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1  Introduction 
Fibonacci and Lucas sequences are famous number 
sequences. These sequences have intrigued 
scientists for a long time. Fibonacci and Lucas 
sequences have been applied to various fields such 
as Algebraic Coding Theory, Physics, Phyllotaxis, 
Biomathematics, Computer Science, Chemistry, etc. 
New sequences are obtained by changing the 
recurrence relation and initial conditions of the 
generalized Fibonacci sequence. The known 
examples of such sequences are the Horadam, k-
Pell, k-Chebyshev sequence, Gaussian Fibonacci, 
Oresme numbers, Perrin, Narayana sequences, etc.,  
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],  
[12], [13], [14], [15], [16], [17], [18], [19], [20], 
[21], [22], [23], [24]. 

With the help of the recurrence relation of the 
Fibonacci sequence, k-sequences have been 
introduced, and these sequences have an important 
place in number theory. In [25], they obtained many 
features related to the k-Fibonacci sequence. Also, 
they showed new properties of k-Fibonacci and k-
Lucas sequences, and they found correlations 
between these sequences, [26]. 

In [27], they obtained new properties by 
applying different transformations to the 𝑘-
Fibonacci sequence. In addition, he worked on the 
𝑘-Fibonacci difference sequence, [28]. Moreover,  
his another study, found many new formulas on k-
Fibonacci and k-Lucas sequences, [29]. 

In [30], they made many applications on k-
Mersenne numbers. In [31], they defined hyperbolic 
k-Balancing and k-Lucas Balancing numbers 
octonions. In [32], they defined the Catalan 
transformation of k-Pell, k-Pell-Lucas and modified 
k-Pell sequences. In addition, they found many 
properties of this transformation. 
For 𝑛 ≥ 0, Fibonacci numbers 𝐹𝑛 and Lucas 
numbers 𝐿𝑛 are defined by the recurrence relations, 
respectively, 

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, and 𝐿𝑛+2 = 𝐿𝑛+1 + 𝐿𝑛, 
with the initial conditions𝐹0 = 0, 𝐹1 = 1 and 𝐿0 =
2, 𝐿1 = 1. 
Binet formulas for Fibonacci numbers 𝐹𝑛 and Lucas 
numbers 𝐿𝑛 are given by the following relations, 
respectively, 

𝐹𝑛 =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
 and 𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛. 
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Here 𝛼 = 1+√5

2
  and 𝛽 = 1−√5

2
 are the roots of 

the characteristic equation, 𝑟2 − 𝑟 − 1 = 0. The 
number 𝛼 is the known golden ratio. 

Fibonacci polynomials were defined with the 
help of the recurrence relation of the Fibonacci 
sequence. In addition, many studies have been done 
with the help of Fibonacci polynomials, [33], [34], 
[35]. 

Dickson polynomials were introduced by L. E. 
Dickson (1897). For integer 𝑛 ≥ 2 and 𝛼 with 
identity in a commutative ring 𝑅, Dickson 
polynomials first kind 𝐷𝑛(𝑥, 𝛼) and Dickson 
polynomials second kind 𝐸𝑛(𝑥, 𝛼) are defined by 
recurrence relations, respectively: 

𝐷𝑛(𝑥, 𝛼)  = 𝑥𝐷𝑛−1(𝑥, 𝛼)  − 𝛼𝐷𝑛−2(𝑥, 𝛼) 
 
and 
 

𝐸𝑛(𝑥, 𝛼)  = 𝑥𝐸𝑛−1(𝑥, 𝛼)  − 𝛼𝐸𝑛−2(𝑥, 𝛼) 
 
with the initial conditions 𝐷0 = 2, 𝐷1 = 𝑥 and 𝐸0 =
1, 𝐸1 = 𝑥.  

Dickson Polynomials arise in various areas in 
mathematics, such as integro-differential-difference 
equations, cryptography and number theory. In 
addition, Dickson polynomials played a major role 
in the proof of the so-called Schur conjecture 
concerning integral polynomials which induce 
permutations on the field Ϝ𝑝 for infinitely many 
primes 𝑝. Moreover, Dickson polynomials attracted 
the attention of scientists, and they did a lot of work 
on these polynomials, [36], [37], [38]. 

