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1 Introduction

The fixed point theory is one of the most powerful
tools in many fields such as nonlinear analysis, op-
erator theory, differential equations, integral equa-
tions, theory of fractals, engineering, computer sci-
ences, mathematical modelling, econometrics, opti-
mization problems, game theory, etc., [1]. In 1922
[2] first established a theorem concerning a contrac-
tion mapping. Due to its wide range of applications
in mathematical research, several authors have ob-
tained many interesting extensions and generaliza-
tions of the Banach contraction principle, either by
weakening the conditions of contraction mapping or
by changing the abstract structure. So, many differ-
ent metric-type spaces have been considered, among
which quasi metric, partial metric, rectangular metric,
b-metric, Super metric, fuzzy metric spaces and many
other their combinations, [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16].

A partial metric space is one of the most influ-
ential generalizations of ordinary metric space. It
was first introduced in [17], replacing the equality
m(a, a) = 0 in the definition of metric with the in-
equality m(a, a) ≤ m(a, b) for all a, b, therefore the
self distance of any point of the space may not be
zero. Further, in [17], it was showed that the Banach
contraction principle is valid in partial metric spaces
and can be applied in program verification. In 2014,
the partial metric space was generalized toM -metric
space, [4], and the rectangular metric spaces and par-

tial metric spaces were extended to partial rectangular
metric spaces, [14].

On the other hand, [5], gave a generalization of the
notion of metric spaces, which are called Branciari
distance spaces, by replacing triangle inequality with
trapezoidal inequality, and he gave an extension of the
Banach contraction principle in these spaces. In 2018,
[13], introduced the rectangular M -metric space and
obtained some theorems related to these spaces.

In this paper we introduce the notion of gener-
alized θ-contraction to extend both previous notions
in rectangular metric spaces. Moreover, we provide
some examples to illustrate the obtained results and
we derive some useful corollaries of these results.

2 Preliminaries
Definition 2.1. [5] LetX be a non-empty set and m :
X ×X → R+ be a mapping such that, for all a, b∈ X
and for all distinct points c, d ∈ X \ {a, b}, one has
(i) m(a, b) = 0 ⇔ a = b;

(ii) m(a, b) = m(b, a);

(iii) m(a, b) ≤ m(a, c) +m(c, d) +m(d, b).

Then (X ,m) is called rectangular metric space.

Note that every metric space is a rectangular metric
space.

Later, the partial rectangular metric space was in-
troduced as follows.
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Definition 2.2. [14] Let X be a non-empty set and
m : X ×X → R+ be a mapping such that, for all a, b
∈ X and for all distinct points c, d ∈ X \ {a, b}, one
has

(i) a = b ⇔ m(a, b) = m(a, a) = m(b, b) ;

(ii) m(a, b) = m(b, a);

(iii) m(a, b) ≤ m(a, c)+m(c, d)+m(d, b)−m(c, c)−
m(d, d).

Then (X ,m) is called partial rectangular metric
space.

Remark 2.3. [14] In a partial rectangular metric space
(X ,m) if a, b ∈ X and m(a, b) = 0, then a = b but
the converse may not be true.

In 2014, [4], generalized the partial metric space
to theM -metric space and obtained certain theorems
related toM -metric spaces.

Let us denote

ma,b = min{m(a, a),m(b, b)},
Ma,b = max{m(a, a),m(b, b)}.

Definition 2.4. [4] LetX be a non-empty set and m :
X ×X → R+ be a mapping such that, for all a, b∈ X
and for all distinct points c, d ∈ X \ {a, b}, one has

(i) a = b ⇔ m(a, b) = m(a, a) = m(b, b);

(ii) m(a, b) = m(b, a);

(ii) mab ≤ m(a, b);

(iv) m(a, b)−ma,b ≤ m(a, c)−ma,c+m(c, b)−mc,b.

Then (X ,m) is called M-metric space.

In 2018, [13], introduced the rectangular M -
metric space as follows. In the sequel we will use the
following notations:

mra,b
= min{mr(a, a),mr(b, b)},

Mra,b
= max{mr(a, a),mr(b, b)}.

(1)

Definition 2.5. [13] Let X be a non-empty set and
mr : X × X → R+ be a mapping such that, for all
a, b ∈ X and for all distinct points c, d ∈ X \ {a, b},
one has

(i) a = b ⇔ mr(a, b) = mr(a, a) = mr(b, b) ;

(ii) mr(a, b) = mr(b, a);

(ii) mra,b
≤ mr(a, b);

(iv) mr(a, b)−mra,b
≤ mr(a, c)−mra,c+mr(c, d)−

mrc,d +mr(d, b)−mrd,b

(rectangularM -inequality).

