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Abstract: We investigate the perturbation A = H + V , where H = 1
2

(
− d2

dx2 + x2
)

represents the harmonic

oscillator in R, and V is a specific scalar potential. Let λk denote the kth eigenvalue of the operator H . The
eigenvalues of the perturbed operator L are given by λk + µk where µk accounts for the perturbative effects of
the potential V . The primary result of this study is to provide an asymptotic expansion of µk and to establish a
connection between the coefficients of this expansion and a particular transform of the potential V .
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1 Introduction
In this paper, we investigate the spectral properties of
the perturbed harmonic oscillator in R, a fundamental
system in quantum mechanics and spectral theory.
The unperturbed harmonic oscillator H is defined by
the differential operator:

H =
1

2

(
− d2

dx2
+ x2

)
. (1)

which is self-adjoint with a compact resolvent. Its
spectrum is well-known and consists of the simple
eigenvalues

{
λk = k + 1

2

}
k∈N, corresponding to the

discrete energy levels of the system.
We introduce a perturbation by considering an even
scalar potential V ∈ C∞(R,R) which satisfies the
following decay condition for all x ∈ R, k ∈ N,∣∣∣V (k) (x)

∣∣∣ ≤ cn
(
1 + x2

)−s
2 , s ∈ ]1,+∞[ . (2)

The perturbed operator A = H + V remains
self-adjoint with a compact resolvent, [1], and
its spectrum consists of the perturbed eigenvalues
{λk + µk}k where µk represents the corrections to
the unperturbed eigenvalues due to the potential V .
The study of spectral perturbations of the harmonic
oscillator is a classical problem with applications
in various fields, such as quantum mechanics,
semiclassical analysis, and mathematical physics.
While many techniques have been developed to

analyze such perturbations, including semiclassical
methods and pseudo-differential operator theory, we
employ here the averaging method. This approach
leverages the periodic structure of the harmonic
oscillator and provides a direct means to analyze
the asymptotic behavior of the perturbed eigenvalues
as k tends to infinity. The primary goal of this
paper is to determine the asymptotic behavior of the
eigenvalue corrections µk as k → ∞ and to establish
a relationship between the coefficients of this
asymptotic expansion and a specific transform of the
potential V . This result provides new insights into the
spectral structure of perturbed oscillators and offers
a fresh perspective on the long-term behavior of the
spectrum. Moreover, our approach presents certain
advantages over existing methods by providing an
explicit link between the perturbation and the spectral
corrections, making the analysis more transparent
and easier to generalize to other systems, such as
anharmonic oscillators. Pseudo-differential operators
are generalizations of differential operators, defined
by symbols that describe their behavior in the
spatial and spectral domains, enabling the analysis
of complex problems in partial differential equations.
They are widely used in physics, engineering, and
signal processing. Weyl quantization associates
physical observables in quantum mechanics with
operators on a Hilbert space, establishing a link
between classical and quantum mechanics. For
example, a pseudo-differential operator can model
wave diffusion in inhomogeneous media, allowing
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the study of wave propagation effects.
We aim to study the asymptotic behavior of µk as k
tends to infinity. Let us state now the main results
proved in this paper.

Theorem 1. The asymptotic behavior of µk is:

µk =
2

π

∫ π
2

0
V (

√
2λk cos t)dt+O

(
λ
−(1−η)
k

)
, k → +∞

(3)
with η ∈

]
0, 12

[
.

To assess the validity of Theorem 1, we present
the following theorem:

Theorem 2. For s > 1 we have

µk =
1

π
√
2λk

∫
R
V (x)dx+O(λ

− (1+α)
2

k )

0 < α < min(s− 1, 1− 2η), η ∈
]
0, 12

[
.