As seen above, many generalizations of 
Fibonacci and Lucas sequences have been given so 
far. In this study, we give new generalizations 
inspired by the Dickson polynomial. We call these 
polynomials the Dickson k-Fibonacci polynomial 
and denote them as 𝐷ℱ𝑘,𝑛(𝑥). 

We separate the article into three parts.  
In chapter 2, we define Dickson k-Fibonacci 

𝐷ℱ𝑘,𝑛(𝑥) polynomials inspired by Dickson 
polynomials. We introduce the characteristic 
equation, the Binet formulas, and some properties of 
these polynomials. For these polynomials, we find 
generating functions, sum formulas, Cassini 
identity, Melham’s identity, D’ocagne identity, etc.  
In chapter 3, we define the Catalan transformation 
of 𝐷ℱ𝑘,𝑛(𝑥) polynomials, and some properties are 
given. In addition, Hankel transformations are 
applied to the Catalan transformations of 
𝐷ℱ𝑘,𝑛(𝑥) polynomials, and the results obtained are 
associated with classical Fibonacci numbers. 
 

2  Dickson 𝒌-Fibonacci Polynomials 
Definition 2.1. For 𝑘 ∈ ℝ+ and 𝑛 ∈ ℕ, Dickson k-
Fibonacci polynomials 𝐷ℱ𝑘,𝑛(𝑥) are defined by the 
recurrence relation: 

 𝐷ℱ𝑘,𝑛+2(𝑥) = 𝑘𝑥𝐷ℱ𝑘,𝑛+1(𝑥) + 𝐷ℱ𝑘,𝑛(𝑥), 
 
with 𝐷ℱ𝑘,0(𝑥) = 0 and 𝐷ℱ𝑘,1(𝑥) = 1. 
 
The characteristic equation of these polynomials is: 

𝑟2 − 𝑘𝑥𝑟 − 1 = 0. 
 
The roots of this equation are as follows: 

  𝑟1 =
𝑘𝑥+√𝑘2𝑥2+4

2
 and 𝑟2 =

𝑘𝑥−√𝑘2𝑥2+4

2
. 

 
The relationship between these roots is given with 

𝑟1 + 𝑟2 = 𝑘𝑥,𝑟1 − 𝑟2 = √𝑘2𝑥2 + 4, 
𝑟1
2 + 𝑟2

2 = 𝑘2𝑥2 + 2 and 𝑟1𝑟2 = −1. 
 
Some values for  𝐷ℱ𝑘,𝑛(𝑥) are given below: 
𝐷ℱ𝑘,0(𝑥) = 0, 𝐷ℱ𝑘,1(𝑥) = 1, 𝐷ℱ𝑘,2(𝑥) = 𝑘𝑥, 
𝐷ℱ𝑘,3(𝑥) = 𝑘

2𝑥2 + 1,  𝐷ℱ𝑘,4(𝑥) = 𝑘3𝑥3 + 2𝑘𝑥,   
 
Also, the terms of these polynomials can be found 
with the help of the following relation. For 𝑛 ∈ ℕ+: 

𝐷ℱ𝑘,𝑛(𝑥) = ∑ (𝑛−1−𝑖
𝑖
)(𝑘𝑥)𝑛−1−2𝑖

⌊
𝑛−1

2
⌋

𝑖=0
 . 

 
In the following theorem, we express the Binet 
formulas of the Dickson k-Fibonacci polynomials.  
Theorem 2.1. Let 𝑛 ∈ ℕ. 𝐷ℱ𝑘,𝑛(𝑥) have Binet 
formula as follows: 

𝐷ℱ𝑘,𝑛(𝑥) =  
𝑟1
𝑛−𝑟2

𝑛

𝑟1−𝑟2
. 

