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Abstract: - The delta-Birnbaum-Saunders distribution is a relatively novel concept that combines the 
Birnbaum-Saunders with the binomial distributions. As a result, datasets containing both positive and zero 
values conform well with this distribution, making it particularly intriguing. Additionally, coefficients of 
variation are among the important statistics for comparing the dispersion of data. Therefore, there is an interest 
in proposing methods for constructing confidence intervals, which play a crucial role in statistical inference for 
the difference between two coefficients of variation in delta-Birnbaum-Saunders distributions. There are four 
methods proposed: the method of variance estimates recovery, the bootstrap confidence interval, the 
generalized confidence interval based on the variance stabilized transformation, and the generalized confidence 
interval based on the Wilson score method. All the methods are compared in terms of performance using 
coverage probability and average width through Monte Carlo simulations. The simulation results show that the 
bootstrap confidence interval performs similarly to the method of variance estimate recovery, except in cases 
where the shape parameter is large. In addition, it is shown that the generalized confidence interval based on 
variance stabilized transformation and the generalized confidence interval based on the Wilson score method 
yield similar results and demonstrate the highest efficiency compared to other methods. Finally, two datasets 
are used to illustrate the application of the proposed confidence intervals. 
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1  Introduction 
The original Birnbaum-Saunders distribution, a 
positively skewed distribution, has been widely 
studied for describing random variables. This 
distribution, also known as the fatigue-life 
distribution, was first proposed, [1]. It is a 
distribution that specifies the entire period until the 
accumulated damage from the expansion of a 
primary crack exceeds a set threshold, leading to 
material failure. Additionally, the Birnbaum-
Saunders distribution has been applied in various 
fields such as engineering [2], air pollution [3], 
agriculture [4], finance [5], medicine [6], and 
environmental science [7], [8]. Naturally, most real-
world data are skewed and may also include zero 
values. In data that include both positive and zero 
values, the Birnbaum-Saunders distribution may not 
be suitable. Thus, a new distribution called the 
delta-Birnbaum-Saunders distribution has been 
developed. It combines positive values derived from 

the Birnbaum-Saunders distribution with zero 
values, which is a binomial proportion. The concept 
of this combination distribution originated from 
research by [9]. Subsequently, the concept of 
incorporating zeros has been applied to other 
distributions, such as the log-normal distribution 
[10], and the gamma distribution [11]. 

The coefficient of variation can be calculated 
from the ratio of the standard deviation to the mean. 
The coefficient of variation is a statistical measure 
of the dispersion of data when different datasets 
have different units or significantly different means. 
Making it a useful tool in statistics and applications 
in various fields such as finance, quality control, 
science, meteorology, and risk assessment [12], 
[13], [14], [15]. When there are two independent 
populations, it is possible to extend the analysis to 
compare the dispersion between both populations. 
By estimating the confidence interval for the 
difference in coefficients of variation, if the 
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confidence interval contains zero, there is no 
significant difference between them. In addition, 
there are a considerable number of researchers who 
are interested in studying the construction of 
confidence intervals for the difference between two 
coefficients of variation using various distributions, 
such as [16] applied the concept of the fiducial 
generalized confidence interval, the Bayesian 
methods, and the standard bootstrap to generate 
confidence intervals for the difference between two 
coefficients of variation for delta-lognormal 
distributions. Subsequently, [17] proposed four 
methods to create confidence intervals based on the 
Birnbaum-Saunders distribution's coefficients of 
variation and the difference between them. The 
methods they presented include the highest posterior 
density interval, the Bayesian credible interval, the 
generalized confidence interval, and the 
bootstrapped confidence interval.  Recently, [18] 
examined confidence intervals for the difference 
between coefficients of variation of two delta 
gamma distributions, and they presented four 
different methods: the method of variance of 
estimates recovery, the generalized confidence 
intervals based on fiducial inference, the parametric 
bootstrap, and the Box-Cox transformation.  

A thorough review of the literature revealed that 
no researchers have studied or published any work 
on the statistical comparison of the difference 
between two delta-Birnbaum-Saunders coefficients 
of variation. Therefore, the objective of this study is 
to construct confidence intervals for the difference 
between two coefficients of variation in the Delta-
Birnbaum-Saunders distributions, utilizing the 
method of variance estimates recovery and the 
bootstrap confidence interval. Additionally, the 
study utilizes the generalized confidence interval 
based on the variance-stabilized transformation and 
compares it with the generalized confidence interval 
based on the Wilson score method. The criteria for 
comparing the performance of all methods are based 
on the coverage probability and the average width. 
Furthermore, to illustrate the performance of these 
methods, we applied them to wind speed data from 
the Chachoengsao Agrometeorological Station and 
Lamphun Weather Observing Station in Thailand. 

