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1 Introduction
Sequences of special numbers have been studied over
several years, with the greatest numbers on studies of
well-known Fibonacci and Lucas sequences that are
related to the golden ratio; for instance, see, [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10].

Recall that the Fibonacci numbers Fn are defined
via the recurrence relation

Fn = Fn−1 + Fn−2

for n ≥ 2 with F0 = 0 and F1 = 1. The Lucas
numbers Ln are defined via the recurrence relation

Ln = Ln−1 + Ln−2

for n ≥ 2 with L0 = 2 and L1 = 1.
Like Fibonacci and Lucas numbers, the Pell family

is widely used. Recall that Pell number Pn is defined
by the recurrence relation

Pn = 2Pn−1 + Pn−2

for n ≥ 2 with P0 = 0 and P1 = 1. The Pell-Lucas
number Qn is defined by the recurrence relation

Qn = 2Qn−1 +Qn−2

for n ≥ 2 with Q0 = 2 and Q1 = 2. The Binet’s
formulas for the Pell and Pell-Lucas numbers are
related to the silver ratio φ = 1 +

√
2.

The generalization of Fibonacci and Pell numbers
were introduced by [11], in 2007 as follows:
the k-Fibonacci numbers Fk,n is defined by the
recurrence relation

Fk,n = kFk,n−1 + Fk,n−2 (1)

for n ≥ 2 with Fk,0 = 0 and Fk,1 = 1, where k and n
are non-negative integers with k ̸= 0. In 2011, [12],
introduced and studied a generalization of Lucas and
Pell-Lucas numbers as follows: the k-Lucas numbers
Lk,n is defined by the recurrence relation

Lk,n = kLk,n−1 + Lk,n−2, (2)
for n ≥ 2 with Lk,0 = 2 and Lk,1 = k. The initial
terms of the k-Fibonacci numbers Fk,n and k-Lucas
numbers Lk,n for selected values of k presented as in
Table 1 and Table 2.

Table 1. The initial terms of the k -Fibonacci numbers
n 0 1 2 3 4 5 6 7

F1,n 0 1 1 2 3 5 8 13
F2,n 0 1 2 5 12 29 70 169
F3,n 0 1 3 10 33 109 360 1189
F4,n 0 1 4 17 72 305 1292 5473
F5,n 0 1 5 26 135 701 3640 18901
F6,n 0 1 6 37 228 1405 8658 53353
F7,n 0 1 7 50 357 2549 18200 129949

Table 2. The initial terms of the k -Lucas numbers
n 0 1 2 3 4 5 6 7

L1,n 2 1 3 4 7 11 18 29
L2,n 2 2 6 14 34 82 198 478
L3,n 2 3 11 36 119 393 1298 4287
L4,n 2 4 18 76 322 1364 5778 24476
L5,n 2 5 27 140 727 3775 19602 101785
L6,n 2 6 38 234 1442 8886 54758 337434
L7,n 2 7 51 364 2599 18557 132498 946043

We can see that the classical Fibonacci and
classical Lucas numbers are obtained for k = 1.
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And then the classical Pell and classical Pell–Lucas
numbers are appeared if k = 2. Moreover,
sequences {F3,n}, {F4,n} and {F6,n} are listed in
The Online Encyclopaedia of Integer Sequences,
[13], under the symbols A006190, A001076 and
A005668, respectively, while sequences {L3,n},
{L4,n}, {L5,n}, {L6,n} and {L7,n} under the
symbols A006497, A014448, A087130, A085447
and A086902, respectively.

The recurrence relations (1) and (2) generate
characteristic equation of the form

r2 − kr − 1 = 0

Since k ≥ 1, this equation has two roots r1 =
1
2

(
k +

√
k2 + 4

)
and r2 = 1

2

(
k −

√
k2 + 4

)
.

Therefore, the Binet’s formulas for the k-Fibonacci
numbers {Fk,n} and the k-Lucas numbers {Lk,n} are

Fk,n =
1

∆k

(
φn
k − (−1)n

φn
k

)
(3)

and
Lk,n = φn

k +
(−1)n

φn
k

(4)

where ∆k =
√
k2 + 4 and φk = 1

2 (k +∆k), see
also, [12, Theorem 2.2], [14, Proposition 2].

Some identities have been proposed to represent
and extend of spacial numbers in recent years, [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24].
Integral representations are important tools available
in their analysis (see, for example, [1], [3], [4], [8],
[9], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]).

The first example for the integral representations
of the Fibonacci numbers upon even orders by using
the hypergeometric function showed in 2000 by [3],
as follows:

F2n =
n

2

(
3

2

)n−1 ∫ π

0

(
1 +

√
5

3
cosx

)n−1

sinxdx.

In 2015, [4], worked out an explicit integral
representation for Fn involving trigonometric
functions. Indeed, the main result in their paper is
the representation of the form

Fn =
αn

√
5
− 2

π

∫ ∞

0

(
sin(x/2)

x

)
×
(
cos(2nx)− 2 sin(nx) sinx

5 sin2 x+ cos2 x

)
dx

where α = 1+
√
5

2 is the golden ratio. Another
representation is given by [1].