 

Proof. The Binet form of a sequence is as follows   
𝐷ℱ𝑘,𝑛(𝑥) = 𝑐𝑟1

𝑛 + 𝑑𝑟2
𝑛. 

 
Here, the scalars 𝑐 and 𝑑 can be obtained by 

substituting the initial conditions. For 𝑛 = 0, 
𝐷ℱ𝑘,0 = 0 and for 𝑛 = 1, 𝐷ℱ𝑘,1 = 1. Thus, we 
obtain: 

𝑐 =
1

√𝑘2𝑥2+4
 and 𝑑 = −1

√𝑘2𝑥2+4
. 

 
Thus,  
                               𝐷ℱ𝑘,𝑛 = 𝑟1

𝑛−𝑟2
𝑛

𝑟1−𝑟2
.                         □ 

 
In the following theorem, it is seen that  

𝐷ℱ𝑘,𝑛(𝑥) has some important relations with roots of 
the characteristic equation for these polynomials. 
Please note that these relations are independent of 
the choice of roots. 
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Theorem 2.2. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ and 𝑦 = 𝑟1 or 𝑦 =
𝑟2. We obtain 
i.  𝑦𝑎 = 𝐷ℱ𝑘,𝑎−1(𝑥) + 𝑦𝐷ℱ𝑘,𝑎(𝑥), 
ii. 𝑦𝑎 = 𝑦𝑏𝐷ℱ𝑘,𝑎−𝑏+1(𝑥) + 𝑦

𝑏−1𝐷ℱ𝑘,𝑎−𝑏(𝑥), 
iii. 𝑦𝑎𝑑 =

𝑦𝑎𝐷ℱ𝑘,𝑎𝑑(𝑥)

𝐷ℱ𝑘,𝑎(𝑥)
− (−1)𝑎

𝐷ℱ𝑘,𝑎(𝑑−1)(𝑥)

𝐷ℱ𝑘,𝑎(𝑥)
, 

iv. (−1)𝑎𝑏+1𝐷ℱ𝑘,𝑎(𝑏−𝑐)(𝑥) 
         = 𝑦𝑎𝑐𝐷ℱ𝑘,𝑎𝑏(𝑥) − 𝑦𝑎𝑏𝐷ℱ𝑘,𝑎𝑐(𝑥). 
 

Proof. i. For 𝑦 = 𝑟1, we have 

𝐷ℱ𝑘,𝑎−1(𝑥) + 𝑦𝐷ℱ𝑘,𝑎(𝑥) = (
𝑟1
𝑎−1 − 𝑟2

𝑎−1

𝑟1 − 𝑟2
) 

           +𝑟1 (
𝑟1
𝑎−𝑟2

𝑎

𝑟1−𝑟2
) =

𝑟1
𝑎−1(𝑟1

2+1)−𝑟2
𝑎−1(𝑟1𝑟2+1)

𝑟1−𝑟2
= 𝑟1

𝑎. 
For 𝑦 = 𝑟2, we have 
 𝐷ℱ𝑘,𝑎−1(𝑥) + 𝑦𝐷ℱ𝑘,𝑎(𝑥) = (

𝑟1
𝑎−1−𝑟2

𝑎−1

𝑟1−𝑟2
) 

            +𝑟2 (
𝑟1
𝑎−𝑟2

𝑎

𝑟1−𝑟2
) =

𝑟1
𝑎(𝑟2+

1

𝑟1
)+𝑟2

𝑎(−
1

𝑟2
−𝑟2)

𝑟1−𝑟2
= 𝑟2

𝑎. 
 

The proofs of the others are shown similarly.         
□  
In the next theorem, the relationship between these 
polynomials is examined. 
  