Then (X ,mr) is called rectangular M-metric space.

Example. [13] Let (X ,mr) be a rectangular M -
metric space and mω

r (a, b) : X × X → [0,∞) be
a function defined as

mω
r (a, b) = mr(a, b)− 2mra,b

+Mra,b
,

for all a, b ∈ X . Then,mω
r is a rectangular metric and

the pair (X ,mω
r ) is a rectangular metric space.

Example. [13] Let (X ,mr) be a rectangular M -
metric space and ms

r(a, b) : X × X → [0,∞) be
a function defined as

ms
r(a, b) = mr(a, b)−mra,b

,

for all a, b ∈ X such that, ifms
r(a, b) = 0, then a = b.

Then,ms
r is a rectangular metric and the pair (X ,ms

r)
is a rectangular metric space.

Remark 2.6. The connections among the spaces de-
fined above are described in [13]:

• metric space ⇒ rectangular metric space ⇒
partial rectangular metric space ⇒ rectangular
M -metric space

• metric space ⇒M -metric space ⇒ rectangular
M -metric space.

Definition 2.7. [13] Let (X ,mr) be a rectangularM -
metric space. Then

(i) A sequence {an}n∈N in X converges to a point a
if and only if

lim
n→+∞

(mr(an, a)−mran,a) = 0. (2)

(ii) A sequence {an}n∈N in X is said to be mr-
Cauchy sequence if and only if

lim
n,m→+∞

(mr(an, am)−mran,am
)

lim
n,m→+∞

(Mran,a −mran,am
)

(3)

exist and are finite.

(iii) A rectangular M -metric space is said to be mr-
complete if every mr- Cauchy sequence {an}
converges to a point a such that

lim
n→+∞

(mr(an, a)−mran,a) = 0,

lim
n→+∞

(Mran,a −mran,a) = 0.
(4)

Lemma 2.8. [13] Let (X ,mr) be a rectangular M -
metric space. Then,

(1) {an} is amr-Cauchy sequence in (X ,mr) if and
only if {an} is a Cauchy sequence in (X ,mω

r )
(resp. (X ,ms

r)).
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(2) (X ,mr) is mr-complete if and only if (X ,mω
r )

(resp. (X ,ms
r)) is complete.

Lemma 2.9. [13] Assume that an → a as n → ∞ in
a rectangular M - metric space (X ,mr). Then,

lim
n→+∞

(mr(an, b)−mran,b
) = mr(a, b)−mra,b

,

∀ b ∈ X .

Lemma 2.10. [13] Assume that an → a, bn → b, as
n → ∞, in a rectangular M -metric space (X ,mr).
Then,

lim
n→+∞

(mr(an, bn)−mran,bn
) = mr(a, b)−mra,b

.

Lemma 2.11. [13] Let an be a sequence in a rect-
angular M -metric space (X ,mr) and there exists
k ∈ ]0, 1[ such that

mr(an+1, an) ≤ kmr(an, an−1), for all n ∈ N.

Then,

(A) lim
n→∞

mr(an, an−1) = 0,

(B) lim
n→∞

mr(an, an) = 0

(C) lim
n,m→∞

mran,am = 0

(D) {an} is a mr-Cauchy sequence.

Definition 2.12. [5] Let (X ,mr) be a rectangular
metric space. mr is said to be complete if every
Cauchy sequence {an}n in X converges to a ∈ X .

The following definitions was given by [8], [18].

Definition 2.13. LetΘG be the family of all functions
θ : ]0,+∞[→ ]1,+∞[ satisfying:

(θ1) θ is increasing;

(θ2) for each sequence (νn) ⊂ ]0,+∞[,

lim
n→∞

νn = 0 if and only if lim
n→∞

θ (νn) = 1;

(θ3) there exists α ∈ ]0, 1[ and l ∈ ]0,+∞] such that

lim
t→0

θ(ν)− 1

να
= l.

Definition 2.14. LetΘc be the family of all functions
θ : ]0,+∞[→ ]1,+∞[ satisfying:

(θ1) θ is increasing;

(θ2) for each sequence (νn) ⊂ ]0,+∞[,

lim
n→∞

νn = 0 if and only if lim
n→∞

θ (νn) = 1;

(θ3) θ is continuous.