The remaining sections of the article are 
organized as follows: The second section presents 
the definition of the difference between two delta-
Birnbaum-Saunders coefficients of variation. The 
third section examines the method that is employed 
for constructing confidence intervals concerning the 
difference between two delta-Birnbaum-Saunders 
coefficients of variation. The fourth section presents 
simulation studies to compare the coverage 

probabilities and average widths of the proposed 
methods. The fifth section applies the proposed 
methods to analyze real data on wind speed. In the 
final section, a summary of the study's conclusions 
is presented. 
 
 
2  Preliminary 
Consider a non-negative random sample represented 
as  1 2, , , ;

iij i i imD D D D where 1,2i   and 

1,2, , ij m  from two independent delta-
Birnbaum-Saunders distributions with the 

proportion of zero  i , shape parameter  i , and 

scale parameter  i , denoted as 

 ~ , ,ij i i iD DBS    . This random sample 
includes both zero and positive observed values. 
The occurrences with zero observations adhere to 
the binomial distribution, whereas the occurrences 
with positive observations conform to the 
Birnbaum-Saunders distribution. The numbers of 
zero and positive observations are denoted as 

 0i
m  

and 
 1i

m , respectively, where 
   0 1i i i

m m m  . 

Then, the probability density function of 
ijD  is as 

follows: 
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if 0ijd  , then 0 1ijd     and  0, 0ijd

    , 

and if 0ijd  , then  0, 1ijd

    . The distribution 

function of 
ijD can be written as:  
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where  ; ,ij i iF d    is the Birnbaum-Saunders 

distribution function. The mean ( i ), variance ( i ), 

and coefficient of variation ( i ) for 
ijD  can be 
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calculated as follows, using the idea provided by 
[9]:  

 
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Consequently, the difference between two 

coefficients of variation of the delta-Birnbaum-
Saunders distributions can be expressed as:  
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For the method of constructing confidence 

intervals for  , we will present it in the following 
section. 
 
 
3  Proposed Methods 
 

3.1 Method of Variance Estimates Recovery 

 (MOVER) 
The MOVER method was implemented by [19] to 
present a closed-form mathematical approximation 
for the confidence interval of parameter differences 

1 2  . In accordance with the research of [20], the 

asymptotic joint distribution of ˆ
i  and ˆ

i  follows a 
bivariate normal, which is shown by  
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Note that the modified moment estimators of 
i  and i  are asymptotically independent, which is 

denoted as:  
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where 
 
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1 1

im
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i

j i

d
d

m

 . The asymptotic distribution of 

ˆ
i  is calculated by applying the delta method, which 

is given by  
    ˆ 0, 1D

i i i i im N      , 
where 

 0î ii
m m   represents the maximum 

likelihood estimate of i .  
 
Now, the estimated value of i  can be expressed as:  
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Subsequently, we applied the delta method to 

calculate the asymptotic variance of the estimator 
i , expressed by the Taylor series as:  
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Remind that 
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Hence, the asymptotic variance of estimator i , is 
obtained as  
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where 
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At this point, the values of 

i  and 
i  are 

unknown parameters. As a result, the plug-in 
estimators of  îV   are implemented, which are 
represented as:  
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Now, the  1 100%  asymptotic confidence 

interval for î  can be written as:  
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where il and iu are the lower and upper limits of the 

interval for ˆ ; 1, 2
i

i  , respectively. Therefore, the 
 1 100%  confidence interval for   employing 
the MOVER method is given by  
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Algorithm 1: For the MOVER method 
Step 1:  Calculate ˆ

i  and ˆ
i . 

Step 2:  Calculate 
î . 

Step 3:  Calculate  ˆˆ
iV   using equation (4). 

Step 4:  Calculate il  and iu  using equation (5). 

Step 5:  Calculate  1 100%  CI for   using 
equation (6). 

