
Abstract: By introducing an extra binomial factor in the summands of multiple zeta star series, we can define the
Euler-Apéry type multiple zeta star series. Their convergent values at positive integers are called Euler-Apéry
type multiple zeta star values. In this paper we establish several recurrence relations about these values and a
parametric variant by the method of iterated integrals. We then find the explicit evaluations for some specific
Euler-Apéry type multiple zeta star values and t-star values, together with a parametric variant of the star version.
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1 Introduction
In recent years, the study of multiple zeta values
and their many variants has attracted numerous
prominant mathematicians and physicists due to their
deep connections to various branches in mathematics
and theoretical physics. For example, F. Brown
determined explicitly the mixed Tate motives oover
Z and proved the Deligne-Ihara conjecture in [1], by
applying the motivic theory of multiple zeta values
while Broadhurst revealed the intimate relations
between alternating multiple zeta values (also called
Euler sums) and the knot invariants and Feynman
integrals in [2], [3]. We also remark that the zeta
function is a ubiquitous object in mathematics and it
has appeared in many other types of research, e.g., in
the study of cotangent sums, [4], prime numbers, [5],
and even black holes, [6].

In his seminal work [7] Euler initiated the
investigation of the special values of multiple zeta
function in early 18th century. In fact, he considered
the star version of these values in which the
summation indices are allowed to be the same
(see (1) below). As one of the mathematical
giants, his contribution to math and science is still
impacting our modern lives on a daily basis. For
example, the Euler and Navier-Stokes equations are
well-known in fluid mechanics, [8], and his method

to numerically evaluate definite integrals is still being
taught in standard calculus courses as well as used by
professional mathematicians alike [9].

In this paper, we focus on one particular variant
of multiple zeta values, namely, the Euler-Apéry
type multiple zeta star series. The origin of these
series goes back to Apéry who gave the first
proof of irrationality of ζ(3) by expressing it as a
variation of the Riemann zeta series with an extra
binomial coefficient factor in the summands. Since
then the multiple variable version of this type of
series is often called a (multiple) Apéry series/sum
which has appeared unexpectedly in the evaluation
of Feynman integrals. Along this direction, a
few important experimental work occurred at the
beginning of this century, e.g., see, [10], [11], [12],
for inverse binomial series of Apéry type (where the
binomial coefficient appears in the denominator of the
summands) and [13], for ordinary binomial series of
Apéry type. Furthermore, odd variations (with some
summation indices restricted to odd numbers) of both
types already appeared implicitly in Eq. (1.1) of [12],
and Eq. (A.25) of [13], respectively.

We now introduce some basic notations. Let Z
and N be the set of integers and positive integers,
respectively. A finite sequence k := (k1, . . . , kr) ∈
Nr is called a composition. Set |k| := k1 + · · ·+ kr.
We call |k| and r the weight and the depth of k,
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respectively. If k1 > 1, k is called admissible.
For a composition k = (k1, . . . , kr) and n ∈ N,

the multiple harmonic sums and multiple harmonic
star sums are defined by

ζn(k) :=
∑

n≥n1>···>nr>0

1

nk1

1 · · ·n
kr
r

(1)

(2)

and

ζ⋆n(k) :=
∑

n≥n1≥···≥nr>0

1

nk1

1 · · ·n
kr
r

, (3)

respectively. If n < r then ζn(k) := 0 and ζn(∅) =
ζ⋆n(∅) := 1. As special cases,

Hn := ζn(1) = ζ⋆n(1)

and

H(k)
n := ζn(k) = ζ⋆n(k)

are the classical and generalized harmonic numbers,
respectively. When taking the limit n → ∞ in (1)
and (3) we obtain the so-called multiple zeta values
(MZVs) and the multiple zeta star values (MZSVs),
respectively:

ζ(k) := lim
n→∞

ζn(k), ζ⋆(k) := lim
n→∞

ζ⋆n(k),

defined for admissible compositions k to ensure
convergence of the series. Although Euler studied the
double zeta values almost three hundred years ago in
[14], the systematic study of MZVs began in the early
1990s with the work in [15, 16, 17]. Due to their
surprising and sometimes mysterious appearance in
the study of many branches of mathematics and
theoretical physics, these special values have attracted
a lot of attention and interest in the past three decades
(for example, see the survey article, [18], and the
books, [19, 20]).