In a recent year, [8], derived some appealing
integral representations for Fibonacci numbers Fn

and Lucas numbers Ln. For instance, he proved the
representations

Fℓn =
nFℓ

2n

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1dx

and

Lℓn =
1

2n

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1

× (Lℓ +
√
5(n+ 1)Fℓx)dx,

where ℓ and n are non-negative integers. The special
case of this identity for ℓ = 1 is also discussed in [9],
from 2023.

In this paper, we give new integral representations
of the k-Fibonacci and the k-Lucas numbers. To
prove them, we propose some identities relied on the
Binet’s formulas and simple integral calculus.

2 Preliminaries
Weemploy the technique of [8], to obtain new integral
representations for the k-Fibonacci numbers and the
k-Lucas numbers. We start with the following some
identities relied on the Binet’s formulas that we will
require.

Lemma 1. Let k and n be non-negative integers with
k ̸= 0, ∆k =

√
k2 + 4 and φk = 1

2 (k +∆k). Then
the following hold:

(i) Lk,n +∆kFk,n = 2φn
k ;

(ii) Lk,n −∆kFk,n = 2 (−1)n

φn
k

;

(iii) L2
k,n −∆2

kF
2
k,n = 4(−1)n.

Proof. (i) Combining Binet’s formulas (3) and (4)
gives

Lk,n +∆kFk,n

=

(
φn
k +

(−1)n

φn
k

)
+

(
φn
k − (−1)n

φn
k

)
= 2φn

k .

(ii) Subtracting Binet’s formulas (3) and (4) gives

Lk,n −∆kFk,n

=

(
φn
k +

(−1)n

φn
k

)
−
(
φn
k − (−1)n

φn
k

)
= 2

(−1)n

φn
k

.
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(iii) From (i) and (ii), we have
L2
k,n −∆2

kF
2
k,n

= L2
k,n − (∆kFk,n)

2

= (Lk,n +∆kFk,n) (Lk,n −∆kFk,n)

= (2φn
k)

(
2
(−1)n

φn
k

)
= 4(−1)n.

This completes the proof.

Remark 2. Lemma 1 (iii) is presented in [12, Theorem
2.3].
Lemma 3. Let k, m and n be non-negative integers
k ̸= 0 and ∆k =

√
k2 + 4. Then the following hold:

(i) 2Fk,m+n = Fk,mLk,n + Fk,nLk,m;

(ii) 2Lk,m+n = Lk,mLk,n +∆2
kFk,mFk,n.

Proof. (i) Using Binet’s formulas (3) and (4), we
obtain
Fk,mLk,n

=

(
1

∆k

(
φm
k − (−1)m

φm
k

))(
φn
k +

(−1)n

φn
k

)
=

1

∆k

(
φm+n
k −

(−1)mφn
k

φm
k

)
+

1

∆k

(
(−1)nφm

k

φn
k

− (−1)m+n

φm+n
k

)
and
Fk,nLk,m

=

(
1

∆k

(
φn
k − (−1)n

φn
k

))(
φm
k +

(−1)m

φm
k

)
=

1

∆k

(
φm+n
k −

(−1)nφm
k

φn
k

)
+

1

∆k

(
(−1)mφn

k

φm
k

− (−1)m+n

φm+n
k

)
.

So, we get
Fk,mLk,n + Fk,nLk,m

=
2

∆k

(
φm+n
k − (−1)m+n

φm+n
k

)
= 2Fk,m+n.

(ii) Using Binet’s formulas (4), we obtain
Lk,mLk,n

=

(
φm
k +

(−1)m

φm
k

)(
φn
k +

(−1)n

φn
k

)
= φm+n

k +
(−1)mφn

k

φm
k

+
(−1)nφm

k

φn
k

+
(−1)m+n

φm+n
k

.

Using Binet’s formulas (3), we obtain

∆2
kFk,mFk,n

= ∆2
k

(
1

∆k

(
φm
k − (−1)m

φm
k

))
×
(

1

∆k

(
φn
k − (−1)n

φn
k

))
=

(
φm
k − (−1)m

φm
k

)(
φn
k − (−1)n

φn
k

)
= φm+n

k −
(−1)mφn

k

φm
k

−
(−1)nφm

k

φn
k

+
(−1)m+n

φm+n
k

.

This implies that

Lk,mLk,n +∆2
kFk,mFk,n

= 2

(
φm+n
k +

(−1)m+n

φm+n
k

)
= 2Lk,m+n.

Hence, (i) and (ii) complete the proof.

Setting k = 1 and k = 2 in Lemma 3, we have the
following.
Remark 4. Let m and n be non-negative integers.
Then the following hold:
(i) 2Fm+n = FmLn + FnLm;

(ii) 2Lm+n = LmLn + 5FmFn;

(iii) 2Pm+n = PmQn + PnQm;

(iv) 2Qm+n = QmQn + 8PmPn.

3 Main Results
In this section, we now present that the integral
representation for the k-Fibonacci numbers Fk,ℓn

can be found by employing other known relations
between the two numbers Fk,ℓ and Lk,ℓ.
Theorem 5. For k, ℓ and n are non-negative integers
with k ̸= 0, the k-Fibonacci numbers Fk,ℓn can be
represented by the integral

Fk,ℓn =
nFk,ℓ

2n

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1dx, (5)

where ∆k =
√
k2 + 4.