Theorem 2.3. Let 𝑠, 𝑡 ∈ ℕ and 𝑘 ∈ ℝ+. We have 
i.𝐷ℱ𝑘,𝑠+𝑡+1(𝑥) 
      = 𝐷ℱ𝑘,𝑠(𝑥)𝐷ℱ𝑘,𝑡(𝑥) + 𝐷ℱ𝑘,𝑠+1(𝑥)𝐷ℱ𝑘,𝑡+1(𝑥), 
ii. (𝑘2𝑥2 + 4)𝐷ℱ𝑘,𝑠

3 (𝑥) 
      = 𝐷ℱ𝑘,3𝑠(𝑥) − 3(−1)𝑠𝐷ℱ𝑘,𝑠(𝑥), 
iii. 𝐷ℱ𝑘,𝑠2 (𝑥)𝐷ℱ𝑘,𝑠+3(𝑥) − 𝐷ℱ𝑘,𝑠+13 (𝑥) =

(−1)𝑠

𝑘2𝑥2+4
 

(𝐷ℱ𝑘,𝑠−3(𝑥)−3𝐷ℱ𝑘,𝑠+1(𝑥) − 2𝐷ℱ𝑘,𝑠+3(𝑥)), 
iv. 𝐷ℱ𝑘,𝑛(𝑥) = (−1)

𝑛−1𝐷ℱ𝑘,−𝑛(𝑥). 
 

Proof. ii. If the Binet formula is used, we obtain 

 (𝑘2𝑥2 + 4)𝐷ℱ𝑘,𝑠3 (𝑥) = (𝑘2𝑥2 + 4) (
𝑟1
𝑠−𝑟2

𝑠

𝑟1−𝑟2
)
3

 

                    = 𝑟1
3𝑠−𝑟2

3𝑠−3𝑟1
2𝑠𝑟2

𝑠+3𝑟1
𝑠𝑟2
2𝑠

𝑟1−𝑟2
 

                    = 𝑟1
3𝑠−𝑟2

3𝑠−3𝑟1
𝑠𝑟2
𝑠(𝑟1

𝑠−𝑟2
𝑠)

(𝑟1−𝑟2)
2  

                    = 𝐷ℱ𝑘,3𝑠(𝑥) − 3(−1)𝑠𝐷ℱ𝑘,𝑠(𝑥).                                        
 
The proofs of the others are shown similarly.         □  
In the following theorem, some known identities for 
these polynomials are calculated.    
                                                                                                                                
Theorem 2.4. Let 𝑛, 𝑟, 𝑖, 𝑗 ∈ ℕ and 𝑘 ∈ ℝ+. We 
obtain 

i. (Cassini Identity) 

  𝐷ℱ𝑘,𝑛−1(𝑥)𝐷ℱ𝑘,𝑛+1(𝑥) − 𝐷ℱ𝑘,𝑛2 (𝑥) = (−1)𝑛−1, 
ii. (Catalan Identity)  

 𝐷ℱ𝑘,𝑛+𝑟(𝑥)𝐷ℱ𝑘,𝑛−𝑟(𝑥) − 𝐷ℱ𝑘,𝑛
2 (𝑥) 

            = (−1)𝑛−1𝐷ℱ𝑘,𝑟2 (𝑥), 
iii. (D’ocagne Identity)  

 𝐷ℱ𝑘,𝑟(𝑥)𝐷ℱ𝑘,𝑛+1(𝑥) − 𝐷ℱ𝑘,𝑛(𝑥)𝐷ℱ𝑘,𝑟+1(𝑥) 
            = (−1)𝑟𝐷ℱ𝑘,𝑛−𝑟(𝑥), 
iv. (Vajda Identity) 

  𝐷ℱ𝑘,𝑛+𝑖(𝑥)𝐷ℱ𝑘,𝑛+𝑗(𝑥) − 𝐷ℱ𝑘,𝑛(𝑥)ℱ𝑘,𝑛+𝑖+𝑗(𝑥) 
            = (−1)𝑛𝐷ℱ𝑘,𝑖(𝑥)𝐷ℱ𝑘,𝑗(𝑥), 
v. (Melham Identity)  

𝐷ℱ𝑘,𝑛+1(𝑥)𝐷ℱ𝑘,𝑛+2(𝑥)𝐷ℱ𝑘,𝑛+6(𝑥) − 𝐷ℱ𝑘,𝑛
3 (𝑥) 