Recall that Hoffman introduced and studied odd
variants of MZVs and MZSVs in [21]. They
are defined for an admissible composition k =
(k1, k2, . . . , kr) by

t(k) :=
∑

n1>n2>···>nr>0

r∏
j=1

1

(2nj − 1)kj

and

t⋆(k) :=
∑

n1≥n2≥···≥nr>0

r∏
j=1

1

(2nj − 1)kj
,

and are called multiple t-value and multiple t-star
value, respectively. In fact, we can also restrict the

summation indices to a fix parity pattern such as
even and odd alternatively interlaced which leads to
multiple T -values studied in [22] and the multiple
S-values considered by the authors of this paper (see,
[23], and preprints arXiv:2008.13157, 2009.10774
and 2208.09593).

Similar to multiple harmonic sums and multiple
harmonic star sums, for a composition k =
(k1, . . . , kr) and positive integer n, we can define
themultiple t-harmonic sums andmultiple t-harmonic
star sums respectively by

tn(k) :=
∑

n≥n1>n2>···>nr>0

r∏
j=1

1

(2nj − 1)kj

and

t⋆n(k) :=
∑

n≥n1≥n2≥···≥nr>0

r∏
j=1

1

(2nj − 1)kj
.

In general, for any k = (k1, . . . , kr) ∈ Nr and
z = (z1, . . . , zr) where z1, . . . , zr are N th roots of
unity, we can define the colored MZVs (CMZVs) of
level N as

Lik(z) :=
∑

n1>···>nr>0

zn1

1 . . . znr
r

nk1

1 . . . nkr
r

(4)

which converges if (k1, z1) ̸= (1, 1) (see, Ch. 15
of [20]), in which case we call (k; z) admissible.
In particular, if all zj ∈ {±1} in (4), then
the level two colored MZVs are called alternating
MZVs (or Euler sums). In this case, namely, when
(z1, . . . , zr) ∈ {±1}r and (k1, z1) ̸= (1, 1), we
set ζ(k1, . . . , kr; z1, . . . , zr) = Lik1,...,kr

(z1, . . . , zr).
Further, we put a bar on top of kj if zj = −1. For
example,

ζ(2̄, 6, 1̄, 8) = ζ(2, 6, 1, 8;−1, 1,−1, 1).

More generally, for any composition k =
(k1, . . . , kr) ∈ Nr, the classical multiple
polylogarithm function with r-variable is defined by

Lik(x1, . . . , xr) :=
∑

n1>n2>···>nr>0

xn1

1 · · ·xnr
r

nk1

1 · · ·n
kr
r

which converges if |x1 · · ·xj | < 1 for all j =
1, . . . , r. They can be analytically continued to a
multi-valuedmeromorphic function onCr [24].
In particular, if x1 = x, x2 = · · · = xr =
1, then Lik1,...,kr

(x, 1r−1) is the classical multiple
polylogarithm function with single-variable. As a
convention, we denote by 1d the sequence of 1’s with
d repetitions. When d = 1 we recover the well-know
polylogarithm function which, together with multiple
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polylogarithms, has been studied bymany researchers
since 1960s due to its deep connections to many
branches of mathematics and theoretical physics[25],
[26], [27], [28], [29], [30], [31], [32].

We now define an odd variation of the
multiple polylogarithm. For any composition
k = (k1, . . . , kr) the multiple t-polylogarithm
function is defined by

tik(x)

:=
∑

n1>n2>···>nr>0

x2n1−1

(2n1 − 1)k1 . . . (2nr − 1)kr

=

∫ x

0

dt

1− t2

(
dt

t

)kr−1 tdt

1− t2

(
dt

t

)kr−1−1

· · · tdt

1− t2

(
dt

t

)k1−1
,

where |x| ≤ 1with (k1, x) ̸= (1, 1). Clearly, tk(1) =
t(k) with k1 ≥ 2.