Proof. For n = 0 or ℓ = 0, it is obvious. Let
us assume that ℓ, n > 0. Let u(x) = Lk,ℓ +
∆kFk,ℓx. Then du = ∆kFk,ℓdx. Using integration
by substitution leads to∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1dx

=
1

∆kFk,ℓ

∫ u(1)

u(−1)
un−1du
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=
1

n∆kFk,ℓ
(un)

∣∣∣u(1)
u(−1)

=
1

n∆kFk,ℓ

[
(Lk,ℓ +∆kFk,ℓx)

n
]1
−1

=
1

n∆kFk,ℓ
(Lk,ℓ +∆kFk,ℓ)

n

− 1

n∆kFk,ℓ
(Lk,ℓ −∆kFk,ℓ)

n. (6)

Applying (i) and (ii) of Lemma 1 in (6) with n
replaced with ℓ, we get∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1dx

=
1

n∆kFk,ℓ

[(
2φℓ

k

)n
−
(
2
(−1)ℓ

φℓ
k

)n]
=

2n

nFk,ℓ

[
1

∆k

(
φℓn
k − (−1)ℓn

φℓn
k

)]
.

It follows from (3) with replace n by ℓn that∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1dx =
2n

nFk,ℓ
Fk,ℓn.

Then (5) which completes the proof.

The integral representations of the k-Fibonacci
numbers for even and odd orders are shown as
follows:

Theorem 6. Let k and n be non-negative integers
with k ̸= 0 and ∆k =

√
k2 + 4.

(i) The k-Fibonacci numbers Fk,2n can be
represented by the integral

Fk,2n =
kn

2n

∫ 1

−1
(k2 + 2 + k∆kx)

n−1dx. (7)

(ii) The k-Fibonacci numbers Fk,2n+1 can be
represented by the integral

Fk,2n+1 =
1

2n+1

∫ 1

−1

(
k2 + 2 + k∆kx

)n−1

×
(
k2n+ k2 + 2 + k(n+ 1)∆kx)

)
dx.

Proof. (i) Notice that Fk,2 = k and Lk,2 = k2 + 2.
Setting ℓ = 2 in (5), we have

Fk,2n =
kn

2n

∫ 1

−1
(k2 + 2 + k∆k x)

n−1dx.

(ii) Re-indexing of n by n+ 1 in (7), we get

Fk,2n+2 =
k(n+ 1)

2n+1

∫ 1

−1
(k2 + 2 + k∆kx)

ndx.

This together with (7) and

Fk,2n+2 = kFk,2n+1 + Fk,2n

gives

Fk,2n+1 =
Fk,2n+2

k
−

Fk,2n

k

=
(n+ 1)

2n+1

∫ 1

−1
(k2 + 2 + k∆kx)

ndx

− n

2n

∫ 1

−1
(k2 + 2 + k∆k x)

n−1dx

=
1

2n+1

∫ 1

−1

(
k2 + 2 + k∆kx

)n−1×(
k2n+ k2 + 2 + k(n+ 1)∆kx)

)
dx.

This completes the proof.

Setting k = 1 in Theorems 5 and 6, we have the
following corollaries.

Corollary 7 ([8], Theorem 2.1). For ℓ and n are
non-negative integers, the Fibonacci numbers Fℓn

can be represented by the integral

Fℓn =
nFℓ

2n

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1dx.

Proof. Notice that F1,ℓn = Fℓn, F1,ℓ = Fℓ, L1,ℓ = Lℓ

and ∆1 =
√
5. Then, by Theorem 5, the conclusion

follows.

Corollary 8 ([8], Remark 2.1). Let n be a
non-negative integer.

(i) The Fibonacci numbers F2n can be represented
by the integral

F2n =
n

2n

∫ 1

−1
(3 +

√
5x)n−1dx.

(ii) The Fibonacci numbers F2n+1 can be
represented by the integral

F2n+1 =
1

2n+1

∫ 1

−1

(
3 +

√
5x

)n−1

×
(
n+ 3 +

√
5(n+ 1)x)

)
dx.

Setting k = 2 in Theorems 5 and 6, we have the
following corollaries.
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Corollary 9 ([30], Theorem 3.1). For ℓ and n are
non-negative integers with k ̸= 0, the Pell numbers
Pℓn can be represented by the integral

Pℓn =
nPℓ

2n

∫ 1

−1
(Qℓ +

√
8Pℓx)

n−1dx.

Proof. Notice that F2,ℓn = Pℓn, F2,ℓ = Pℓ, L2,ℓ =

Qℓ and ∆2 =
√
8. Then, by Theorem 5, the

conclusion follows.

Corollary 10 ([30], Corollary 3.2). Let n be a
non-negative integer.

(i) The Pell numbers P2n can be represented by the
integral

P2n = n

∫ 1

−1
(3 +

√
8x)n−1dx.

(ii) The Pell numbers P2n+1 can be represented by
the integral

P2n+1 =
1

2

∫ 1

−1

(
3 +

√
8x

)n−1

×
(
2n+ 3 +

√
8(n+ 1)x)

)
dx.