In [8], the authors introduced the following con-
cept of θG-contraction and proved a fixed point the-
orem that generalizes the classical Banach contrac-
tion mapping principle. They proved that any θG-
contraction has a unique fixed point.

Definition 2.15. [18] Let (X , %) be a rectangular met-
ric space and T : X → X be a mapping. T is said
to be a θG-contraction if there exists θ ∈ ΘG and
k ∈ ]0, 1[ such that, for any u, v ∈ X ,

% (T u, T v) > 0 ⇒
θ (% (T u, T v)) ≤ [θ (M (u, v))]k ,

where

M (u, v) = max{% (u, v) , % (u, T u) , % (v, T v)}.

Theorem 2.16. [18] Let (X , %) be a complete metric
space and let T : X → X be a θG-contraction. Then
T has a unique fixed point.

Remark 2.17. These two sets ΘG and ΘC are differ-
ent.

Example. Define θ : (0,+∞) → (1,+∞) by

θ(t) =

{ √
t+ 1, if t ∈

(
0, 12
]

e
√
t if t ∈

(
1
2 ,+∞

)
Then θ ∈ ΘG but, for any t > 0,

lim
t→ 1

2

−
θ(t) =

√
1

2
+ 1

and

lim
t→ 1

2

+
θ(t) = e

√
1
2 .

Since

√
1
2 + 1 6= e

√
1
2 so, θ does not satisfy the con-

dition (θ3) of the definition 2.14, then θ /∈ ΘC .

Example. Define θ : (0,+∞) → (1,+∞) by

θ (t) = ee
−1
tp , p > 0.

Then θ ∈ ΘC , but, for any r > 0,

lim
t→0+

θ(t)− 1

tr
= lim

t→0+

ee
−1
tp − 1

tr
= lim

t→0+

e
−1
tp

tr

= lim
t→0+

1
tr

1

e
1
tp

= 0.

So, θ does not satisfy the condition (θ3) of the defini-
tion 2.13, then θ /∈ ΘG.
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3 Main Results
The following definition is a new version of the θ-
contraction for a rectangularM -metric space.

Definition 3.1. Let (X ,mr) be a rectangular M -
metric space and T : X → X be a mapping.
T is said to be a θ−G-contraction on X if there exist
θ ∈ ΘG and 0 < k < 1 such that, for any u, v ∈ X ,

mr (T u, T v) > 0 ⇒
θ (mr (T u, T v)) ≤ [θ(mr(u, v))]

k .
(5)

Theorem 3.2. Let (X ,mr) be a complete rectangular
M-metric space and let T : X → X be a continuous
θ − G-contraction. Consider the sequence {an}n∈N
defined by an+1 = T an, n = 0, 1, ... . Then T has a
unique fixed point a ∈ X and, for every a0 ∈ X , the
sequence {T n(a0)}n∈N is convergent to a.

Proof. Suppose that there exists n0 ∈ N such that
an0 = T an0 . Then an0 is a fixed point of T and the
proof is finished. Hence, we assume that an 6= T an,
i.e. mr (an+1, an) > 0 for all n ∈ N.We have

an 6= am, ∀m,n ∈ N, m 6= n. (6)

Indeed, suppose that an = am for some n 6= m. Put
n = m+ h with h > 0, so we have

an+1 = T an = T am = am+1.

Denote mrn = mr (an, an+1) − mran,an+1
. Then

(3.1) implies that

θ (mrm) = θ
(
mr (am, am+1)−mram,am+1

)
= θ

(
mr (an, an+1)−mran,an+1

)
= θ

(
mr (T an−1, T an)−mrT an−1,T an

)
= θ
(
mr (T am+h−1, T am+h)−mrT am+h−1,T am+h

)
≤
[
θ
(
mr (am+h−1, am+h)−mram+h−1,am+h

)]k
≤
[
θ
(
mr (am+h−2, am+h−1)−mram+h−2,am+h−1

)]k2

≤
[
θ
(
mr (am+h−3, am+h−2)−mram+h−3,am+h−2

)]k3

≤ ... ≤
[
θ
(
mr (am, am+1)−mram,am+1

)]kh

.

Therefore

θ
(
mr (an, an+1)−mran,an+1

)
≤
[
θ
(
mr (am, am+1)−mram,am+1

)]kh

Since k ∈ (0, 1), we conclude that

θ
(
mr (an, an+1)−mran,an+1

)
< θ

(
mr (am, am+1)−mram,am+1

)
.

which is a contradiction. Thus, in what follows, we
can assume that (6) holds.