Motivated by [33], [34], people also studied some
Euler-Apéry type series of the form

∞∑
n=1

H
(k1)
n H

(k2)
n · · ·H(kr)

n

np
a±1n , (5)

where an =
(
2n
n

)
/4n. For the above and some other

similar series they established the corresponding
explicit formulas using the alternating MZVs. In
particular, they discovered a few elegant explicit
formulas for the series

∞∑
n=1

an
np

,

∞∑
n=1

anH
(m)
n

np
,

∞∑
n=1

anHnH
(m)
n

np
,

and
∞∑
n=1

anH
3
n

np
,

∞∑
n=1

anζ
⋆
n(1m)

np
,

∞∑
n=1

anHnζ
⋆
n(1m)

np
,

for m, p ≥ 1, by using the method of iterated
integrals. They also found some expressions of the
Euler-Apéry type series

∞∑
n=1

a−1n

np
,

∞∑
n=1

Hn

annp
,

∞∑
n=1

H2n

annp
,

∞∑
n=1

On

annp
,

for p ≥ 2, and
∞∑
n=1

an
np
,

∞∑
n=1

anH2n

np
,

∞∑
n=1

anOn

np
,

for p ≥ 1, by computing the contour integrals related
to gamma functions, polygamma functions and

trigonometric functions. Here On =
∑n

k=1
1

2k−1 are
the classical odd harmonic numbers. Obviously,
by applying the stuffle relations, also called
quasi-shuffle relations,    [35],   we  know    that
for any composition k = (k1, . . . , kr), the product
H

(k1)
n · · ·H(kr)

n can be expressed in terms of a linear
combination of multiple harmonic (star) sums (for
the explicit formula, see, Eq. (2.4) of [36]). For
example

HnH
(2)
n = ζn(1)ζn(2)

= ζn(1, 2) + ζn(2, 1) + ζn(3).

Hence, we can study the Euler-Apéry type MZVs
∞∑
n=1

ζn(k2, . . . .kr)

nk1
a±1n

to obtain some explicit evaluations of (5). Au proved
in [33] that for k = (k1, . . . , kr) ∈ Nr, the
Euler-Apéry type MZVs above can be expressed in
terms of alternating MZVs (even though he did not
give a general explicit formula), namely,

∞∑
n=1

ζn(k2, . . . .kr)

nk1
a±1n ∈ CMZV2

|k|.

Therefore, the Euler-Apéry type series (5) can be
evaluated by alternating MZVs. Some related results
may be found in [37], [38], [39], [40], [41], [42], [43],
[44], and references therein. Further, Au showed that

∞∑
n=1

ζn(k2, . . . .kr)

nk1
a−2n ∈ CMZV4

|k|,

∞∑
n=1

ζn(k2, . . . .kr)

nk1
a2n ∈

1

π
CMZV4

|k|+1,

where CMZVN
w is theQ-span of CMZVs of weight w

and level N .
In this paper, we will study the following

Euler-Apéry type MZSVs and MtSVs

Zζ(k1, . . . , kr) :=

∞∑
n=1

ζ⋆n(k2, . . . , kr)

nk1
an

=

∞∑
n=1

ζ⋆n(k2, . . . , kr)

nk14n

(
2n

n

)
, (6)

Zt(k1, . . . , kr) :=

∞∑
n=1

t⋆n(k2, . . . , kr)

nk1
an

=

∞∑
n=1

t⋆n(k2, . . . , kr)

nk14n

(
2n

n

)
,
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and a parametric variant of (6)

Zζ(k1, . . . , kr;x) :=

∞∑
n=1

ζ⋆n(k2, . . . , kr;x)

nk1
an

=

∞∑
n=1

ζ⋆n(k2, . . . , kr;x)

nk14n

(
2n

n

)
, (7)

where the parametric multiple harmonic star sum
ζ⋆n(k1, · · · , kr;x) is defined by

ζ⋆n(k1, · · · , kr;x) :=
∑

n≥n1≥···≥nr≥1

xnr

nk1

1 · · ·n
kr
r

and ζ⋆n(∅;x) := xn.
The primary goal of this paper is to study the

explicit relations of (6) and (7). We will use the
method of iterated integrals to obtain some recurrence
relations of (6) and (7), which in turnwill lead to some
explicit evaluations of (6) and (7).

2 Euler-Apéry type MZSVs and Its
Parametric Variant

The theory of iterated integrals was developed first by
K.T. Chen in his ground breaking works [45], [46] in
the 1960’s. It has played an indispensable role in the
study of algebraic topology and algebraic geometry in
past half century. We will use its following form:∫ b

a
fp(t)dt · · · f1(t)dt

:=

∫
a<tp<···<t1<b

fp(tp) · · · f1(t1) dt1 · · · dtp.

In this section, we use these integrals to establish two
recurrence relations of (6) and (7). First, by Eqs.
(3.1) and (3.2) of [47], we obtain the iterated integral
expression

Lik1,...,kr
(x1, x2/x1 . . . , xr/xr−1)

=

∫ 1

0

xr dt

1− xrt

(
dt

t

)kr−1
· · · x1 dt

1− x1t

(
dt

t

)k1−1
.