        = 1

𝑘2𝑥2+4
(𝐷ℱ𝑘,3𝑛+9(𝑥) − 𝐷ℱ𝑘,3𝑛(𝑥)         

       +3(−1)𝑛𝐷ℱ𝑘,𝑛(𝑥) − (−1)
𝑛+6𝐷ℱ𝑘,𝑛−3(𝑥) 

      −(−1)𝑛+2𝐷ℱ𝑘,𝑛+5(𝑥) − (−1)𝑛+1𝐷ℱ𝑘,𝑛+7(𝑥)). 
 

Proof. If the Binet formula is used, we get 
i. 𝐷ℱ𝑘,𝑛−1(𝑥)𝐷ℱ𝑘,𝑛+1(𝑥) − 𝐷ℱ𝑘,𝑛2 (𝑥) 

            = 𝑟1
𝑛−1−𝑟2

𝑛−1

𝑟1−𝑟2

𝑟1
𝑛+1−𝑟2

𝑛+1

𝑟1−𝑟2
−
𝑟1
𝑛−𝑟2

𝑛

𝑟1−𝑟2
 
𝑟1
𝑛−𝑟2

𝑛

𝑟1−𝑟2
 

            = 𝑟1
2𝑛−𝑟1

𝑛+1𝑟2
𝑛−1−𝑟2

𝑛+1𝑟1
𝑛−1+𝑟2

2𝑛

(𝑟1−𝑟2)
2  

            − 𝑟1
2𝑛−2𝑟1

𝑛𝑟2
𝑛+𝑟2

2𝑛

(𝑟1−𝑟2)
2               

            = (−1)𝑛−1.      
 
The proofs of the others are shown similarly.          
□  
In the following theorems, we obtain the summation 
formula and the generating function of this 
polynomials. 
 

Theorem 2.5. Let 𝑛 ∈ ℕ and 𝑘 ∈ ℝ+. We obtain 

∑ 𝐷ℱ𝑘,𝑠(𝑥) =
𝑛
𝑠=0

𝐷ℱ𝑘,𝑛+1(𝑥)+𝐷ℱ𝑘,𝑛(𝑥)−1

𝑘𝑥
. 

 

Proof. If the Binet formula is used, we obtain 
 ∑ 𝐷ℱ𝑘,𝑠(𝑥) =
𝑛
𝑠=0

𝑟1
𝑠−𝑟2

𝑠

𝑟1−𝑟2
 

                          = 1

𝑟1−𝑟2
(∑ 𝑟1

𝑠𝑛
𝑠=0 − ∑ 𝑟2

𝑠𝑛
𝑠=0 ) 

                          = 1

𝑟1−𝑟2
(
𝑟1
𝑛+1−1

𝑟1−1
−
𝑟2
𝑛+1−1

𝑟2−1
) 

                          = ℱ𝑘,𝑛+1(𝑥)+ℱ𝑘,𝑛(𝑥)−1

𝑘𝑥
.                     □ 

 

Theorem 2.6. Let , 𝑠, 𝑡 ∈ ℕ, 𝑐 > 𝑠 and 𝑘 ∈ ℝ+. We 
obtain 
i. ∑ (𝑛

𝑗
) (𝑘𝑥)𝑗𝑛

𝑗=0 𝐷ℱ𝑘,𝑗(𝑥) = 𝐷ℱ𝑘,2𝑛(𝑥), 

ii. ∑ (𝑛
𝑗
) (𝑘𝑥)𝑗𝑛

𝑗=0 𝐷ℱ𝑘,𝑐𝑛+𝑠+𝑗(𝑥) 
            = 𝐷ℱ𝑘,𝑐𝑛+2𝑛+𝑠(𝑥), 
 
iii. ∑ (𝑛

𝑗
) (−1)𝑗

𝐷ℱ𝑘,𝑐𝑛+𝑠+𝑗(𝑥)