3.2  Bootstrap Confidence Interval (BCI) 
As proposed by [21], the bootstrap method is a 
resampling approach used to estimate the sampling 
distribution of a statistic by repeatedly resampling 
data. Later, [22] showed that the constant-bias-
correcting parametric bootstrap method for the 
Birnbaum-Saunders distribution was the most 
effective in reducing bias. Thus, to construct a 
confidence interval for the difference between two 
coefficients of variation, the constant-bias-
correcting parametric bootstrap is used. A bootstrap 
sample, represented by *

ijd , where 1,2i   and 

1,2, ij m  is a sample of size im  drawn with a 
replacement from the original sample. The 
maximum likelihood estimates of  i  can be 
calculated by maximizing the log-likelihood 
function using the Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton nonlinear optimization 
algorithm. Suppose that R  bootstrap samples are 
available. In the bootstrap sample, the 
corresponding bootstraps ˆ

i  and ˆ
i  are represented 

by i  and i , respectively. The computation of i  
has utilized the Broyden-Fletcher-Goldfarb-Shanno 
quasi-Newton nonlinear optimization algorithm. 
Assume that  ˆ ,i ir    is the bias of estimator 
ˆ

i  such that    ˆ ˆ,i i i ir E     . Thus, the 
estimator for the bias can be expressed as  
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1
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R
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R 
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  . After that, applying the 

constant-bias-correcting estimates as defined by 
[23], the bias-corrected estimator is calculated as  

 * ˆˆ2 ,ik ik i ir     ,  1,2, ,k R .  (7) 
According to the research by [24], they introduced a 
Jeffreys interval for the binomial proportion, 
applying Jeffreys prior, which can be expressed as  

 * 1 1ˆ ~ , 1
2 2i i i i iBeta m m  
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Now, the bootstrap estimator of i , can be written 
as 
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where 
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* 1

2
ik

i


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
 . From equation (9), the 

bootstrap estimator of the coefficient of variation 
difference can be calculated as  

1 2
ˆ ˆˆ Boot Boot Boot    .   (10) 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.93 Usanee Janthasuwan, Sa-Aat Niwitpong, Suparat Niwitpong

E-ISSN: 2224-2880 901 Volume 23, 2024



Consequently, the  1 100%  confidence interval 
for   employing the BCI method is given by  
 

     ˆ ˆ, 2 , 1 2BootBoot

BCI BCIL U              , (11) 

where  ˆ Boot   as the 100 th percentile of ˆ Boot . 
 
Algorithm 2: For the BCI method 
Step 1:  At the thb  step 

i) Calculate * * *
1 2, , ,

ii i imd d d  with 

replacement from 1 2, , ,
ii i imd d d . 

ii) Calculate 
i and  ˆˆ ,i ir   . 

iii) Calculate *
ik and *ˆ

i  using equations (7) 
and (8), respectively. 

iv) Calculate ˆ Boot

i  and ˆ Boot  using 
equations (9) and (10), respectively. 

Step 2:  Repeat step 1, a number of times, B=500. 
Step 3:  Calculate  1 100%  CI for   using 
equation (11). 
 

3.3  Generalized Confidence Interval (GCI) 
The method known as the generalized confidence 
interval was first proposed by [25]. It operates on 
the principle of a generalized pivotal quantity 
(GPQ) and is utilized to construct confidence 
intervals. Here, we aim to construct a confidence 
interval for   using GCI, considering the GPQs of 
both i  and i  in the analysis, which was 
introduced by [26] and [27], respectively. Thus, the 
GPQ of i  is computed by applying:  

 
 

 
1 2

1 2

max , ; 0
;

min , ; 0i

i i i

ij i

i i i

Q d

 

 

  
  

 
, (12) 

where i  has the t-distribution, which has 
 1 1

i
m   

degrees of freedom. From equation (12), we have 
obtained a new algebraic rearrangement, and both 
solutions for i  are expressed as 1i  and 2i , which 
can be obtained by solving the following equation: 

  
 

2 2 # 2
1

1

12 1 0i i i i i i ii

i

m C C
m

         , (13) 

where   
 

2 2
1

1

11i i i ii

i

m A B
m

     , 

     2
1 1 1i i i i i ii

m AC AC      , 

 

 1

11

1 1im

i

ji ij

A
m D

  , 
 1

2

1

1im

i i

j ij

B A
D

 
  
 
 

 , 

 

 1

11

1 im

i ij

ji

C D
m 

  , and  
 1 2#

1

im

i ij i

j

C D C


  , while 

the GPQ of 
i  can be computed using  

   
2

1 2 12
; , i i

i

i

i i i

ij i i

i

E E Q m Q
Q d

Q

 





 
  


, (14) 

where 
 1

1
1

im

i ij

j

E D


 , 
 1

2
1

1im

i

j ij

E
D

  , and iH  follows 

the Chi-squared distribution with 
 1i

m  degrees of 
freedom.  

 
In constructing the confidence interval for  , 

in addition to considering i  and i , another 
parameter that needs to be taken into account is i . 
Two concepts are utilized for this purpose: the 
variance stabilized transformation (VST) and the 
Wilson score method (WS). Details on their usage 
will be explained in the following subsections. 
 