(8)

In particular, CMZVs can be expressed using iterated
integrals

Lik(z) =
∫ 1

0
xξrxkr−1

0 · · · xξ1x
k1−1
0 , (9)

where ξj :=
∏j

i=1 z
−1
i , and xξ = dt/(ξ − t) for

any N th roots of unity ξ, see, §2.1 of [20], for a brief
summary of this theory.

To save space, for any composition m =
(m1, . . . ,mp) ∈ Np and i, j ∈ N, we put

−→mi,j :=

{
(mi, . . . ,mj), if i ≤ j ≤ p;
∅, if i > j,

←−mi,j :=

{
(mj , . . . ,mi), if i ≤ j ≤ p;
∅, if i > j.

For all 1 ≤ i ≤ p, we set
−→mi =

−→m1,i = (m1, . . . ,mi),
←−mi =

←−mi,p = (mp, . . . ,mi),

m+ = (m1, . . . ,mp + 1),

m− = (m1, . . . ,mp − 1) ifmp > 1.

The Hoffman dual of a composition m =
(m1, . . . ,mp) ism∨ = (m′1, . . . ,m

′
p′) determined by

|m| := m1 + · · ·+mp = m′1 + · · ·+m′p′ and

{1, 2, . . . , |m| − 1}

=
{ ∑

1≤i≤j
mi

}p−1

j=1

∐{ ∑
1≤i≤j

m′i

}p′−1

j=1
.

Equivalently, m∨ can be obtained from m by
swapping the commas ”,” and the plus signs ”+” in
the expression

m = (1 + · · ·+ 1︸ ︷︷ ︸
m1 times

, . . . , 1 + · · ·+ 1︸ ︷︷ ︸
mp times

).

For example, we have (1, 1, 2, 1)∨ = (3, 2) and
(1, 2, 1, 1)∨ = (2, 3). More generally, we have

m∨ = (1, . . . , 1︸ ︷︷ ︸
m1

+1, . . . , 1︸ ︷︷ ︸
m2

+1, . . . , 1 + 1, . . . , 1︸ ︷︷ ︸
mp

).

(10)

Put x1 = dt/(1 − t) and x0 = dt/t. Concerning this
duality, from Eq. (2.8) of [48], we have the iterated
integral expression

ζ⋆n(m
∨;x)−

p∑
j=1

(−1)p−jζ⋆n(
−→m∨j )Li←−mj+1

(1− x)

= n(−1)p
∫ 1

x
xmp−1
1 x0 · · · xm1

1 x0tn−1dt. (11)

To state our result, we need the following lemmas.
To save space, we set

xξ :=
dt

ξ − t
(ξ ̸= 0),

y := x−i + xi − x−1 − x1,
z := −x0 − x−i − xi,

ω0 :=
dt

1− t2
, ω1 :=

tdt

1− t2
.
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Lemma 2.1. (cf. Theorem 2.1 of [48]) For any n, p ∈
N,m = (m1, . . . ,mp) ∈ Np and x ∈ [0, 1],

n

∫ x

0
tn−1dtx1xm1−1

0 · · · x1x
mp−1
0

=(−1)pζ⋆n(m;x)

−
p∑

j=1

(−1)jζ⋆n(
−→mj−1)Li←−mj

(x). (12)

Lemma 2.2. (cf. Theorem 3.6 of [48]) For any n, p ∈
N,m = (m1, . . . ,mp) ∈ Np and x ∈ [0, 1],

2n

∫ x

0
t2n−1dtω0xm1−1

0 ω1xm2−1
0 · · ·ω1x

mp−1
0

=(−1)pt⋆n(m;x)

−
p∑

j=1

(−1)jt⋆n(
−→mj−1) ti←−mj

(x), (13)

where

t⋆n(k;x) :=
∑

n≥n1≥···≥nr≥1
x2nr−1

×
r∏

j=1

1

(2nj − 1)kj
.

Theorem 2.3. For any k, p ∈ N, m =
(m1, . . . ,mp) ∈ Np withmp ≥ 2, we have

p∑
j=1

(−1)jζ(←−mj)

∞∑
n=1

ζ⋆n(
−→mj−1)

nk4n

(
2n

n

)

− (−1)p
∞∑
n=1

ζ⋆n(m)

nk4n

(
2n

n

)
= 2p+1

∑
σj∈{±1},

j=1,2,...|m̃|p+k−1

Li(k+1,m−)∨(−1, σ1, σ1σ2,

. . . , σ|m̃|p+k−2σ|m̃|p+k−1) ∈ CMZV2
|m|+k,

where |m̃|j := m1 +m2 + · · ·+mj − j.