Proof. By Theorem 6, we get

P2n = F2,2n =
2n

2n

∫ 1

−1
(6 + 2

√
8x)n−1dx

= n

∫ 1

−1
(3 +

√
8x)n−1dx

and

P2n+1 = F2,2n+1

=
1

2n+1

∫ 1

−1

(
6 + 2

√
8x

)n−1

×
(
4n+ 6 + 2

√
8(n+ 1)x)

)
dx

=
1

2

∫ 1

−1

(
3 +

√
8x

)n−1

×
(
2n+ 3 +

√
8(n+ 1)x)

)
dx.

This completes the proof.

Setting k = 3 in Theorem 5, we have the following
numerical example.
Example 11. The 3-Fibonacci numbers F3,ℓn can be
represented by the integral

F3,ℓn =
nF3,ℓ

2n

∫ 1

−1
(L3,ℓ +

√
13F3,ℓx)

n−1dx.

It is known that F3,2 = 3 and L3,2 = 11. Then we
can find F3,4 and F3,6 as follows:

F3,4 = F3,2(2)

=
2F3,2

22

∫ 1

−1
(L3,2 +

√
13F3,2x)

2−1dx

=
3

2

∫ 1

−1
(11 + 3

√
13x)dx

=
3

2

(
11x+

3
√
13x2

2

) ∣∣∣1
−1

= 33

and
F3,6 = F3,2(3)

=
3F3,2

23

∫ 1

−1
(L3,2 +

√
13F3,2x)

3−1dx

=
9

8

∫ 1

−1
(11 + 3

√
13x)2dx

=
9

8

∫ 1

−1
(121 + 66

√
13x+ 117x2)dx

=
9

8

(
121x+ 33

√
13x2 +

117x3

3

) ∣∣∣1
−1

= 360.

In another way, we can find F3,6 when we known that
F3,3 = 10 and L3,3 = 36 as follows:

F3,6 = F3,3(2)

=
2F3,3

22

∫ 1

−1
(L3,3 +

√
13F3,3x)

2−1dx

= 5

∫ 1

−1
(36 + 10

√
13x)dx

= 5
(
36x+ 5

√
13x2

) ∣∣∣1
−1

= 360.

Moreover, we obtain
F3,9 = F3,3(3)

=
3F3,3

23

∫ 1

−1
(L3,3 +

√
13F3,3x)

3−1dx

=
15

4

∫ 1

−1
(36 + 10

√
13x)2dx

= 15

∫ 1

−1
(324 + 45

√
13x+ 325x2)dx

= 15

(
324x+

45
√
13x2

2
+

325x3

3

) ∣∣∣1
−1

= 12970.
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Next, we provide the integral representations for
the k-Lucas numbers Lk,ℓn based on the two numbers
Fk,ℓ and Lk,ℓ.
Theorem 12. For k, ℓ and n are non-negative
integers with k ̸= 0, the k-Lucas numbers Lk,ℓn can
be represented by the integral

Lk,ℓn =
1

2n

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1

× (Lk,ℓ + (n+ 1)∆kFk,ℓx)dx, (8)

where ∆k =
√
k2 + 4.

Proof. We will solve this integral (8) using the
integration by parts. Let u and v be such that

u(x) = Lk,ℓ + (n+ 1)∆kFk,ℓx

and
dv = (Lk,ℓ +∆kFk,ℓx)

n−1dx.

Then du = (n+ 1)∆kFk,ℓdx and from (6) gives

v =

∫
(Lk,ℓ +∆kFk,ℓx)

n−1dx

=
1

n∆kFk,ℓ
(Lk,ℓ +∆kFk,ℓ)

n.

It follows that

I =
1

2n

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1

× (Lk,ℓ + (n+ 1)∆kFk,ℓx)dx

=
1

n2n∆kFk,ℓ

×
[
(Lk,ℓ +∆kFk,ℓx)

n (Lk,ℓ + (n+ 1)∆kFk,ℓx)
]1
−1

− n+ 1

n2n

∫ 1

−1
(Lk,ℓ +∆kPk,ℓx)

ndx. (9)

Replacing n by n+ 1 in (5) becomes

Fk,ℓn+ℓ =
(n+ 1)Fk,ℓ

2n+1

∫ 1

−1
(Lk,ℓ +∆k Fk,ℓx)

ndx.

and so
2Fk,ℓn+ℓ

nFk,ℓ
=

(n+ 1)

n2n

∫ 1

−1
(Lk,ℓ +∆k Fk,ℓx)

ndx.

This together with (9) gives

I =
1

n2n∆kFk,ℓ

×
[
(Lk,ℓ +∆kFk,ℓ)

n (Lk,ℓ + (n+ 1)∆kFk,ℓ)

− (Lk,ℓ −∆kFk,ℓ)
n (Lk,ℓ − (n+ 1)∆kFk,ℓ)

]
−

2Fk,ℓn+ℓ

nFk,ℓ
.