3.3.1  GCI based on VST (G.VST) 
[28] used the delta method to construct the VST. 
Later, [29] proposed an application of GPQ based 
on the VST to construct confidence intervals. Thus, 
the GPQ of i  is determined as  

2 ˆsin arcsin
2i

VST i
i

i

V
Q

m
 

 
  

  

,   (15) 

where    ˆ2 arcsin arcsin 0,1i i i iV m N   .  

 
Since GPQs for 

i
Q

and 
i

VSTQ  do not depend on 
the unknown parameters, and the observed value of 

iQ  does not depend on the nuisance parameter, the 
pivotal quantity for i  is given by  

   
22 2 2

2

4 5 21
2 1

i i i i

i

i i

VST

VST

VST

Q Q Q Q
Q

Q Q

   



 

  


 
. (16) 

 
Then, the GPQ based on the variance stabilized 
transformation for the coefficient of variation 
difference can be calculated as:  

1 2

VST VST VSTQ Q Q    .   (17) 
 

Consequently, the  1 100% confidence 
interval for   employing the G.VST method can be 
created as follows: 

   . ., 2 , 1 2VST VST

G VST G VSTL U Q Q  

 
        , (18) 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.93 Usanee Janthasuwan, Sa-Aat Niwitpong, Suparat Niwitpong

E-ISSN: 2224-2880 902 Volume 23, 2024



where  VSTQ   as the 100 th percentile of VSTQ . 
 
3.3.2  GCI based on WS (G.WS) 

According to the research by [30], the GPQ of i  is 
defined as:  

 

 
2

0*
02 1

4i

iWS i i
i i

i i i

mW W
Q Q m

m W m


  
         

, (19) 

where    2
0*

2

2ii

i

i i

m W
Q

m W





 and  

 

0

1
i ii

i

i i i

m m
W

m



 





.  

 
From equations (14) and (19), the GPQ for i  can 
be calculated as: 

   
22 2 2

2

4 5 21
2 1

i i i i

i

i i

WS

WS

WS

Q Q Q Q
Q

Q Q

   



 

  


 
. (20) 

 
Now, from equation (20), the GPQ based on Wilson 
score method for the coefficient of variation 
difference can be expressed as: 

1 2

WS WS WSQ Q Q    .   (21) 
 
Finally, the  1 100% confidence interval for   
employing the G.WS method can be written as 

   . ., 2 , 1 2WS WS

G WS G WSL U Q Q  

 
        , (22) 

where  WSQ   as the 100 th percentile of WSQ . 
 
Algorithm 3: For the GCI method 
Step 1:  Calculate #

1, , , , , ,i i i i i i iA B C C E   and 2iE , 
respectively. 
Step 2:  At the gth step 

i) Generate   1~ 1i i
t m  , and then 

calculate  ;
i ij iQ d   using equation (12). 

ii) If  ; 0,
i ij iQ d   regenerate 

  1~ 1i i
t m  . 

iii) Generate 
 1

2~
ii mH  , and then calculate 

 ; ,
i ij i iQ d    using equation (14). 

iv) F or the G.VST method, calculate 
i

VSTQ , 

i

VSTQ , and VSTQ
 using equations (15), (16), 

and (17), respectively. 
v) F or the G.WS method, calculate  

i

WSQ , 

i

WSQ , and WSQ
 using equations (19), (20), 

and (21), respectively. 
Step 3:  Repeat step 2, a number of times, G=1,000. 
 
 
Algorithm 3: Continued. 
Step 3:  Repeat step 2, a number of times, G=1,000. 
Step 4:  Calculate  1 100%  CI for   employing the 
G.VST method using equation (18). 
Step 5:  Calculate  1 100%  CI for   employing the 
G.WS method using equation (22). 
 
 
4  Simulation Studies 
The results of the simulation study on the methods 
we proposed, MOVER, BCI, G.VST, and G.WS, are 
presented in this section. The performance of these 
methods is evaluated in terms of coverage 
probability and average width through Monte Carlo 
simulations using the R statistical software. A 
nominal confidence level of 0.95 was chosen for 
generating 3,000 replications, including 500 for the 
BCI and 1,000 for the GCI. Since i  is the scale 

parameter, its value remains constant at i =1.0 
without losing any general characteristics. The 
settings for shape parameters are (0.25, 0.25), (0.5, 
0.5), (1.0, 1.0), and (2.0, 2.0). For the proportion of 
zero values, the configurations are (0.1, 0.1), 
(0.1,0.3), (0.1,0.5), (0.3,0.3), (0.3, 0.5), and 
(0.5,0.5). Additionally, for sample sizes, the settings 
are (30,30), (30,50), (30,100), (50,50), (50,100), and 
(100,100). The most efficient method for the 
specified scenario is the one with a coverage 
probability greater than or equal to 0.95, along with 
the narrowest average width. Moreover, we have 
prepared a flowchart detailing the process of 
studying the simulated scenario, as depicted in 
Figure 1. The results from the simulation study are 
presented in Table 1 (Appendix) and Figure 2, 
Figure 3, Figure 4. 