Proof. Multiplying (12) by (2n
n
)

nk4n , summing up, and
using the well-known formula, [49], [50]

∞∑
n=1

(
2n
n

)
n4n

xn =2 log
(

2

1 +
√
1− x

)
=

∫ x

0

dt

h(t)
∀x ∈ [−1, 1),

where h(t) = 1− t+
√
1− t, we have

(−1)p
∞∑
n=1

ζ⋆n(m;x)

nk4n

(
2n

n

)

−
p∑

j=1

(−1)j Li←−mj
(x)

∞∑
n=1

ζ⋆n(
−→mj−1)

nk4n

(
2n

n

)
=

∫ x

0

dt

h(t)
xk−10 x1xm1−1

0 · · · x1xmp−1
0

t→1−t
=

∫ 1

1−x
xmp−1
1 x0 · · · xm1−1

1 x0xk−11

dt

t+
√
t

t→t2
= 2p+1

∫ 1

√
1−x

(
2tdt

1− t2

)mp−1 dt

t
· · ·

· · ·
(

2tdt

1− t2

)m1−1 dt

t

(
2tdt

1− t2

)k−1 dt

1 + t
.

Letting x = 1 and noting the fact that

2tdt

1− t2
=

∑
σ∈{±1}

σdt

1− σt
,

one can obtain the desired evaluation by applying (8).

Theorem 2.4. For any k, p ∈ N, m =
(m1, . . . ,mp) ∈ Np withmp ≥ 2, we have

p+1∑
j=1

(−1)j−1t(←−mj)

∞∑
n=1

t⋆n(
−→mj−1)

nk4n

(
2n

n

)
∈ CMZV4

|m|+k. (14)

Proof. Multiplying (13) by (2n
n
)

nk4n , summing up, and
noting the fact that

∞∑
n=1

(
2n
n

)
nk4n

x2n = 2k
∫ x

0

tdt

g(t)

(
dt

t

)k−1
(15)

where g(t) = 1− t2 +
√
1− t2, we have

(−1)p
∞∑
n=1

t⋆n(m;x)

nk4n

(
2n

n

)

−
p∑

j=1

(−1)j ti←−mj
(x)

∞∑
n=1

t⋆n(
−→mj−1)

nk4n

(
2n

n

)
= 2k

∫ x

0

tdt

g(t)
xk−10 ω0xm1−1

0 · · ·ω1x
mp−1
0 . (16)

Applying t→ 1−t2
1+t2 , we get

x0 =
dt

t
→ −

(
2tdt

1 + t2
+

2tdt

1− t2

)
= y,

ω0 =
dt

1− t2
→ −dt

t
= −x0,
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tdt

1− t2 +
√
1− t2

→ −(xi + x−i − 2x−1),

ω1 =
tdt

1− t2
→ −

(
dt

t
− 2tdt

1 + t2

)
= z.

Hence, applying the above to (16) with x = 1 yields
p∑

j=1

(−1)j−1t(←−mj)

∞∑
n=1

t⋆n(
−→mj−1)

nk4n

(
2n

n

)

=2k(−1)|m|+k

∫ 1

0
ymp−1z · · ·

· · · ym2−1zym1−1x0yk−1(xi + x−i − 2x−1).

Finally, the iterated integral expression (9) of CMZVs
implies (14) immediately.

Theorem 2.5. For any x ∈ [0, 1], k, p ∈ N0 := N ∪
{0} andm = (m1, . . . ,mp) ∈ Np, we have
∞∑
n=1

ζ⋆n(m
∨;x)

nk+24n

(
2n

n

)

=

p∑
j=1

(−1)p−j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )

nk+24n

(
2n

n

)
+ (−1)p+k2 log(2)Li(←−m)+,1k

(1− x)

+

k∑
j=1

(−1)p+k−j Li←−m+,1k−j
(1− x)

∞∑
n=1

(
2n
n

)
nj+14n

+
2|m|+2−p

(−1)p+k

∑
σj∈{±1},

j=1,2,...,p+k

Li(←−m)+,1k+1
(σ1
√
1− x,

σ1σ2, . . . , σp+k−1σp+k,−σp+k). (17)
Proof. One can derive the result by applying (11) and
using a similar argument as in the proof of Theorem
2.3. We leave the detail to the interested reader.