Substituting u = an−1 and v = an in (5), for all
n ∈ N, we have

θ (mr (an, an+1)) ≤ (θ (mr (an−1, an)))
k . (7)

Repeating this step, we conclude that

θ (mr (an, an+1)) ≤ (θ (mr (an−1, an)))
k

≤ (θ (mr (an−2, an−1)))
k2

≤ ... ≤ (θ (mr (a0, a1)))
kn

.

By the property of θ we get,

1 < θ (mr (an, an+1))

≤ (θ(mr (a0, a1)))
kn

.
(8)

By letting n → ∞ in inequality (8), we obtain

1 ≤ lim
n→∞

θ (mr (an, an+1))

≤ lim
n→∞

(θ(mr (a0, a1)))
kn

.

Therefore,

lim
n→∞

θ (mr (an, an+1)) = 1. (9)

By (θ2) in Definition 2.13, we obtain

lim
n→∞

mr (an, an+1) = 0. (10)

Substituting u = an−1 and v = an+1 in (5), for all
n ∈ N, we have

θ (mr (an, an+2)) ≤ (θ (mr (an−1, an+1)))
k . (11)

Repeating this step, we conclude that

θ (mr (an, an+2)) ≤ (θ (mr (an−1, an+1)))
k

≤ (θ ((mr (an−2, an)))
k2

≤ ... ≤ θ ((mr (a0, a2))
kn

.

By property of θ we get,

1 < θ (mr (an, an+2))

≤ (θ (mr (a0, a2)))
kn

.
(12)
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By letting n → ∞ in inequality (12), we obtain

1 ≤ lim
n→∞

θ (mr (an, an+2))

≤ lim
n→∞

(θ(mr (a0, a2)))
kn

.

Therefore,

lim
n→∞

θ (mr (an, an+2)) = 1. (13)

By (θ2) of the Definition 2.13, we obtain

lim
n→∞

mr (an, an+2) = 0. (14)

Next, we shall prove that {an}n∈N is a mr-Cauchy
sequence, that is,

lim
n,m→∞

mr (an,am)−mran,am
= 0, for all n,m ∈ N.

By (θ3) in Definition 2.13, there exists α ∈ ]0, 1[ and
l ∈ ]0,+∞] such that

lim
n→∞

θ(mr(an, an+1))− 1

(mr(an, an+1))α
= l.

Suppose that l < ∞. So, there exists n1 ∈ N such
that ∣∣∣∣θ(mr(an, an+1))− 1

(mr(an, an+1))α
− l

∣∣∣∣ < l

2
, ∀n ≥ n1.

TakingM = 2
l , we have

n [mr(an, an+1)]
α < M · n [θ(mr(an, an+1))− 1] ,

∀n ≥ n1.

Suppose now that l = ∞. Let N > 0 be an arbitrary
positive number. So, there exists n2 ∈ N such that

θ(mr(an, an+1))− 1

(mr(an, an+1))α
> N , ∀n ≥ n2.

TakingM = 1
N , we have

n [mr(an, an+1)]
α < M · n [θ(mr(an, an+1))− 1] ,

∀n ≥ n2.

Thus, in both cases, there exists M > 0 and nq ∈ N
such that

n [mr(an, an+1)]
α < M · n [θ(mr(an, an+1))− 1] ,

∀n ≥ nq.

By induction, we obtain

n [mr(an, an+1)]
α < M · n [θ(mr(an, an+1))− 1]

< ... <

< M · n
[
(θ(mr(a0, a1)))

kn − 1
]

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

n [mr(an, an+1)]
α = 0.

So, there exists n3 ∈ N such that

mr(an, an+1) ≤
1

n
1
α

, ∀n ≥ n3.

By property (θ3) in Definition 2.13, there exists α ∈
(0, 1) and h ∈ ]0,+∞] such that

lim
n→∞

θ(mr(an, an+2))− 1

(mr(an, an+2))α
= h.

Suppose that h < ∞. So, there exists n4 ∈ N such
that ∣∣∣∣θ(mr(an, an+2))− 1

(mr(an, an+2))α
− h

∣∣∣∣ < h

2
, ∀n ≥ n4.

Taking P = 2
h , we have

n [mr(an, an+2)]
α < P · n [θ(mr(an, an+2))− 1] ,

∀n ≥ n4.

