .0010

EM, with λ = 1, n = 1000
Bias .1507 .0145 −.0119 −.0026 .0002 .0008 .0007
ARB .1846 .1122 .0852 .0515 .0379 .0299 .0250
MSE .0635 .0188 .0131 .0047 .0023 .0014 .0010

MM, with λ = 10, n = 1000
Bias 1.957 .1473 −.0160 .0288 .0343 .0287 .0194
ARB .2038 .1208 .0830 .0571 .0454 .0388 .0342
MSE 6.946 1.971 1.130 .5196 .3253 .2371 .1854

ML, with λ = 10, n = 1000
Bias 1.776 .2268 −.1001 −.0098 .0108 .0056 .0035
ARB .2014 .1114 .0841 .0518 .0383 .0305 .0250
MSE 7.247 1.852 1.263 .4506 .2310 .1463 .0984

EM, with λ = 10, n = 1000
Bias 1.516 .1652 −.1157 −.0028 −.006 .0108 .0004
ARB .1857 .1112 .0858 .0516 .0386 .0304 .0248
MSE 6.408 1.842 1.324 .4662 .2380 .1448 .0973

The accuracy of estimating the parameterλ is intri-
cately tied to the precision of estimating ω; when one
achieves precision, so does the other. In smaller sam-
ples (n = 100), MMnotably demonstrates the poorest
performance, evidenced by higher MSE. Moreover,
EM outperforms ML when ω < 0, although ML and
EM display similar performances whenever ω > 0.

As anticipated, increasing the sample size to
n = 1000 enhances estimation quality across all esti-
mators, resulting in more comparable performances.
Nonetheless, MM continues to exhibit inferior perfor-
mance compared to ML and EM, albeit showing sim-
ilarities when ω is negative (mainly with ML). The
performance of ML and EM continue to shows no
significant differences for n = 1000 when ω > 0,
but maintains some differences in the performance of
these estimators for ω < 0. Additionally, altering the
parameter value (for λ = 10) appears to have min-
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Table 2. ω estimation in PCMExp with 104 replicas
ω −.75 −.50 −.25 .00 .25 .50 .75

MM, with λ = 1, n = 100
Bias .4312 .1705 .0733 .0434 .0496 .0300 .0103
ARB .6291 .7406 1.386 − 1.098 .4898 .2618
MSE .3675 .1921 .1675 .1451 .1211 .0936 .0591

ML, with λ = 1, n = 100
Bias .4621 .1948 .0580 −.0055 −.0071 −.0066 −.0008
ARB .6329 .6148 1.179 − .9350 .3698 .1827
MSE .3527 .1532 .1246 .1183 .0973 .0601 .0305

EM, with λ = 1, n = 100
Bias .4191 .1698 .0274 −.0091 −.0228 .0011 .0037
ARB .6261 .6175 1.155 − .9172 .3821 .1856
MSE .3261 .1521 .1205 .1171 .0936 .0582 .0310

MM, with λ = 1, n = 1000
Bias .2410 .0202 −.0082 .0050 .0042 .0041 .0051
ARB .3265 .3422 .5408 − .3496 .1608 .0991
MSE .0997 .0385 .0304 .0167 .0121 .0102 .0086

ML, with λ = 1, n = 1000
Bias .2076 .0242 −.0254 −.0035 −.0007 .0007 .0003
ARB .3180 .3230 .5624 − .2751 .1127 .0573
MSE .1018 .0382 .0375 .0146 .0075 .0050 .0029

EM, with λ = 1, n = 1000
Bias .1832 .0155 −.0233 −.0070 −.0004 .0005 .0002
ARB .2992 .3206 .5541 − .2781 .1111 .0577
MSE .0924 .0377 .0359 .0149 .0079 .0049 .0030

MM, with λ = 10, n = 1000
Bias .2405 .0193 −.0060 .0043 .0065 .0049 .0034
ARB .3260 .3437 .5374 − .3533 .1599 .1008
MSE .0995 .0385 .0301 .0165 .0124 .0101 .0090

ML, with λ = 10, n = 1000
Bias .2151 .0281 −.0215 −.0034 .0013 −.0007 −.0007
ARB .3242 .3178 .5456 − .2782 .1117 .0575
MSE .1044 .0368 .0346 .0138 .0076 .0049 .0029

EM, with λ = 10, n = 1000
Bias .1833 .0187 −.0237 −.0029 −.0020 .0004 −.0004
ARB .3002 .3201 .5574 − .2802 .1113 .0568
MSE .0922 .0372 .0364 .0143 .0079 .0048 .0027

imal relative impact on estimation quality across all
estimators.