(𝑘𝑥)𝑗
𝑛
𝑗=0  

            = (−1)𝑛 𝐷ℱ𝑘,𝑐𝑛−𝑛+𝑠(𝑥)
(𝑘𝑥)𝑛

 

iv. ∑ (
𝑡

𝑘
𝑛
𝑗=0 )𝑗(𝑡𝐷ℱ𝑘,𝑗−𝑠+2(𝑥) − 𝑘𝑥𝐷ℱ𝑘,𝑗−𝑠+1(𝑥)) 
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            = (𝑡
𝑘
)𝑛𝑡𝐷ℱ𝑘,𝑛−𝑠+2(𝑥) − 𝑘𝐷ℱ𝑘,−𝑠+1(𝑥). 

 

Proof. The following equations are obtained with 
the help of the characteristic equation of the 
Dickson k-Fibonacci polynomials: 

𝑟1
2 = 𝑘𝑥𝑟1 + 1 and 𝑟22 = 𝑘𝑥𝑟2 + 1. 

iv. ∑ (
𝑡

𝑘
𝑛
𝑗=0 )𝑗(𝑡𝐷ℱ𝑘,𝑗−𝑏+2(𝑥) − 𝑘𝑥𝐷ℱ𝑘,𝑗−𝑏+1(𝑥)) 

 = 1

𝑟1−𝑟2
∑ (

𝑡

𝑘
𝑛
𝑗=0 )𝑗(𝑡(𝑟1

𝑗−𝑏+2 − 𝑟2
𝑗−𝑏+2) −

𝑘(𝑟1
𝑗−𝑏+1 − 𝑟2

𝑗−𝑏+1)) 
 = 1

𝑟1−𝑟2
[𝑟1
−𝑏+1(𝑡𝑟1 − 𝑘)∑ (

𝑡𝑟1

𝑘
𝑛
𝑗=0 )𝑗 −

𝑟2
−𝑏+1(𝑡𝑟2 − 𝑘)∑ (

𝑡𝑟2

𝑘
𝑛
𝑗=0 )𝑗] 

 = 𝑘

𝑟1−𝑟2
(𝑟1
−𝑏+1 (𝑡𝑟1)

𝑛+1−𝑘𝑛+1

𝑘𝑛+1
− 𝑟2

−𝑏+1 (𝑡𝑟2)
𝑛+1−𝑘𝑛+1

𝑘𝑛+1
) 

 = (
𝑡

𝑘
)𝑛𝑡𝐷ℱ𝑘,𝑛−𝑏+2(𝑥) − 𝑘𝐷ℱ𝑘,−𝑏+1(𝑥).        

The proofs of the others are shown similarly.         □  
 

Theorem 2.7. Let 𝑛 ∈ ℕ and 𝑘 ∈ ℝ+. We obtain 
𝕗(𝑡) = ∑ 𝐷ℱ𝑘,𝑛(𝑥)𝑡

𝑛∞
𝑛=0 =

𝑡

1−𝑡𝑘𝑥−𝑡2
. 

 

Proof. We have 
 𝕗(𝑡) = ∑ 𝐷ℱ𝑘,𝑛(𝑥)𝑡

𝑛∞
𝑛=0 = 𝑡 + ∑ 𝐷ℱ𝑘,𝑛(𝑥)𝑡

𝑛∞
𝑛=2  

         = 𝑡 + 𝑘𝑥∑ 𝐷ℱ𝑘,𝑛−1(𝑥)𝑡
𝑛∞

𝑛=2  
         +∑ 𝐷ℱ𝑘,𝑛−2(𝑥)𝑡

𝑛∞
𝑛=2  

         = 𝑡 + 𝑡𝑘𝑥 ∑ 𝐷ℱ𝑘,𝑛(𝑥)𝑡
𝑛∞

𝑛=1  
         +𝑡2∑ 𝐷ℱ𝑘,𝑛(𝑥)𝑡

𝑛∞
𝑛=0  

         = 𝑡

1−𝑡𝑘𝑥−𝑡2
.                                                      □ 

              
                                                                                                                                                                                                                                      
3  Catalan Transform  
In this chapter, we define the Catalan transformation 
of 𝐷ℱ𝑘,𝑛(𝑥) polynomials, and some properties are 
given. In addition, Hankel transformations are 
applied to the Catalan transformations of 
𝐷ℱ𝑘,𝑛(𝑥) polynomials, and the results obtained are 
associated with classical Fibonacci numbers. 
 