Suppose now that h = ∞. Let Q > 0 be an arbitrary
positive number. So, there exists n5 ∈ N such that

θ(mr(an, an+2))− 1

(mr(axn, an+2)α
> Q, ∀n ≥ n5.

So by taking P = 1
Q , we have, for any n ≥ n5

n [mr(an, an+2)]
α < P · n [θ(mr(an, an+2))− 1] .

Thus, in all cases, there exist P > 0 and w ∈ N such
that, for any n ≥ w,

n [mr(an, an+2)]
α < P · n [θ(mr(an, an+2))− 1] .

By induction, we obtain

n [mr(an, an+2)]
α < P · n [θ(mr(an, an+2))− 1]

< . . . < P · n
[
(θ(mr(a0, a2)))

kn − 1
]
.

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

n [mr(an, an+2)]
α = 0.

So, there exists n6 ∈ N such that

mr(an, an+2) ≤
1

n
1
α

, ∀n ≥ n6.

Next, we show that an is mr-Cauchy sequence, that
is

lim
n→∞

(mr(an, an+p)−mran,an+p
) = 0,
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for all p ∈ N.
Case 1. Firstly, let p odd, that is p = 2m+1 for any

m ≥ 1, n ∈ N. From the condition (iv) of Definition
2.4 of themr-metric, we get

mr(an, an+p)−mran,an+p

= mr(an, an+2m+1)−mran,an+2m+1

≤ mr(an, an+1)−mran,an+1

+mr(an+1, an+2)−mran+1,an+2

+mr(an+2, an+2m+1)−mran+2,an+2m+1

≤ mr(an, an+1)−mran,an+1

+mr(an+1, an+2)−mran+1,an+2

+mr(an+2, an+3)−mran+2,an+3

+mr(an+3, an+4)−mran+3,an+4

+mr(an+4, an+5)−mran+4,an+5

+mr(an+5, an+6)−mran+5,an+6

≤ mr(an, an+1)−mran,an+1

+mr(an+1, an+2)−mran+1,an+2

+mr(an+2, an+3)−mran+2,an+3

+mr(an+3, an+4)−mran+3,an+4

...

+mr(an+2m−1, an+2m)−mran+2m−1,an+2m

+mr(an+2m, an+2m+1)−mran+2m,an+2m+1
.

Then

mr(an, an+p)−mran,an+p

≤

[
p−1∑
i=n

mr(ai, ai+1)−mrai,ai+1

]

≤

[ ∞∑
i=n

mr(ai, ai+1)−mrai,ai+1

]

≤
∞∑
i=n

1

i
1
α

.

From the convergence of the series we have

∞∑
i=1

1

i
1
α

< ∞ ⇒

lim
n→∞

mr(an, an+p)−mran,an+p
= 0.

Case 2. Firstly, let p even that is p = 2m for any
m ≥ 1, n ∈ N. From the condition (iv) of Definition

2.4 of themr-metric, we get

mr(an, an+p)−mran,an+p

≤ mr(an, an+2)−mran,an+2

+mr(an+2, an+3)−mran+2,an+3

+mr(an+3, an+2m)−mran+3,an+2m

≤ mr(an, an+2)−mran,an+2

+mr(an+2, an+3)−mran+2,an+3

+mr(an+3, an+4)−mran+3,an+4

+mr(an+4, an+5)−mran+4,an+5

+mr(an+5, an+6)−mran+5,an+6

+mr(an+2m−1, an+2m)−mran+2m−1,an+2m

≤ mr(an, an+2)−mran,an+2

+mr(an+2, an+3)−mran+2,an+3

+mr(an+3, an+4)−mran+3,an+4

+mr(an+4, an+5)−mran+4,an+5

...

+mr(an+2m−2, an+2m−1)−mran+2m−2,an+2m−1

+mr(an+2m−1, an+2m)−mran+2m−1,an+2m
.

Then

mr(an, an+p)−mran,an+p

≤ mr(an, an+2)−mran,an+2

+

[
n+p−1∑
i=n+2

mr(ai, ai+1)−mrai,ai+1

]
≤ mr(an, an+2)−mran,an+2

+

[ ∞∑
i=n+2

mr(ai, ai+1)−mrai,ai+1

]

≤ mr(an, an+2)−mran,an+2
+

∞∑
i=n+2

1

i
1
α

≤ 1

i
1
α

+
∞∑

i=n+2

1

i
1
α

.