Remarks
R.1 If the potential V is neither even nor odd, we
keep the even part of V in the integral of (3)
R.2 The integral of (3) can be viewed as an Ṽ
transform of V :

Ṽ (x) =
2

π

∫ x

0

V (y)√
x2 − y2

dy,

by a change of variable we can write:

Ṽ (x) =
1

π

∫ x2

0

V (
√
y)

√
y
√
x2 − y

dy, (4)

Ṽ is none other than Abel’s transformate applied to
x2 of the function y → (y)−

1
2V (

√
y). Once the

Ṽ function is determined from a distribution of its
values on R, we can recover V ( inverse problem ) of
(4) by reducing it to an Abel integral equation.
R.3 In (3) we get the best approximation for η near
zero.
R.4 The theorem 1 can be extended to the case of the
operator:

(−1)h
d2h

dx2h
+ x2k, (5)

where h, k ∈ N∗. We hope to elaborate on this in the
future.

In [2], the study investigates the harmonic oscillator
on R perturbed by a scalar potential B, which has the
following asymptotic form:

B(x) ∼ |x|α
∑
m

am cosωmx,

Where α > 0, am and ωm are real numbers.
Our research addresses a more extensive class of
scalar potentials. Our approach utilizes the averaging
method developed in [3] and [4], which involves
replacing V in A = H + V with the average

V =
1

2π

∫ 2π

0
e−itHV eitHdt.

Then it turns out that the spectrum of A = H + V is
very close to that of A, V and A are almost unitarily
equivalent, and

[
H,V

]
= 0. We first study the

spectrum of V , and then we move on to that of A.
For an overall view of this kind of problem, refer to
[4]. The rest of this article is organized as follows.
In Section 2, this section presents supplementary
information regarding certain properties of Weyl
pseudo-differential operators and their functional
calculus. In section 3, we study the spectrum of
A and V and specify in what sense they are close.
Section 4 is devoted to the study of the asymptotic
behavior of µk. In Section 5, we prove Theorem 2

2 Weyl pseudo-differential operator
and functional calculus

Let ρ ∈ [0, 1] and m ∈ R. We consider the weight
function, [5]

(x, ξ) −→
(
1 + x2 + ξ2

)m
2 , (x, ξ) ∈ R2.

We denote by Γm
ρ (R× R) the space of symbols

associated with the temperate weight function,
precisely:

Γm
ρ = {a ∈ C∞ (

R2
)
: ∀α, β ∈ N2, ∃ cα,β > 0

/ |∂α
x ∂

β
ξ a (x, ξ) |

≤ cα,β(1 + x2 + ξ2)
m−ρ(α+β)

2 }.

We will use the standard Weyl quantization of
symbols. Specifically, if a ∈ Γm

ρ , then for u ∈ S (R)
the operator associated is defined by :

opw (a)u (x)

= 1
(2π)2

∫
R×R

ei(x−y)ξa

(
x+ y

2
, ξ

)
u (y) dydξ

.

We denote by Gm
ρ the operator class whose symbol

belongs to a ∈ Γm
ρ . For example, H ∈ G2

1 and
V ∈ G0

0.
Let us now introduce the notion of the asymptotic
expansion of symbols.
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Proposition 3. (see, [6])
i) If A ∈ Gm1

1 and B ∈ Gm2
0 then the operator AB ∈

Gm1+m2
0 . Its Weyl symbol admits an asymptotic

development:

c =

+∞∑
j=0

cj , cj ∈ Γm1+m2−j
0 ,

where

cj =
1

2j

∑
α+β=j

(−1)|β|

α!β!
(∂α

ξ ∂
β
xa)(∂

α
x ∂

β
ξ b).

ii) The commutator [A,B] ∈ Gm1+m2−1
0 .

iii) If (Bi)i∈{1,··· ,n} is the family of operators such as
Bi ∈ Gmi

0 . Then the operator

B1B2 · · ·BnH
−m1+···mn

2

is bounded.

Theorem 4. (Calderon-Vaillancourt Theorem)
If a ∈ Γ0

0 then the operator opw (a) is bounded on
L2 (R).

In the following, we will need the functional
calculus of the operator H . The functional calculus
for pseudo-differential operators (OPD) has been
studied in cases where the functions belong to the
Hörmander class Sr

1 , r ∈ R (see, [7]). In our work,
we utilize the properties of a function f that satisfies,
for all r ∈ R, k ∈ N and ρ ∈ [12 , 1], the following
condition:

|f (k)(x)| ≤ Ck(1 + |x|)r−ρk.