Definition 3.1. (Catalan Number) For 𝑛 ∈ ℕ, the 
𝑛𝑡ℎ Catalan numbers are as follows: 

𝐶𝑛 =
𝐶(2𝑛,𝑛) 

𝑛+1
. 

With the help of this relation, 𝐶𝑛 numbers are 
1, 1, 2, 5, 14, 132, 429,… [39]. 
 
3.1 Catalan Transform of the Dickson k-

Fibonacci Polynomials 
Using the Catalan transform, we define the Catalan 
transform of the Dickson k-Fibonacci polynomials 
as follows. For 𝑛 ≥ 1,   

 𝐶𝐷ℱ𝑘,𝑛(𝑥) = ∑
𝑖

2𝑛−𝑖
(
2𝑛 − 𝑖
𝑛 − 𝑖

)𝑛
𝑖=0 𝐷ℱ𝑘,𝑖(𝑥) 

with 𝐶𝐷ℱ𝑘,0(𝑥) = 0. 
 

Now we can give the Catalan transformation of 
the first elements of the Dickson k-Fibonacci 
polynomials. The 𝐶𝐷ℱ𝑘,𝑛(𝑥) values for the first 
four 𝑛 natural numbers are given below: 

 𝐶𝐷ℱ𝑘,0(𝑥) = 0,  
 𝐶𝐷ℱ𝑘,1(𝑥) = 1,  
 𝐶𝐷ℱ𝑘,2(𝑥) = 𝑘𝑥 + 1,  
 𝐶𝐷ℱ𝑘,3(𝑥) = 𝑘

2𝑥2 + 2𝑘𝑥 + 3,  
 𝐶𝐷ℱ𝑘,4(𝑥) = 𝑘

3𝑥3 + 3𝑘2𝑥2 + 7𝑘𝑥 + 8,  
 𝐶𝐷ℱ𝑘,5(𝑥) = 𝑘

4𝑥4 + 4𝑘3𝑥3 + 12𝑘2𝑥2 
+22𝑘𝑥 + 24. 

 

Definition 3.2. Let the terms of a sequence be 
 𝐴 = {𝑣1, 𝑣2, 𝑣3, … }. In [40], the Hankel transform 
𝐻n of the terms of this sequence was defined as 
follows:  

𝐻n = ||

𝑣1
𝑣2
𝑣3
𝑣4
⋮

 𝑣2 
 𝑣3
 𝑣4
 𝑣5
⋮

 

𝑣3
𝑣4
𝑣5 
𝑣6
⋮

𝑣4
 𝑣5
𝑣6
𝑣7
⋮

…
…
……
⋱

||. 

 
Let’s apply Hankel’s work to the Catalan 

Dickson k-Fibonacci polynomials. We get; 
 𝐻𝐶𝐷ℱ1 = 𝑑𝑒𝑡[𝐶𝐷ℱ𝑘,1(𝑥)]= 𝑑𝑒𝑡[1] = 1, 

 𝐻𝐶𝐷ℱ2 = 𝑑𝑒𝑡 [
𝐶𝐷ℱ𝑘,1(𝑥) 𝐶𝐷ℱ𝑘,2(𝑥)

𝐶𝐷ℱ𝑘,2(𝑥) 𝐶𝐷ℱ𝑘,3(𝑥)
] 

 = 𝑑𝑒𝑡 [ 1 𝑘𝑥 + 1
𝑘𝑥 + 1 𝑘2𝑥2 + 2𝑘𝑥 + 3 

] = 2, 

 𝐻𝐶𝐷ℱ3 

 = 𝑑𝑒𝑡 [
𝐶𝐷ℱ𝑘,1(𝑥) 𝐶𝐷ℱ𝑘,2(𝑥) 𝐶𝐷ℱ𝑘,3(𝑥)