From the convergence of the series we have

∞∑
i=1

1

i
1
α

< ∞ ⇒

lim
n→∞

mr(an, an+p)−mran,an+p
= 0.

By Lemma 2.9 we obtain that, for any n,m ∈ N,

ms
r(an, am) = mr(an, am)−mran,am

→ 0

as n → ∞.
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This implies that {an} is amr-Cauchy sequence with
respect toms

r and converges by Lemma 2.10. Thus,

lim
n,m→∞

ms
r (an, an+2m+1) = 0

and
lim

n,m→∞
ms

r (an, an+2m) = 0.

We received by Lemma 2.8 that {an} is amr-Cauchy
sequence. From the completeness of X , there exists
a ∈ X such that

lim
n→∞

an = a.

Thus, by Lemma 2.9,

lim
n→∞

mr(an, a)−mran,a = 0.

Finally, the continuity of T yields

mr (a, T a)−mra,Ta

= lim
n→∞

mr (an, T an)−mran,Tan

= lim
n→∞

mr (an, an+1)−mran,an+1
= 0.

So a = T a.
Now, we show the uniqueness of the fixed point of T .
Assume that T has two distinct fixed points a, b ∈ X ,
such that a = T a and b = T b.
From the condition (5), we have

θ(mr (a, b)) = θ(mr (T a, T b))

≤ [θ(mr (T a, T b))]k .

So, since 0 < k < 1, we conclude that

θ(mr (a, b)) < θ(mr (T a, T b)) = θ(mr (a, b)),

which is a contradiction. Hence T has a unique fixed
point.

Definition 3.3. Let (X ,mr) be a rectangular M -
metric space and T : X → X be a mapping. T is
said to be a θ − C-contraction on X , if there exist
θ ∈ ΘC and 0 < γ < 1 such that, for any u, v ∈ X ,

mr (T u, T v)−mrT u,T v > 0 ⇒
θ
(
mr (T u, T v)−mrT u,T v

)
≤
[
θ
(
mr(u, v)−mru,v

)]γ
.

(15)

Theorem 3.4. Let (X ,mr) be a complete rectangular
M-metric space and let T : X → X be a continuous
θ − C-contraction. Consider the sequence {an}n∈N
defined by an+1 = T an, n = 0, 1, .... Then, T has a
unique fixed point a ∈ X and for every a0 ∈ X the
sequence {T n(a0)}n∈N is convergent to a.

Proof. Similarly to the proof of Theorem 3.2, we can
conclude that

lim
n→∞

mr (an,an+1)−mran,an+1
= 0. (16)

and

lim
n→∞

mr (an,an+2)−mran,an+2
= 0. (17)

We shall prove that {an} is a Cauchy sequence in
(X ,mr), that is

lim
n→∞

mr (an,am)−mran,am
= 0 for all n,m ∈ N.

(18)
If otherwise there exists ε > 0 for which we can find a
sequence of positive integers {ank

}k and {amk
}k of

{an} such that, for all positive integers k, with nk >
mk > k,

mr(amk
, ank

)−mramk,ank
≥ ε,

mr

(
amk

, ank−1

)
−mramk,ank−1

< ε.
(19)

Now, using (16), (17), (19) and the rectangular M -
inequality, we find

ε ≤ mr (amk
, ank

)−mramk
,ank

≤ mr

(
amk

, amk+1

)
−mramk

,amk+1

+mr

(
amk+1

, amk−1

)
−mramk+1

,amk−1

+mr

(
amk−1

, ank

)
−mramk−1

,ank

< mr

(
amk

, amk+1

)
−mramk

,amk+1

+mr

(
amk+1

, amk−1

)
−mramk+1

,amk−1
+ ε.

Since

lim
k→∞

mr

(
amk

, amk+1

)
−mramk

,amk+1
= 0.

and

lim
k→∞

mr

(
amk+1

, amk−1

)
−mramk+1

,amk−1
= 0.

Then

lim
k→∞

mr (amk
, ank

)−mramk
,ank

= ε. (20)

Now, byM -rectangular inequality, we have

mr

(
amk+1

, ank+1

)
−mramk+1

,ank+1

≤ mr

(
amk+1

, amk

)
−mramk+1

,amk

+mr (amk
, ank

)−mramk
,ank

+mr

(
ank

, ank+1

)
−mrank

,ank+1
.
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ε ≤ mr (amk
, ank

)−mramk
,ank

≤ mr

(
amk

, ank−1

)
−mramk

,ank−1

+mr

(
ank−1

, ank+1

)
−mrank−1

,ank+1

+mr

(
ank+1

, ank

)
−mrank+1

,ank
.