Letting k = 0 in (17) yields the following
corollary.
Corollary 2.6. For any p ∈ N0, m =
(m1, . . . ,mp) ∈ Np and x ∈ [0, 1], we have
∞∑
n=1

ζ⋆n(m
∨;x)

n24n

(
2n

n

)
= (−1)p2 log(2)Limp,...,m2,m1+1(1− x)

+

p∑
j=1

(−1)p−j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )

n24n

(
2n

n

)
+ (−1)p2|m|+2−p

∑
σj∈{±1}
j=1,2,...,p

Li(←−m)+,1(σ1
√
1− x,

σ1σ2, . . . , σp−1σp,−σp).

Example 2.7. Setting p = 1 andm1 = m gives

∞∑
n=1

ζ⋆n(m
∨;x)

n24n

(
2n

n

)

=

∞∑
n=1

ζ⋆n(m
∨)

n24n

(
2n

n

)
− 2 log(2)Lim+1(1− x)

− 2m+1 Lim+1,1(
√
1− x,−1)

− 2m+1 Lim+1,1(−
√
1− x, 1).

In particular, taking x = 0 we get

∞∑
n=1

ζ⋆n(m
∨)

n24n

(
2n

n

)
= 2 log(2)ζ(m+ 1)

+ 2m+1ζ(m+ 1, 1̄) + 2m+1ζ(m+ 1, 1).

Remark 2.8. Having dealt with the case k ≥ 0 in (17)
we now provide a formula for k = −1. Replacing
n by k in (11), summing both sides of it over k =
1, . . . , n, then changingm1 → m1 − 1, we obtain

ζ⋆n(m
∨;x)−

p∑
j=1

(−1)p−jζ⋆n(
−→m∨j )Li←−mj+1

(1− x)

= (−1)p
∫ 1−x

0

1− (1− t)n

t
dt xm1−1

0 x1xm2−1
0

· · · x1xmp−1
0 , (18)

where mj ≥ 1 with m1 ≥ 2. Here we used the fact
that (1,m∨) = (m1 + 1,m2, . . . ,mp)

∨. However,
(18) still holds for m1 = 1, the proof of which is left
to the interested reader.

Corollary 2.9. For any p ∈ N0, m =
(m1, . . . ,mp) ∈ Np and x ∈ [0, 1], we have

∞∑
n=1

ζ⋆n(m
∨;x)

n4n

(
2n

n

)

=

p∑
j=1

(−1)p−j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )
n4n

(
2n

n

)
− (−1)p2|m|+2−p

∑
σj∈{±1}

j=1,2,...,p−1

Li←−m+
(σ1
√
1− x,

σ1σ2, . . . , σp−2σp−1,−σp−1).

Proof. Put f(t) = log(1 +
√
t) and g(t) = log(1 +

t) in this proof. Multiplying (18) by
(
2n
n

)
/(4nn), we

have
∞∑
n=1

ζ⋆n(m
∨;x)

n4n

(
2n

n

)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.91 Ce Xu, Jianqiang Zhao

E-ISSN: 2224-2880 885 Volume 23, 2024



−
p∑

j=1

(−1)p−j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )
n4n

(
2n

n

)

= (−1)p2
∫ 1−x

0
f(t)xm1

0 x1xm2−1
0 · · · x1xmp−1

0

t→t2
= (−1)p2|m|+1

∫ √1−x
0

g(t)xm1

0

tdt

1− t2
xm2−1
0 · · · tdt

1− t2
xmp−1
0

= (−1)p2|m|+2−p
∫ √1−x
0

g(t)xm1

0

(x1 + x−1) xm2−1
0 · · · (x1 + x−1) xmp−1

0

= (−1)p2|m|+2−p
∑

σj∈{±1}
j=1,2,...,p−1

∫ √1−x
0

g(t)xm1

0

σp−1dt

1− σp−1t
xm2−1
0 · · · σ1dt

1− σ1t
xmp−1
0

= (−1)p−12|m|+2−p
∑

σj∈{±1}
j=1,2,...,p−1

∫ √1−x
0

x−1xm1

0

σp−1dt

1− σp−1t
xm2−1
0 · · · σ1dt

1− σ1t
xmp−1
0 ,

where x−1 = dt/(−1 − t). We have obtained the
desired formula.