Moreover, results tend to enhance with higher val-
ues of ω, particularly when dealing with non-convex
mixtures, indicating superior outcomes. Specifically,
for low values of ω, such as ω = −0.75, all meth-
ods tend to overestimate ω, though this overestima-
tion tends to diminish with larger sample sizes (albeit
remaining significant even with n = 1000). Conse-
quently, for these ω values, estimates may still lack
precision.

The boxplots depicted in Figure 5 clearly illus-
trate that estimation precision notably increases when
ω is positive. Additionally, bias tends towards
zero or its proximity, a trend notably absent when
ω = −0.75. Noteworthy is the presence of outliers,
indicating significantly lower estimation precision.
Even employing EM, instances arise, particularly ev-

Fig. 5: λ and ω estimation in PCMExp with 104

replicas and λ = 1 for MM (top), ML (middle) and
EM (below).

ident when ω = 0.25, where the estimate of ω nears
−1 (the furthest value within the support of ω), re-
sulting in similarly inaccurate estimates for λ (ap-
proximately 4.5 when λ = 10). It’s worth not-
ing that when (ω, λ) = (0.25, 10), E(X) = 0.1125,
and conversely, when (ω, λ) = (−1, 4.(4)), E(X)
remains 0.1125. Equivalently, the same expected
value for X is obtained when (ω, λ) = (0, 10) and
(ω, λ) = (−1, 5), or when (ω, λ) = (−0.25, 10) and
(ω, λ) ≈ (−1, 5.7143); representing some of the less
precise scenarios observed in the simulations. De-
spite clear differences in the distribution functions in
these cases, it appears that AIC occasionally strug-
gles to select the optimal solution. Hence, it becomes
pertinent to employ alternative measures of model se-
lection or employ a combination of different metrics.
However, it’s crucial to acknowledge that such in-
stances of very low precision in estimation, while im-
pacting the overall metrics presented in Tables 1 and
2, are infrequent (less than 0.5%) and predominantly
occur when the estimate of ω approaches −1. Con-
sequently, in practical applications, exercising cau-
tion and employing a broader range of initial values
is advisable when encountering such cases (ω̂ ≈ −1)
to ascertain the presence of significantly disparate es-
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timates.
It’s worth noting that different sample sizes (n)

and λ parameter values were evaluated, and the re-
sults remained consistent with those reported, al-
though there is a slight decrease in the number of
cases where the estimate becomes less precise as the
sample size increases.

Additionally, while variations in initial values
were examined in ML, there were no noticeable dif-
ferences observed, although these results were not de-
tailed in the provided tables. Furthermore, the EM
estimator were also assessed using different starting
points, such as the MM estimates, i.e., considering
(λ0, ω0) = (λMM, ωMM) as it is straightforward com-
puted. In this cases, only one estimate were evalu-
ated and, therefore, the results were slightly worse.
Nevertheless, probably the reason for this proximity
is the fact that the sign of theMM estimate ofω (ωMM)
is the same as the true sign of ω with hight proba-
bility, namely whenever |ω| ≥ 0.25. Although this
probability is low, in this cases the λ estimate can be
quite different. For ω values in the neighbourhood of
zero, the percentage of opposite signs is higher, but in
these scenarios the density functions are quite similar,
so the difference in λ estimates is not so significant.
Furthermore, this percentages clearly decreases when
the sample size increases, being quite lower when the
sample size is n = 1000 than when n = 100.

5 Conclusion
Any PCMExp can be conceptualized as two separate
convex mixtures, delineated for positive and negative
values ofω. Hence, the final EM estimate for PCMExp
will be the best of these EM estimates obtained under
these two scenarios. Thus, this structure allows the
application of the EM algorithm to be carried out only
under convex mixtures, wherein the algorithm typi-
cally yields favourable outcomes. However, although
yield superior estimates compared to other methods
previously used, such as the maximum likelihood es-
timator, employing this algorithm doesn’t appear to
yield precise estimates across the entire support of
(ω, λ). Hence, we plan to incorporate additional fit
measures alongside AIC to evaluate potential dispar-
ities in the obtained results and explore alternative
parameter estimation methods for cases requiring en-
hanced precision. In addition to other information cri-
teria, it can be used goodness-of-fit statistics to de-
termine the best estimate among the EM estimates,
such as Kolmogorov-Smirnov, Anderson-Darling or
Cramér-von Mises statistics, cf., [36], [37]. Further-
more, we aim to adopt a similar methodology to anal-
yse other PCM generated by shape-extended stable
distributions for extremes, with the goal of assessing
the suitability of this approach.
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