Letting k → ∞ in the above inequalities, we obtain

lim
k→∞

mr

(
amk+1

, ank+1

)
−mramk+1

,ank+1
= ε (21)

and

lim
k→∞

mr

(
amk

, ank−1

)
−mramk

,ank−1
= ε. (22)

By (21), let B = ε
2 > 0, from the definition of limit,

there exists n0 ∈ N such that, for all n ≥ n0,

|mr

(
amk+1

, ank+1

)
−mramk+1

,ank+1
− ε| ≤ B, .

This implies that, for all n ≥ n0,

mr

(
amk+1

, ank+1

)
−mramk+1

,ank+1
≥ B > 0,

Applying (15) with u = amk
and v = ank

, we obtain

θ
(
mr (T amk

, T ank
)−mrT amk

,T ank

)
≤
[
θ
(
mr (amk

, ank
)−mramk

,ank

)]γ
.

Letting k → ∞ in the above inequality and using
property (θ3) in Definition 2.14, we obtain

θ

(
lim
k→∞

(
mr (T amk

, T ank
)−mrT amk

,T ank

))
≤
[
θ

(
lim
k→∞

(
mr (amk

, ank
)−mramk

,ank

))]γ
.

Therefore,

θ(ε) ≤ [θ(ε)]γ < θ(ε).

It is a contradiction. So

lim
n,m→∞

mr (am, an)−mram,an
= 0.

From the completeness of X , there exists a ∈ X such
that

lim
n→∞

an = a.

We show thatmr (T a, a)−mrT a,a
= 0. Arguing by

contradiction, we assume that

mr (T a, a)−mrT a,a
> 0.

By the rectangular inequality we get,

mr (T an, T a)−mrT an,T a

≤ mr (T an, an)−mrT an,an

+mr (an, a)−mran,a

+mr (a, T a)−mra,T a

(23)

and

mr (a, T a)−mra,T a

≤ mr (a, an)−mra,an

+mr (an, T an)−mran,T an

+mr (T an, T a)−mrT an,T a
.

(24)

By letting n → ∞ in inequality (23) and (24), we
obtain

mr (a, T a)−mra,T a

≤ lim
n→∞

mr (T an, Ta)−mrT an,T a

≤ mr (a, Ta)−mra,T a
.

Therefore,

lim
n→∞

mr (T an, T a)−mrT an,T a

= mr (a, T a)−mra,T a
.

(25)

Applying (15) with u = a and v = an, we obtain

θ
(
mr (T a, T an)−mrT a,T an

)
≤
[
θ
(
mr (a, an)−mra,an

)]γ
,

(26)

with 0 < γ < 1.
Letting n → ∞ in the above inequality and using
property (θ3) in Definition 2.14, we obtain

θ
(
lim
n→∞

(
mr (T a, T an)−mrT a,T an

))
≤
[
θ
(
lim
n→∞

(
mr (a, an)−mra,an

))]γ
.

Therefore, by (25),

1 ≤ θ
(
mr (a, T a)−mra,T a

)
≤ [θ(0)]γ = 1.

Thusmr (a, T a)−mra,T a
= 0.Hence T a = a. Sim-

ilarly to the proof of Theorem 3.2, we can conclude
that a is the unique fixed point.

Example. Let X = [1,+∞). Definemr : X ×X →
[0,+∞) by

mr (a, b) =
|a− b|

2

and consider

θ(t) = e
√
t, k =

1√
2
.

Then (X ,mr) is a complete rectangular M -metric
space, k ∈ (0, 1).
Since

lim
t→0

e
√
t − 1√
t

= 1.

then θ ∈ ΘC

⋂
ΘG.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.89 Maria Rosaria Formica, Abdelkarim Kari

E-ISSN: 2224-2880 870 Volume 23, 2024



Define T : X → X by

T (t) =
√
t for all t ∈ [1,+∞) .

case 1: 1 ≤ a ≤ b.

mr(Ta, Tb) =

√
b−

√
a

2
,

θ (mr(T a, T b)) = e

√√
b−

√
a

2 .

Since a, b ∈ [1,+∞), then

√
b−

√
a ≤ b− a

2
.