Applying (i) and (ii) of Lemma 1 with n replaced by
ℓ to the righthand side of the above equation gives

I =
1

n2n∆kFk,ℓ

[
2nφℓn

k (Lk,ℓ + (n+ 1)∆kFk,ℓ)

− 2n
(−1)ℓn

φℓn
k

(Lk,ℓ − (n+ 1)∆kFk,ℓ)
]

−
2Fk,ℓn+ℓ

nFk,ℓ

=
1

nFk,ℓ

[
1

∆k

(
φℓn
k − (−1)ℓn

φℓn
k

)
Lk,ℓ

+ (n+ 1)Fk,ℓ

(
φℓn
k +

(−1)ℓn

φℓn
k

)]
−

2Fk,ℓn+ℓ

nFk,ℓ
.

Applying both Binet’s formulas (3) and (4) with n
replaced by ℓn and Lemma 3 (i) leads to

I =
1

nFk,ℓ
[Fk,ℓnLk,ℓ + (n+ 1)Fk,ℓLk,ℓn]

−
2Fk,ℓn+ℓ

nFk,ℓ

=
1

nFk,ℓ
(Fk,ℓnLk,ℓ + Fk,ℓLk,ℓn) + Lk,ℓn

−
2Fk,ℓn+ℓ

nFk,ℓ

= Lk,ℓn,

which completes the proof.

Setting k = 1 in Theorem 12, we have the
following corollary.

Corollary 13 ([8], Theorem 2.2). For ℓ and n are
non-negative integers, the Lucas numbers Lℓn can be
represented by the integral

Lℓn =
1

2n

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1

× (Lℓ +
√
5(n+ 1)Fℓx)dx.

Setting k = 2 in Theorem 12, we have the
following corollary.

Corollary 14 ([30], Theorem 3.4). For ℓ and n are
non-negative integers, the Pell-Lucas numbers Qℓn

can be represented by the integral

Qℓn =
1

2n

∫ 1

−1
×(Qℓ +

√
5Pℓx)

n−1

(Qℓ +
√
8(n+ 1)Pℓx)dx.
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Setting k = 3 in Theorem 12, we have the
following numerical example.
Example 15. The 3-Lucas numbers L3,ℓn can be
represented by the integral

L3,ℓn =
1

2n

∫ 1

−1
(L3,ℓ +

√
13F3,ℓx)

n−1

× (L3,ℓ +
√
13(n+ 1)F3,ℓx)dx.

Since F3,2 = 3 and L3,2 = 11, we can find L3,4 and
L3,6 as follows:

L3,4 = L3,2(2)

=
1

22

∫ 1

−1
(L3,2 +

√
13F3,2x)

2−1

× (L3,2 + 3
√
13F3,2x)dx

=
1

4

∫ 1

−1
(11 + 3

√
13x)(11 + 9

√
13x)dx

=
1

4

∫ 1

−1
(121 + 132

√
13x+ 351x2)dx

=
1

4

(
121x+ 66

√
13x2 + 117x3

) ∣∣∣1
−1

= 119

and

L3,6 = L3,2(3)

=
1

23

∫ 1

−1
(L3,2 +

√
13F3,2x)

3−1

× (L3,2 + 4
√
13F3,2x)dx

=
1

8

∫ 1

−1
(11 + 3

√
13x)2(11 + 12

√
13x)dx

=
1

8

∫ 1

−1
(1331 + 2178

√
13x

+ 11583x2 + 1404
√
13x3)dx

=
1

8
(1331x+ 1089

√
13x2 + 3861x3 + 351

√
13x4)

∣∣∣1
−1

= 1298.

Moreover, we can find L3,6 when we known that
F3,3 = 10 and L3,3 = 36 as follows:

L3,6 = F3,3(2)

=
1

22

∫ 1

−1
(L3,3 +

√
13F3,3x)

2−1

× (L3,3 + 3
√
13F3,3x)dx

=
1

4

∫ 1

−1
(36 + 10

√
13x)(36 + 30

√
13x)dx

=

∫ 1

−1
(324 + 360

√
13x+ 975x2)dx

=
(
324x+ 180

√
13x2 + 325x3

) ∣∣∣1
−1

= 1298.

Finally, both Fk,ℓn and Lk,ℓn are then used
to establish the generalized forms of integral
representations for the k-Fibonacci numbers Fk,ℓn+r

and k-Lucas numbers Lk,ℓn+r as the following
theorems.

Theorem 16. For k, ℓ, n and r are non-negative
integers with k ̸= 0, the k-Fibonacci number Fk,ℓn+r

can be represented by the integral

Fk,ℓn+r =
1

2n+1

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1

× (nFk,ℓLk,r + Fk,rLk,ℓ + (n+ 1)∆kFk,ℓFk,rx)dx,

where ∆k =
√
k2 + 4.

Proof. Using Lemma 3 (i) withm and n replaced by
ℓn and r respectively, we get

Fk,ℓn+r =
1

2
Fk,ℓnLk,r +

1

2
Fk,rLk,ℓn.

Applying Theorems 5 and 12 leads to

Fk,ℓn+r

=
1

2

(
nFk,ℓ

2n

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1dx

)
Lk,r

+
1

2
Fk,r

( 1

2n

∫ 1

−1
(Lk,ℓ + (n+ 1)∆kFk,ℓx)

× (Lk,ℓ +∆kFk,ℓx)
n−1dx

)
=

1

2n+1

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1

× (nFk,ℓLk,r + Fk,rLk,ℓ + (n+ 1)∆kFk,ℓFk,rx)dx.