𝐶𝐷ℱ𝑘,2(𝑥) 𝐶𝐷ℱ𝑘,3(𝑥) 𝐶𝐷ℱ𝑘,4(𝑥)

𝐶𝐷ℱ𝑘,3(𝑥) 𝐶𝐷ℱ𝑘,4(𝑥) 𝐶𝐷ℱ𝑘,5(𝑥)
] = 5 

 𝐻𝐶𝐷ℱ4 = 13, 
 𝐻𝐶𝐷ℱ5 = 34. 

 
In the next theorem, a very interesting property 

is obtained. 
 

Main Theorem 3.1. Applying the Hankel transform 
to the Catalan transform of Dickson k-Fibonacci 
polynomials, the following property is obtained: 

𝐻𝐶𝐷ℱ𝑛 = 𝐹2𝑛−1. 
Here, 𝑛 ∈ ℕ and 𝐹𝑛 is classical Fibonacci sequence. 

 

Proof. 𝐻𝐶𝐷ℱ𝑛 ≠ 0 and let us write it as 𝐻𝐶𝐷ℱ𝑛 =
𝑑𝑒𝑡𝐴𝑛𝑑𝑒𝑡𝐵𝑛. Here, the properties of matrices 𝐴𝑛 
and 𝐵𝑛 are as follows. 
𝐴𝑛 is the matrix with the principal diagonal 

{1, 1, 1, … }, the 𝑛𝑥𝑛 type lower triangular matrix 
and the first column 
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{𝐶𝐷ℱ1(𝑥), 𝐶𝐷ℱ2(𝑥), 𝐶𝐷ℱ3(𝑥), … }. 𝐵𝑛 is the matrix 
with the principal diagonal {1, 2, 5

2
,
13

5
,
34

13
,
89

34
, … }, 

the 𝑛𝑥𝑛 type upper triangular matrix and the first 
row {𝐶𝐷ℱ1(𝑥), 𝐶𝐷ℱ2(𝑥), 𝐶𝐷ℱ3(𝑥), … }. So, 
𝐻𝐶𝐷ℱ𝑛 

= 𝑑𝑒𝑡

(

 
 

𝐶𝐷ℱ1 = 1 0 0 0 0
𝐶𝐷ℱ2 1 0 0 0
𝐶𝐷ℱ3 … 1 0 0
𝐶𝐷ℱ4 … ⋯ 1 0
… … … … …)

 
 

  

 

𝑑𝑒𝑡

(

 
 
 
 

𝐶𝐷ℱ1 = 1 𝐶𝐷ℱ2 𝐶𝐷ℱ3 𝐶𝐷ℱ4 …
0 2 ⋱ ⋮ …

0 0
5

2
0 …

0 0 0
13

5
…

… … … … …)

 
 
 
 

 

 
Thus,  
 
𝐻𝐶𝐷ℱ𝑛 = 𝑑𝑒𝑡𝐴𝑛𝑑𝑒𝑡𝐵𝑛 = 𝑑𝑒𝑡𝐵𝑛 

        = 𝑏11𝑏22𝑏33𝑏44…𝑏𝑛𝑛 
        = {1, 2, 5, 13, 34, 89,… } 
        = 𝐹2𝑛−1.                                                      □     

 

 

4  Conclusion 
In this paper, we defined the new Dickson k-
Fibonacci polynomials. Then, we obtained the main 
features of these polynomials. Also, we examined 
the relationships between the terms of these 
polynomials. In addition, the Catalan transformation 
of the Dickson k-Fibonacci polynomials was 
defined, and the terms of this transformation were 
found. Moreover, we applied the Hankel transform 
to the Catalan transform, and we found an 
interesting feature. If this study is examined, such 
features can be found in other sequences such as 
Fermat, and Mersenne sequences. 
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