This means that we are dealing with the case of the
operator H plus a function belonging to the class Sr

ρ .

Proposition 5. f(H) is a (ΨDO) included in
G2r

1−2(1−ρ) and its weyl symbol admit the following
development

σf(H) =
∑
j≥0

σf(H),2j

σf(H),2j =

3j∑
k=2

djk
k!

f (k)(σH), ∀j ≥ 1

where

dj,k ∈ Γ2k−4j
1 , σf(H),2j ∈ Γ

2r−j(6ρ−2)
1−2(1−ρ) , (6)

in particular

σf(H),0 = f(σH).

Proof: For studying f(H), we follow the same
strategy in [7], using the Mellin transformation, the
latter consists of the following steps:
(1) We prove by induction that (H−λ)−1,λ ∈ C, is a
(ΨDO) and its Weyl symbol admits the development

bλ =
+∞∑
j=0

bj,λ where


b0,λ = (σH − λ)−1,

b2j+1,λ = 0,

b2j,λ =

3j∑
k=2

(−1)kdj,k.b
k+1
0,λ , dj,k ∈ Γ2k−4j

1 .

(2) Studying the operator Hs using the Cauchy’s
integral formula

Hs =
1

2πi

∫
∆
λs(H − λ)−1dλ.

∆ is the same domain defined in the article, [7]
Hs is a (ΨDO), and its Weyl symbol is

σs =

+∞∑
j=0

σs,2j with σs,0 = σs
H and

σs,2j =

3j∑
k=2

dj,k.
s(s− 1) · · · (s− k + 1)

k!
σs−k
H ,

σs,2j ∈ Γ2s−4j
1 .

(3) Studying f(H) using the representation formula

f(H) =
1

2πi

∫ σ+i∞

σ−i∞
M [f ] (s)H−sds,

σ ∈ [0,−r[, r < 0 and M [f ] is the Mellin
transformation of f . ⊓⊔

3 The relation between the spectrum
of A and A

In this section, we will apply the averaging method.
To begin with, let’s observe the Hamiltonian flow
related to the symbol of the operator H

σH(x, ξ) =
1

2
(x2 + ξ2), x, ξ ∈ R, (7)

is a group with a parameter whose elements are
square matrix of size 2.

χt =

(
cos t − sin t
sin t cos t

)
(8)
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Observe that this flow is periodic with a period of
2π. To initiate the averaging method, we introduce
the following operators.

W (t) = e−itHV eitH , (9)

V =
1

2π

∫ 2π

0
W (t)dt, (10)

V =
1

2πi

∫ 2π

0

∫ t

0
[W (t),W (r)]drdt. (11)

Since H commute with V , the spectrum of A is
{λk + µk}, where µ̄k is the kth eigenvalue of V .
To compare µk and µ̄k we will need the following
lemmas

Lemma 6.
[
H,V

]
= 0

Proof: After we derive W (t), we obtain

dW (t)

dt
=

1

i
[H,W (t)] . (12)

Now we have[
H,V

]
=

i

2π

∫ 2π

0

dW (t)

dt
dt =

i

2π
(W (2π)−W (0)),

(13)
since e2πiH = −idL2(R), we get W (2π) = W (0).
Finally, we have

[
H,V

]
= 0. ⊓⊔

Lemma 7.

i/V ∈ G−1
0 , ii/V ∈ G−2+2η

0 ,

where η ∈
]
0, 12

[
.

Proof:
i/The Weyl symbol of the operator W (t) is

σW (t) = V oχt, (14)

where χt is the flow described in (8).
This result is due to the fact that, on the one hand,
eitH belongs to the metaplectic group, and on the
other hand, Weyl’s quantization is invariant under this
group, ([8], [9]). The Weyl’s symbol of V is obtained
by integrating the symbol of W (t) uniformly with
respect to t.