This completes the proof.

Remark 17. Notice that the results for the integral
representations of the even and odd k-Fibonacci
numbers given in Theorem 6 are recovered from
Theorem 16 on setting (ℓ, r) = (2, 0) and (ℓ, r) =
(2, 1), respectively.

Setting k = 1 in Theorem 16, we have the
following corollary.

Corollary 18 ([8], Theorem 2.3). For ℓ, n and r are
non-negative integers, the Fibonacci numbers Fℓn+r
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can be represented by the integral

Fℓn+r =
1

2n+1

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1

×
(
nFℓLr + FrLℓ +

√
5(n+ 1)FℓFrx

)
dx.

Setting k = 2 in Theorem 16, we have the
following corollary.
Corollary 19 ([30], Theorem 3.5). For ℓ, n and r are
non-negative integers, the Pell numbers Pℓn+r can be
represented by the integral

Pℓn+r =
1

2n+1

∫ 1

−1
(Qℓ +

√
8Pℓx)

n−1

×
(
nPℓQr + PrQℓ +

√
8(n+ 1)PℓPrx

)
dx.

Theorem 20. For k, ℓ, n and r are non-negative
integers with k ̸= 0, the k-Lucas numbers Lk,ℓn+r

can be represented by the integral

Lk,ℓn+r =
1

2n+1

∫ 1

−1
(Lk,ℓ +∆kFk,ℓx)

n−1

×
(
n∆2

kFk,ℓFk,r + Lk,ℓLk,r

+(n+ 1)∆k Fk,ℓLk,rx

)
dx,

where ∆k =
√
k2 + 4.

Proof. Using Lemma 3 (ii) withm and n replaced by
ℓn and r respectively, we get

Lk,ℓn+r =
1

2
Lk,ℓnLk,r +

∆2
k

2
Fk,ℓnFk,r.

This together with Theorems 5 and 12 gives that the
proof is finish.

Using the same idea as in Theorem 6, or setting
(ℓ, r) = (2, 0) and (ℓ, r) = (2, 1) in Theorem 20, we
also have the following integral representations of the
k-Lucas numbers for even and odd orders.
Theorem 21. Let k and n be non-negative integers
with k ̸= 0 and ∆k =

√
k2 + 4.

(i) The k-Lucas numbers Lk,2n can be represented
by the integral

Lk,2n =
1

2n

∫ 1

−1
(k2 + 2 + k∆kx)

n−1

× (k2 + 2 + k(n+ 1)∆kx)dx.

(ii) The k-Lucas numbers Lk,2n+1 can be
represented by the integral

Lk,2n+1 =
k

2n+1

∫ 1

−1

(
k2 + 2 + k∆kx

)n−1

×
(
n∆2

k + k2 + 2 + k(n+ 1)∆kx)
)
dx.

Setting k = 1 in Theorems 20 and 21, we have the
following corollaries.

Corollary 22 ([8], Theorem 2.4). For ℓ, n and r are
non-negative integers, the Lucas numbers Lℓn+r can
be represented by the integral

Lℓn+r =
1

2n+1

∫ 1

−1
(Lℓ +

√
5Fℓx)

n−1

×
(
5nFℓFr + LℓLr +

√
5(n+ 1)FrLrx

)
dx.

Corollary 23 ([8], Remark 2.4). Let n be a
non-negative integer.

(i) The Lucas numbers L2n can be represented by
the integral

L2n =
1

2n

∫ 1

−1
(3+

√
5x)n−1(3+

√
5(n+1)x)dx.

(ii) The Lucas numbers L2n+1 can be represented by
the integral

L2n+1 =
1

2n+1

∫ 1

−1
(3 +

√
5x)n−1

× (5n+ 3 +
√
5(n+ 1)x)dx.

Setting k = 2 in Theorems 20 and 21, we have the
following corollaries.

Corollary 24 ([30], Theorem 3.6). For ℓ, n and r are
non-negative integers, the Pell-Lucas numbersQℓn+r

can be represented by the integral

Qℓn+r =
1

2n+1

∫ 1

−1
(Qℓ +

√
8Pℓx)

n−1

×
(
8nPℓPr +QℓQr +

√
8(n+ 1)PℓQrx

)
dx.

Corollary 25. Let n be a non-negative integer.

(i) The Pell-Lucas numbersQ2n can be represented
by the integral

Q2n =

∫ 1

−1
(3 +

√
8x)n−1(3 +

√
8(n+ 1)x)dx.

(ii) The Pell-Lucas numbers Q2n+1 can be
represented by the integral

Q2n+1 =

∫ 1

−1
(3 +

√
8x)n−1

× (4n+ 3 +
√
8(n+ 1)x)dx.

Setting k = 3 and r = 1 in Theorems 16 and 20,
we have the following numerical example.
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Example 26. The 3-Fibonacci numbers F3,ℓn+1 and
3-Lucas numbers L3,ℓn+1 can be represented by the
integral

F3,ℓn+1 =
1

2n+1

∫ 1

−1
(L3,ℓ +

√
13F3,ℓx)

n−1

× (3nF3,ℓ + L3,ℓ +
√
13(n+ 1)F3,ℓx)dx

and

L3,ℓn+r =
1

2n+1

∫ 1

−1
(L3,ℓ +

√
13F3,ℓx)

n−1

×
(
13nF3,ℓ + 3L3,ℓ + 3

√
13(n+ 1)F3,ℓx

)
dx.