Thus

e

√√
b−

√
a

2 ≤
[
e

√
b−a
2

] 1√
2

,

hence

θ (mr(T a, T b)) ≤ [θ (mr(a, b))]
k.

case 2: a > b ≥ 1.

mr(Ta, Tb) =

√
a−

√
b

2
,

θ (mr(T a, T b)) = e

√√
a−

√
b

2 .

Since a, b ∈ [1,+∞), then

√
a−

√
b ≤ a− b

2
.

Thus

e

√√
a−

√
b

2 ≤
[
e

√
a−b
2

] 1√
2

,

hence

θ (mr(T a, T b)) ≤ [θ (mr(a, b))]
k.

Hence, the conditions (5) and (15) are satisfied, since
mrT a,T b = 0 and mra,b = 0 and, consequently, we
can apply Theorems 3.2 and 3.4, respectively. There-
fore, T has a unique fixed point z = 1.

4 Application to Nonlinear Integral

Equations
In this section, we apply Theorems 3.2 and 3.4 to
prove the existence and uniqueness of the solution of
the integral equation of Fredholm type:

u(t) = ν

∫ n

m

H(t, s, u(s))ds, (27)

where m,n ∈ R+, u ∈ C([m,n] ,R) and H :

[m,n]2 × R → R is a continuous function and ν is
a constant depending on the parametersm and n.

Theorem 4.1. Let m,n ∈ R+ and let H, u be func-
tions as above, such that

|H(t, s, u(s))−H(t, s, v(s))| ≤ |u(s)− v(s)|,
∀ t, s ∈ [m,n] , ∀u, v ∈ C([m,n] ,R).

Then the equation (27) has a unique solution u ∈
C([m,n] ,R) and |ν| ≤ m

n · (n−m)−1.

Proof. Let X = C([m,n] ,R) and T : X → X de-
fined by

T (u)(t) = ν

∫ n

m

H(t, s, u(s))ds,

∀ u ∈ X , t ∈ [m,n].

Letmr : X × X → [0,+∞[ given by

mr(u, v) = sup
t∈[m,n]

|u(t)− v(t)|
2

.

Clearly, X is a complete rectangularM -metric space.
Assume that, u, v ∈ X and t, s ∈ [m,n]. Then we
get, for any t ∈ [m,n],

|T u(t)− T v(t)|

= |ν|
(∣∣∣∣∫ n

m

H(t, s, u(s))ds−
∫ n

m

H(t, s, v(s))ds

∣∣∣∣)
= |ν|

∣∣∣∣∫ n

m

(H(t, s, u(s))−H(t, s, v(s))) ds

∣∣∣∣
≤ |ν|

∫ n

m

|H(t, s, u(s))−H(t, s, v(s))| ds

≤ |ν|
∫ n

m

|u(s)− v(s)| ds

≤ |ν|
∫ n

m

(
sup

s∈[m,n]

|u(s)− v(s)|

)
ds

= |ν| · (n−m) sup
s∈[m,n]

|u(s)− v(s)|.

Thus

mr(T u, T v) = sup
t∈[m,n]

|T u(t)− T v(t)|
2

≤ |ν| · (n−m) sup
s∈[m,n]

|u(s)− v(s)|
2

= |ν| · (n−m) ·mr(u, v).

As mr(T u, T v) > 0 and mr(u, v) > 0 for any
u 6= v, then we can take natural exponential sides
and, taking θ(t) = et, we get

exp (mr(T u, T v)) ≤ [exp(mr(u, v))]
|ν|·(n−m),
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hence, since |ν| ≤ m

n
· (n−m)−1, we have

θ (mr(T u, T v)) ≤ [θ (mr(u, v))]
k , (28)

for all u, v ∈ X , with k =
m

n
< 1. Then T satisfies

the conditions (5) and (15), since mrT u,T v = 0 and
mru,v = 0 and, consequently, we can apply Theorems
3.2 and 3.4, respectively. This completes the proof.

Remark 4.2. Particular cases of rectangularM -metric
spaces are the Grand Lebesgue spaces considered in
[19], [20], were an application to a linear convolu-
tion integral equationwas given, using the contraction
property and the fixed point theorem, [19].

5 Conclusion
We introduced a new version of the θ-contraction for
rectangular M -metric spaces and we proved fixed
point theorems, as an extension of previous existing
results in literature. Moreover we illustrated an ex-
ample and we gave an application to a nonlinear inte-
gral equation of Fredholm type. As future project, we
aim to investigate other practical applications of the
obtained result to some areas mentioned in the Intro-
duction.
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