In particular, letting p = 1 and m1 = m in
Corollary 2.9 yields

∞∑
n=1

ζ⋆n(m
∨;x)

n4n

(
2n

n

)
=

∞∑
n=1

ζ⋆n(m
∨)

n4n

(
2n

n

)
+ 2m+1 Lim+1(−

√
1− x).

Noticing that (m)∨ = (1m) by (10) and setting x = 0
in the above equation we see that

∞∑
n=1

ζ⋆n(1m)

n4n

(
2n

n

)
= −2m+1ζ(m+ 1).

Therefore we get

∞∑
n=1

ζ⋆n(1m;x)

n4n

(
2n

n

)
= −2m+1ζ(m+ 1)

+ 2m+1 Lim+1(−
√
1− x).

3 Multiple Integrals Associated with
5-posets

Yamamoto first used a graphical representation to
study the MZVs and MZSVs in [51]. In this section,

we introduce the multiple integrals associated with
5-labeled posets, and use them to express some
parametric Euler-Apéry type MZSVs.

Definition 3.1. A 5-poset is a pair (X, δX), where
X = (X,≤) is a finite partially ordered set and the
label map δX : X → {−2,−1, 0, 1, 2}. We often
omit δX and simply say ”a 5-poset X”.

Similar to 2-poset, a 5-poset (X, δX) is called
admissible if δX(x) ̸= 0 for all maximal elements
and δX(x) ̸= 1,±2 for all minimal elements x ∈ X .

Definition 3.2. For an admissible 5-poset X , we
define the associated integral

Iz(X) =

∫
∆X

∏
x∈X

xδX(x)(tx), (19)

where for z ∈ [0, 1]

∆X =
{
(tx)x ∈ [0, z]X

∣∣ tx < ty if x > y
}

and

x−2(t) =
2tdt

1− t2
, x−1(t) =

−dt
1 + t

,

x0(t) =
dt

t
, x1(t) =

dt

1− t
, x2(t) =

2dt

1− t2
.

Clearly, x−2 = x1 + x−1 and x2 = x1 − x−1. Denote
by ∅ the empty 5-poset and put Iz(∅) := 1.

Proposition 3.1. For non-comparable elements a
and b of a 5-poset X , Xb

a denotes the 5-poset that is
obtained from X by adjoining the relation a < b. If
X is an admissible 5-poset, then the 5-poset Xb

a and
Xa

b are admissible and

Iz(X) = Iz(X
b
a) + Iz(X

a
b ).

Note that the admissibility of a 5-poset
corresponds to the convergence of the associated
integral. We use the Hasse diagrams to indicate
5-posets, with vertices ◦ and ”• σ” corresponding to
δ(x) = 0 and δ(x) = σ (σ ∈ {±1}), respectively.
For convenience, we replace ”• 1” by • and replace
”• −1” (resp. ”• −2”) by ”• 1̄” (resp. ”• 2̄”). For
example, the diagram

•
◦���� •?
??

?

1̄

◦����

◦����
•?
??

??
??

2̄

◦����

◦����

represents the 5-poset X =
{x1, x2, x3, x4, x5, x6, x7, x8} with order
x1 < x2 > x3 < x4 < x5 > x6 < x7 < x8 and label
(δX(x1), . . . , δX(x8)) = (1, 0,−1, 0, 0,−2, 0, 0).
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For composition k = (k1, . . . , kr) and
σ ∈ {±1,±2}r (admissible or not), we write

•

◦
(k,σ)

for the ”totally ordered” diagram:

• σr

◦����

◦
����

•����
σ1

◦����

◦

kr

k1

If ki = 1, we understand the notation
• σi

◦����

◦ki

as a

single • σi. We see from (8)

Iz

(
•

◦
(k,σ)

)
= Lik1,...,kr

(σ1z, σ1σ2, . . . , σr−1σr), (20)

where (σ1, . . . , σr) ∈ {±1}r.
It is clear that all the multiple associated integral

Iz(·) can be expressed in terms of the multiple
polylogarithm function.