It is known that F3,2 = 3 and L3,2 = 11. Then we
can find F3,3 and L3,3 as follows:

F3,3 = F3,2(1)+1

=
1

22

∫ 1

−1
(3F3,2 + L3,2 + 2

√
13F3,2x)dx

=
1

2

∫ 1

−1
(10 + 3

√
13x)dx

=
1

2

(
10x+

3
√
13x2

2

) ∣∣∣1
−1

= 10

and

L3,3 = L3,2(1)+1

=
1

22

∫ 1

−1

(
13F3,2 + 3L3,2 + 6

√
13F3,2x

)
dx

=
1

2

∫ 1

−1
(36 + 9

√
13x)dx

=
1

2

(
36x+

9
√
13x2

2

) ∣∣∣1
−1

= 36.

Moreover, we obtain F3,5 and L3,5 as follows:

F3,5 = F3,2(2)+1

=
1

23

∫ 1

−1
(L3,2 +

√
13F3,2x)

× (6F3,2 + L3,2 + 3
√
13F3,2x)dx

=
1

8

∫ 1

−1
(11 + 3

√
13x)(29 + 9

√
13x)dx

=
1

8

∫ 1

−1
(319 + 186

√
13x+ 351x2)dx

=
1

8

(
319x+ 93

√
13x2 + 117x3

) ∣∣∣1
−1

= 109

and

L3,5 = L3,2(2)+1

=
1

23

∫ 1

−1
(L3,2 +

√
13F3,2x)

× (26F3,2 + 3L3,2 + 9
√
13F3,2x)dx

=
1

8

∫ 1

−1
(11 + 3

√
13x)(111 + 27

√
13x)dx

=
1

8

∫ 1

−1
(1221 + 630

√
13x+ 1053x2)dx

=
1

8

(
1221x+ 315

√
13x2 + 351x3

) ∣∣∣1
−1

= 393.

4 Conclusion
In this paper, new integral representations of the
k-Fibonacci numbers and the k-Lucas numbers have
been introduced and studied. Many of the properties
of these numbers are proved by using Binet’s
formulas. We also establish some identities and
simple integral calculus to prove them. The approach
primarily builds on mathematical skills for deriving
integral representations and provides formulas for
both even and odd terms in these sequences. Indeed,
we present that the integral representation for the
k-Fibonacci numbers Fk,ℓn and k-Lucas numbers
Lk,ℓn can be found by employing other known
relations between the two numbersFk,ℓ andLk,ℓ. And
then both Fk,ℓn and Lk,ℓn are used to establish the
generalized forms of integral representations for the
k-Fibonacci numbers Fk,ℓn+r and k-Lucas numbers
Lk,ℓn+r. Moreover, we deduce results applicable
to related number sequences like Fibonacci, Lucas,
Pell, and Pell-Lucas numbers. Finally, we give
some numerical examples of 3-Fibonacci and 3-Lucas
numbers.

References:
[1] D. Andrica and O. Bagdasar, Recurrent

Sequences: Key Results, Applications, and
Problems, Springer, Cham, 2020.

[2] M. Bicknell, A primer on the Pell sequence and
related sequences, Fibonacci Quart., Vol.13,
No.4, 1915, pp. 345–349.

[3] K. Dilcher, Hypergeometric functions and
Fibonacci numbers, Fibonacci Quart., Vol.38,
No.4, 2000, pp. 342–363.

[4] M. L. Glasser and Y. Zhou, An integral
representation for the Fibonacci numbers and
their generalization, Fibonacci Quart., Vol.53,
No.4, 2015, pp. 313–318.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.82 Weerayuth Nilsrakoo, Achariya Nilsrakoo

E-ISSN: 2224-2880 799 Volume 23, 2024



[5] A. F. Horadam, Pell identities, Fibonacci
Quart., Vol.9, No.3, 1971, pp. 245–263.

[6] A. F. Horadam and J. M. Mahon, Pell and
Pell-Lucas polynomials, Fibonacci Quart.,
Vol.23, No.1, 1985, pp. 7–20.

[7] T. Koshy, Fibonacci and Lucas Numbers with
Applications, 2nd, NJ: John Wiley & Sons,
2018.

[8] S. M. Stewart, Simple integral representations
for the Fibonacci and Lucas numbers, Aust. J.
Math. Anal. Appl., Vol.19, No.2, 2022, pp. 1–5.

[9] S. M. Stewart, A simple integral representation
of the Fibonacci numbers, Mathematical
Gazette, Vol.107, No.568, 2023, pp. 120–123.

[10] S. Vajda, Fibonacci and Lucas Numbers, and
the Golden Section: Theory and Applications,
Dover Press, 2008.

[11] S. Falcón and A. Plaza, On the Fibonacci
k-numbers, Chaos Solitons Fractals, Vol.32,
No.5, 2007, pp. 1615–1624.

[12] S. Falcón, On the k-Lucas numbers, Int. J.
Contemp. Math. Sci., Vol. 6, No.21, 2011, pp.
1039–1050.