σV (x, ξ) =
1

2π

∫ 2π

0
V (x cos t+ ξ sin t)dt. (15)

By using (2), we get the following estimate, for
α, β ∈ N and x, ξ ∈ R:∣∣∣∂α

x ∂
β
ξ σV (x, ξ)

∣∣∣
≤ Cα,β

∫ 2π
0

[
1 + (x cos t+ ξ sin t)2

]−s
2
dt.

≤ Cα,β

∫ 2π
0

[
1 + (x2 + ξ2)cos2t

]−s
2 dt.

(16)

Now we apply the change of variable y = cos t, we

get
∣∣∣∂α

x ∂
β
ξ σV̄ (x, ξ)

∣∣∣ ≤ Cα,β

∫ 1
0
[1+(x2+ξ2)u2]

−s
2

√
1−u2

du.
We split this integral into two parts, then∣∣∣∂α

x ∂
β
ξ σV̄ (x, ξ)

∣∣∣ ≤ I1 + I2,

with

I1 =

∫ 1
2

0

1

(1 + (x2 + ξ2)u2)
s
2

× 1√
1− u2

du,

and

I2 =

∫ 1

1
2

1

(1 + (x2 + ξ2)u2)
s
2

× 1√
1− u2

du.

we put h =
√

x2 + ξ2, so, we have:

I1 ≤ c

∫ 1
2

0

1

(1 + h2u2)
s
2

du.

After applying the change of variables, u = y
y+1 and

v = y
√
1 + h we obtain

I1 ≤
c

1 + h
.

On the other side we have

I2 ≤
c

(1 + h)s

∫ 1

1
2

1√
1− u2

du ≤ c

(1 + h)s
,

Finally, we obtain the following estimate:∣∣∣∂α
x ∂

β
ξ σV̄ (x, ξ)

∣∣∣ ≤ Cα,β

(
1 + x2 + ξ2

)− 1
2 .

ii/ According to the previous calculations, the

operator B(t) =

∫ t

0
W (r)dr belongs to G−1

0 , its

Weyl’s symbol σB(t) check :∣∣∣∂α
x ∂

β
ξ σB(t)(x, ξ)

∣∣∣ ≤ Cα,β(1 + x2 + ξ2)
−1
2 , (17)

uniformly with respect to t.
Let us begin by clarifying the class of the operator.∫ 2π

0
W (t)B(t)dt. At this point, we are focusing on

the operator. W (t)B(t), its Weyl symbol ct is given
in [5], by

ct(x, ξ) = 1
π2

∫
e−2i(rρ−ωτ)σW (t)(x+ ω, ξ + ρ)

×σB(t)(x+ r, ξ + τ)dρdωdτdr.
(18)

We split the oscillator integral ct into two parts c
(1)
t

and c
(2)
t , then we use the cutoff functions.
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ω1,ε(x, ξ, ω, τ, r, ρ) = χ

[
ω2+ρ2+r2+τ2

ε(1+x2+ξ2)
η
2

]
and

ω2,ε = 1− ω1,ε,

where χ ∈ C∞
0 (R), χ ≡ 1 in [−1, 1], χ ≡ 0 in

R\ ]−2, 2[, R = ω2 + ρ2 + r2 + τ2, ε > 0 and η ∈]
0, 12

[
. Let’s consider

dj(x, ξ, ω, τ, r, ρ) = ωj,ε(x, ξ, ω, τ, r, ρ)
×σW (t)(x+ ω, ξ + ρ)

×σB(t)(x+ r, ξ + τ),
(19)

c
(1)
t (resp c

(2)
t ) the integral obtained in (18) by

replacing the amplitude by d1 (resp d2)
Study of c(2)t

On the support of d2 we have R ≥ ε(1 + x2 + ξ2)
η
2 .

We make an integration by parts using the operator.

M = 1
2iR(−ρ∂r − r∂ρ + τ∂ω + ω∂τ ).

We have for all k ∈ N

c
(2)
t =

1

π2

∫
e−2i(rρ−ωτ)(tM)

k
d2 dρ dω dτ dr.