Theorem 3.2. For nonnegative k and positive
integersm1,m2, . . . ,mp and real x ∈ [0, 1],

∞∑
n=1

ζ⋆n(m
∨;x)

nk+24n

(
2n

n

)

−
p∑

j=1

(−1)p−j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )

nk+24n

(
2n

n

)

+
∑

i+j=k,

i≥1,j≥0

(−1)p+i

{ ∞∑
n=1

(
2n
n

)
nj+24n

}
Li←−m+,{1}i−1

(1−x)

= c1
∑

i+j=k,

i,j≥0

(−1)iI√1−x


•2̄◦

◦•2̄◦•

◦•2̄◦

◦•2̄◦

◦
99

99

•1̄◦

◦oooooo

•

◦

•2̄◦

•2̄◦

◦•2̄◦•
◦OOOOOO

◦

j

i

(←−m,2̄p)


+ c2
∑

i+j=k,

i,j≥0

(−1)iI1−x


•◦

◦•◦•

◦•◦

◦•◦
◦oooooo

•

◦

•◦

•◦

◦•◦•
◦OOOOOO

◦

j

i

(←−m,1p)
 , (21)

where c1 := (−1)p2|m|+2−p, c2 := (−1)p2 log(2),
and

◦

◦
(m,σ) represents the Hasse diagram obtained

from
•

◦
(m,σ) by replacing its unique minimum • by

◦.

Proof. From (15), by an elementary calculation, we
deduce that

∞∑
n=1

(
2n
n

)
nk+24n

zn

=2

∫ z

0

log
(

2
1+
√
1−t

)
t

dt x0k

=
2

k!

∫ z

0

log
(

2
1+
√
1−t

)
logk

(
z
t

)
t

dt

=2
∑

i+j=k,

i,j≥0

logi(z)
i!j!

∫ z

0

b(t) logj
(
1
t

)
t

dt, (22)

where b(t) = log(2/(1+
√
1− t)). Further, applying

t→ 1− t and using the special case z = 1 in (22) we
get

∞∑
n=1

(
2n
n

)
nk+24n

(
1− (1− z)n

)
= 2

∑
i+j=k,

i,j≥0

(−1)j

× logi(1− z)

i!j!

∫ z

0

log
(

2
1+
√
t

)
logj(1− t)

1− t
dt

−
∑

i+j=k,

i≥1,j≥0

{ ∞∑
n=1

(
2n
n

)
nj+24n

}
logi(1− z)

i!
. (23)

Set y1 =
tdt
1−t2 ,

w′ = logi(1− t2)

t
dt xm1−1

0 y1x
m2−1
0 · · · y1x

mp−1
0 ,

w =
logi(1− t)

t
dtxm1−1

0 x1xm2−1
0 · · · x1xmp−1

0 .

Multiplying (18) by (2n
n
)

4nnk+2 and applying (23), we see
that

(−1)p
∞∑
n=1

ζ⋆n(m
∨;x)

nk+24n

(
2n

n

)

−
p∑

j=1

(−1)j Li←−mj+1
(1− x)

∞∑
n=1

ζ⋆n(
−→m∨j )

nk+24n

(
2n

n

)

= −2|m|+2
∑

i+j=k,

i,j≥0

(−1)j

i!j!
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×
∫ √1−x
0

log(1 + t) logj(1− t2)

1− t2
tdt � w′

+ 2 log(2)
∑

i+j=k,

i,j≥0

(−1)j

i!j!

∫ 1−x

0

logj(1− t)

1− t
dt � w

−
∑

i+j=k,

i≥1,j≥0

{ ∞∑
n=1

(
2n
n

)
nj+24n

}
(−1)i

i!

∫ 1−x

0
w.

Here, � is the shuffle product of 1-forms as defined
in [45]. Finally, according to the definition of
multiple associated integral Iz(·) we obtain the
desired evaluation using (20).

We remark that letting k = 0 in (21) we can
recover Corollary 2.6 again.

4 Concluding Remarks
In this paper, we have studied one particular variant
of multiple zeta values. By introducing an extra
binomial factor in the summands of multiple zeta
star series, we can define the Euler-Apéry type
multiple zeta star series. We have established
several recurrence relations about these values and a
parametric variant by the method of iterated integrals.
In particular, the application of Yamamotos grahpic
representation of the iterated integrals is proved to be
a powerful tool. Using this mechinery, we can then
find the explicit evaluations for some of these values.

As another application, we are able to define and
study a parametric variant of the Euler-Apéry type
multiple zeta star series. It is our intention and
hope that these newly discovered series will play
some roles in the computation of more complicated
Feynman diagrams in quantum field physics. For
related works, [2], [3], [10], [11], [12], [13].
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