[13] OEIS Foundation Inc, The on-line encyclopedia
of integer sequences, http://oeis.org, 2024.

[14] S. Falcón and A. Plaza, The k-Fibonacci
sequence and the Pascal 2-triangle, Chaos
Solitons Fractals, Vol.33, No. 1, 2007, pp.
38–49.

[15] P. Chumket, P. Singavananda, R. Chinram and
I. Thongsomnuk, On generalization k-Fibonacci
and k-Lucas numbers, ICIC Express Letters,
Vol. 18, No.5, 2024, pp. 461–468.

[16] M.Kumari, K. Prasad, B. Kuloğlu and E. Özkan,
The k-Fibonacci group and periods of the k-step
Fibonacci sequences, WSEAS Transactions on
Mathematics, vol. 21, 2022, pp. 838–843.

[17] R. Potůček, On one series of the reciprocals of
the product of two Fibonacci numbers whose
indices differ by an even number, Equations,
Vol.4, 2024, pp. 24–31.

[18] P. Puangjumpa, Some k-Fibonacci and
k-Lucas identities by a matrix approach
with applications, Thai J. Math., Vol. 20 No.1,
2022, pp. 417–423.

[19] S. E. Rihane, k-Fibonacci and k-Lucas numbers
as product of two repdigits, Results Math.,
Vol.76, 2021, Article ID. 208, 20 pp.

[20] S. E. Rihane, On k-Fibonacci and k-Lucas
numbers written as a product of two Pell
numbers, Bol. Soc. Mat. Mex., Vol.30, 2024,
Article ID. 20, 25 pp.

[21] P. Singavananda, H. Kusa-A, S. Chakapi and
A. Denphetnong, On generalized Fibonacci and
k-generalized Fibonacci numbers, ICIC Express
Letters, Vol. 18, No.8, 2024, pp. 801–809.

[22] S. Somprom, W. Nimnual and W. Hongthong,
Some identities for an alternating sum of
Fibonacci and Lucus numbers of order k,
WSEAS Transactions on Mathematics, Vol. 21,
2022, pp. 580–584.

[23] S. Somprom, P. Puangjumpa and A. Sichiangha,
On the properties of Generalized Jacobsthal
and Generalized Jacobsthal-Lucas sequences,
WSEAS Transactions on Mathematics, Vol. 22,
2023, pp. 634–640.

[24] N. Yilmaz, A. Aydoğdu and E. Özkan, Some
properties of k-generalized Fibonacci numbers,
Mathematica Montisnigri, Vol. 50, 2021, pp.
73–79.

[25] T. Dana-Picard, Sequences of definite integrals,
Internat. J. Math. Ed. Sci. Tech. Vol.38 No.3,
2007, pp. 393–401.

[26] T. Dana-Picard, Integral presentations of
Catalan numbers, Internat. J. Math. Ed. Sci.
Tech., Vol.41, No.1, 2010, pp. 63–69.

[27] T. Dana-Picard, Integral presentations of
Catalan numbers and Wallis formula, Internat.
J. Math. Ed. Sci. Tech., Vol.42, No. 1, 2011, pp.
122–129.

[28] A. Ipek, Integral representations of the
Jacobsthal and Jacobsthal-Lucas numbers, Asia
Mathematika, Vol.8, No.2, 2024, pp. 1–15.

[29] W.-H. Li, O. Kouba, I. Kaddoura and F.
Qi, A further generalization of the Catalan
numbers and its explicit formula and integral
representation, Filomat, Vol.37, No.19, 2023,
pp. 6505–6524.

[30] A. Nilsrakoo, Integral representations of the Pell
and Pell-Lucas numbers, J. Science and Science
Education, Vol. 7, No.2, 2024, pp. 272–281.

[31] K. A. Penson and J. -M. Sixdeniers, Integral
representations of Catalan and related numbers,
J. Integer Seq., Vol.4, No.2, 2001, Article
01.2.5.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.82 Weerayuth Nilsrakoo, Achariya Nilsrakoo

E-ISSN: 2224-2880 800 Volume 23, 2024



[32] F. Qi, Parametric integrals, the Catalan numbers,
and the beta function, Elem. Math., Vol.72,
No.3, 2017, pp. 103–110.

[33] F. Qi, X. -T. Shi and F. -F. Liu, An integral
representation, complete monotonicity, and
inequalities of the Catalan numbers, Filomat,
Vol.32, No.2, 2018, pp. 575–587.

[34] X. -T. Shi, F. -F. Liu and F. Qi, An integral
representation of the Catalan numbers, Glob. J.
Math. Anal., Vol.3, No.3, 2015, pp. 130–133.

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Weerayuth Nilsrakoo is responsible for the
conceptualization of the research problem, formal
analysis, and the supervision of the work. Achariya
Nilsrakoo is responsible for the formal analysis,
validation, and corresponding author.

Sources of funding for research
presented in a scientific article or
scientific article itself
No funding was received for conducting this study.

Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

  
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.82 Weerayuth Nilsrakoo, Achariya Nilsrakoo

E-ISSN: 2224-2880 801 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Preliminaries
	Main Results
	Conclusion