Then we get for all k > 0∣∣∣c(2)t

∣∣∣ ≤ Ck(1 + x2 + ξ2)
−ηk
4 ,

Uniformly with respect to t ∈ [0, 2π].
Study of c(1)t
On the support of d1, we have

c
(1)
t (x, ξ) =

1

π2

∫
R≤2ε(1+x2+ξ2)

η
2

e−2i(rρ−ωτ)

× σW (t)(x+ ω, ξ + ρ)

× σB(t)(x+ r, ξ + τ)ω1,εdρdωdτdr, (20)

∫ π

0

∣∣∣c(1)t

∣∣∣dt ≤ c

∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr

×
∫ π

0

∣∣σW (t)(x+ ω, ξ + ρ)
∣∣dt

×
∫ π

0

∣∣σB(t)(x+ r, ξ + τ)
∣∣dt, (21)

On the support of d1, for ε small enough and since
η ∈

]
0, 12

[
, there are positive constants c, c′, C, C ′

such that
c(1 + x2 + ξ2)

1
2 ≤ (1 + (x+ ω)2 + (ρ+ ξ)2)

1
2 ,

(1 + (x+ ω)2 + (ρ+ ξ)2)
1
2 ≤ C(1 + x2 + ξ2)

1
2 ,

c′(1 + x2 + ξ2)
1
2 ≤ (1 + (x+ r)2 + (τ + ξ)2)

1
2 ,

(1 + (x+ r)2 + (τ + ξ)2)
1
2 ≤ C ′(1 + x2 + ξ2)

1
2 .

Therefore∫ π

0

∣∣∣c(1)t

∣∣∣ dt
≤ C

(
1 + x2 + ξ2

)−1
∫
R≤2ε(1+x2+ξ2)

η
2

dρdωdτdr.

(22)
Finally∫ π

0

∣∣∣c(1)t

∣∣∣ dt ≤ c
(
1 + x2 + ξ2

)−1+η
. (23)

In the end, by denoting σ as the Weyl symbol of the

operator
∫ π

0
W (t)B(t)dt, we have

|σ| ≤
∫ π

0

∣∣∣c(1)t

∣∣∣dt+ ∫ π

0

∣∣∣c(2)t

∣∣∣dt
≤ C

[
(1 + x2 + ξ2)

−ηk
4 + (1 + x2 + ξ2)

−1+η
]

≤ C(1 + x2 + ξ2)
−2+2η

2 .

Finally, we deduce that V ∈ G−2+2η
0 . ⊓⊔

Lemma 8. There exists a skew-symmetric operator
P ∈ G−1

0 such that the operator (ePAe−P−A)H1−η

is bounded.

Proof: Take the following antisymmetrical operator,
P :

P = P1 + P2, (24)

where

P1 =
i

2π

∫ 2π

0
(2π − t)W (t)dt,

P2 =
−1

4π

∫ 2π

0
(2π − t)

∫ t

0
[W (t),W (r)]drdt.

Using the same calculations as those in Lemma 7,
we obtain: P1 ∈ G−1

0 and P2 ∈ G−2+2η
0 . Finally,

P ∈ G−1
0 .

Before beginning the proof, we will need the
following relations:

[P1, H] =
i

2π

∫ 2π

0
(2π − t)

dW (t)

dt
dt

= V − V.
(25)

and [P2, H]

=
−1

4π

∫ 2π

0
(2π − t)

∫ t

0
[[W (t),W (r)] , H]drdt

=
i

4π

∫ 2π

0
(2π − t)
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×
∫ t

0

([
W (t),W

′
(r)

]
+
[
W

′
(t),W (r)

])
drdt.

We set

F (t) =
1

2π

∫ t

0
W (r)dr.

On the one hand :

i

4π

∫ 2π

0
(2π − t)

∫ t

0

[
W (t),W

′
(r)

]
drdt

=
i

4π

∫ 2π

0
(2π − t)

[
W (t),

∫ t

0
W

′
(r)dr

]
dt

=
−i

4π

∫ 2π

0
(2π − t) [W (t), V ]dt

= −1
2 [P1, V ] .

.

on the other hand :

i

4π

∫ 2π

0
(2π − t)

∫ t

0

[
W

′
(t),W (r)

]
drdt

=
i

2

∫ 2π

0
(2π − t)

[
W

′
(t), F (t)

]
dt

=
i

2

∫ 2π

0
(2π − t)

d

dt
([W (t), F (t)])dt

=
i

2

(
[(2π − t) [W (t), F (t)]]2π0

)
+(∫ 2π

0 [W (t), F (t)]dt
)

= −V .

.

Finally, we have :

[P2, H] = −V − 1

2
[P1, V ] . (26)

We notice AdP.A = [P,A]. The differential
equation {

dX
dt = [P,X]
X(0) = A,

(27)

has a unique solution

X(t) = etADP .A = etPAe−tP .

We deduce, taking into account (25) and (26) that :

ePA e−P −A
= −V + 1

2 [P2, V ]

+1
2

[
P, V

]
+ 1

4 [P, [P1, V ]]

+1
2 [P, [P2, V ]]− 1

2

[
P, V

]
+
∑
n≥0

(AdP )n

(n+ 3)!
[P, [P, [P,A]]] .

(28)

We now apply Proposition 3, since V ∈
∑

0
0, V ∈

G−1
0 , P1, P ∈ G−1

0 and P2, V ∈ G−2+2η
0 , we get :

∥∥∥V .H1−η
∥∥∥ ≤ C,∥∥[P2, V ]H1−η
∥∥ ≤ C,∥∥[P, V ]

H
∥∥ ≤ C,

∥[P, [P1, V ]]H∥ ≤ C,∥∥∥[P, [P2, V ]]H
3
2
−η

∥∥∥ ≤ C,∥∥∥[P, V ]
H

3
2
−η

∥∥∥ ≤ C,∥∥∥ (AdP )n

(n+3)! [P, [P, [P,A]]]H
∥∥∥ ≤ C ∥P∥n .

(29)
For the last inequality, we used the following identity:

(AdP )n .W =
n∑

i=0

(−1)n−iCi
nP

iWPn−i.

From (28) and (29) we deduce that :

(ePAe−P −A)H1−η.

is bounded.
We can now compare µk and µk. From lemma 8 we
deduce that there exists a constant c > 0 such that

−cH−(1−η) ≤ ePAe−P −A ≤ cH−(1−η)

The min-max theorem, [10], implies that:

µk = µk +O(λ
−(1−η)
k ), (30)

where η ∈
]
0, 12

[
.

⊓⊔

4 The asymptotic behavior of µk

We begin by studying the asymptotic behavior of µk,
as a result of using (30 ) we deduce that of µk. Let
us first recall that µk is the kth own value of V . In
polar coordinates, the identity (15) that presents the
symbol of Weyl of V is written:

σV (r, θ) =
1

2π

∫ 2π

0
V (r (cos(t− θ)) dt.

From the parity of V we get

σV =
2

π

∫ π
2

0
V (r cos(t)) dt = f(

√
σH).

where f(x) = 2
π

∫ π
2
0 V

(√
2x cos t

)
dt. A direct

calculation shows that: |f(x)| ≤ c(1 + |x|)−
1
2 and∣∣f (k)(x)

∣∣ ≤ ck(1 + |x|)−
1
2
− k

2 , so f is in the class of
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Hörmander S
−1
2

1
2

. By applying the proposition 5, we
get

f(H) ∈ G−1
0 ,

and
V − f(H) ∈ G−2

0 . (31)

By combining the equation (31) and the proposition
3-iii) we deduce that

(V − f(H))H

is bounded.
Come back to the Proof of Theorem 1. Therefore,
there exists a constant c > 0 such that

−cH−1 ≤ V − f(H) ≤ cH−1

According to the min-max theorem, [10], we get:

µk = f(λk) +O(λ−1
k ). (32)

By combining the equations (32) and (30) we deduce:

µk = f(λk) +O(λ
−(1−η)
k ),

Finaly, we have

µk =
2

π

∫ π
2

0
V
(√

2λk cos t
)
dt+O(λ

−(1−η)
k ),

where η ∈
]
0, 12

[
.

5 Refinement of Theorem 2
We now proceed to prove the Theorem 2. Performing
the change of variables y = cos t, we obtain that

µk =
2

π

∫ 1

0

V
(√

2λky
)√

1− y2
dy +O(λ

−(1−η)
k ),

we put

βk =

∫ 1

0

V
(√

2λky
)√

1− y2
dy. (33)

For the moment, we start by studying the asymptotic
behavior of βk. By a direct calculation, there is a
function θ ∈ C ([0, 1] ,R) such as

1√
1− y2

= 1 +
y2θ(y)√
1− y2

,

so we have

βk =

∫ 1

0
V (

√
2λky)dy +

∫ 1

0

V
√
2λky)y

2θ(y)

(
√

1− y2)
dy

= βk,1 + βk,2.
(34)

firstly

βk,2 =

∫ 1
2

0

V
√
2λky)y

2θ(y)

(
√
1− y2)

dy

+

∫ 1

1
2

V
√
2λky)y

2θ(y)

(
√

1− y2)
dy.

(35)

Using (5), we have∣∣∣∣∣
∫ 1

1
2

V
√
2λky)y

2θ(y)

(
√
1− y2)

dy

∣∣∣∣∣ ≤ c

(1 + λk)
s
2

∫ 1

1
2

y2θ(y)√
1− y2

dy,

consequently∫ 1

1
2

V
√
2λky)y

2θ(y)

(
√
1− y2)

dy = O(λ
− s

2
k ). (36)

We have : for 0 < α < 2∣∣∣∣∣
∫ 1

2

0

V (
√
2λky)y

2θ(y)

(
√
1− y2)

dy

∣∣∣∣∣
≤ c

∫ 1
2

0
(1 + (y

√
2λk)

2)−
s
2 yαdy,

(37)

we make a change of variable, y
√
2λk = u we obtain∫ 1

2

0
(1 + (y

√
2λk)

2)−
s
2 yαdy

= 2
−(α+1)

2 λ
− 1

2
(1+α)

k

∫ √
2

2
λ

1
2
k

0

uα

(1 + u2)
s
2

du

≤ Cλ
− 1

2
(1+α)

k

∫ +∞

0

uα

(1 + u2)
s
2

du,

we take s > 1 and 0 < α < min(2, s− 1) we get∫ 1
2

0

V (
√
2λky)y

2θ(y)

(
√
1− y2)

dy = O(λ
− 1

2
(1+α)

k ),

we apply the change of variable y
√
2λk = x for βk,1,

we obtain

βk,1 = 1√
2λk

∫ √
2λk

0
V (x)dx

= 1√
2λk

∫ +∞

0
V (x)dx− 1√

2λk

∫ +∞

√
2λk

V (x)dx,

using (2) and since s > 1, we have

1√
2λk

∫ +∞

√
2λk

V (x)dx = O(λ
− s

2
k ), (38)

then

βk,1 =
1√
2λk

∫ +∞

0
V (x)dx+O(λ

− s
2

k ). (39)
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Finally, we conclude

βk =
1

2
√
2λk

∫
R
V (x)dx+O(λ

− (1+α)
2

k ), (40)

so

µk =
1

π
√
2λk

∫
R
V (x)dx+O(λ

− (1+α)
2

k ),

with 0 < α < min(s− 1, 1− 2η), η ∈
]
0, 12

[
.

6 Conclusion

We addressed the spectral problem of the perturbed
harmonic oscillator, a well-known system in spectral
theory due to its importance in various physical
applications. By applying the averaging method, we
successfully derived the asymptotic expansion of the
eigenvalue corrections µk and demonstrated how the
coefficients of this expansion relate to a transform
of the perturbing potential V . This approach
highlights the strengths of the averaging method
in handling periodic systems like the harmonic
oscillator, offering advantages in terms of simplicity
and precision. Our findings provide new insights
into the spectral behavior of such perturbed systems,
and the methodology presented can be extended
to more complex cases. In particular, future work
will focus on applying this technique to anharmonic
oscillators, where nonlinearity introduces additional
challenges. This extension could open up new
avenues for applications in quantum mechanics,
wave propagation, and other areas of mathematical
physics.
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