From the results in Table 1 (Appendix) and 
Figure 2, it is generally observed that the MOVER 
method provides a coverage probability greater than 
the specified value of 0.95, except in scenarios 
where the shape parameters are (0.25, 0.25) with a 
proportion of zero equal to (0.1, 0.1) and when the 
shape parameters are (2.0, 2.0). In contrast, the BCI 
method tends to result in coverage probabilities 
lower than the specified level across almost all the 
scenarios considered. However, when considering 
the average width, the MOVER and BCI methods 
show similar results, except in scenarios where the 
shape parameters are (2.0, 2.0). In most cases, the 
MOVER method produces a slightly narrower 
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average width compared to the BCI method. This 
suggests that the MOVER method demonstrates 
stronger performance in most scenarios, particularly 
when the shape parameters are moderate or small.  

 
Fig. 1: A flowchart of the simulation study 
 

For both the G.VST and G.WS methods, the 
coverage probabilities are close to 0.95 in almost all 
scenarios, and the average widths are narrower 
compared to the MOVER and BCI methods. This 
indicates that G.VST and G.WS not only maintain 
the desired coverage probability but also provide 
more efficient intervals with narrower average 
widths. Additionally, it is found that an increase in 
the shape parameter leads to a continuous increase 
in the average width of all methods. Subsequently, 
based on the results in Figure 3(C), it is evident that 
the coverage probability values in the context of the 
proportion of zero are relatively stable in each 
scenario. The G.VST and G.WS methods have 
values that are closer to 0.95 compared to the other 
methods. Examining Figure 3(D), it can be observed 

that an increase in the proportion of zero leads to an 
increase in the average width, indicating that a 
higher proportion of zero reduces the overall 
performance. When considering the results in Figure 
4(E), it can be observed that the coverage 
probability values in the context of sample size for 
each method are quite similar. Furthermore, when 
examining Figure 4(F), it becomes clear that 
increasing the sample size results in a narrower 
average width for all methods, indicating that larger 
sample sizes lead to improved performance across 
all methods. 
 

 
Fig. 2: Graphs compare the efficiency using (A) 
coverage probability and (B) average width relative 
to each shape parameter 
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Fig. 3: Graphs compare the efficiency using (C) 
coverage probability and (D) average width relative 
to each proportion of zero 
 

 
Fig. 4: Graphs compare the efficiency using (E) 
coverage probability and (F) average width relative 
to each sample size (a=(30,30), b=(30,50), 
c=(30,100), d=(50,50), e=(50,100), and 
f=(100,100)) 

5  An Empirical Application 
In Thailand, wind speed exhibits variability 
throughout the year, with some areas experiencing 
low wind speeds while others have higher speeds, 
influenced by various factors such as geography, 
seasons, and topography. Additionally, wind speed 
plays a significant role in several aspects, including 
the generation of renewable energy, increasing 
agricultural productivity, and heat dissipation. 
Moreover, it has implications for weather 
conditions, with wind speed being crucial in 
monitoring and predicting weather patterns, 
contributing to disaster preparedness and 
prevention. In summary, wind speed in Thailand is 
of importance to farmers and serves as a valuable 
resource for renewable energy. Understanding and 
leveraging the characteristics of wind speed is 
crucial for the efficient development and utilization 
of this resource. Consequentially, we have chosen to 
use wind speed samples in Thailand for this 
research. We will utilize daily wind speed data from 
Chachoengsao Agrometeorological Station and 
Lamphun Weather Observing Station for the months 
of October, November, and December 2023, which 
represent the last quarter of the year. All the data 
used is presented in Table 2 (Appendix), [31]. From 
the presented data, it is observed that the wind speed 
data contains both zero values (indicating no wind) 
and positive values. To assess the appropriateness of 
the data distribution for positive values, the Akaike 
Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are utilized and 
computed using formulas:  

 AIC 2ln 2L p    
and  

   BIC 2ln 2 lnL p o   , 
respectively, where p is the number of parameters 
estimated, o is the number of observations, and L is 
the likelihood function. The distribution models 
considered for comparison include Normal, 
Logistic, Exponential, Cauchy, and Birnbaum-
Saunders, as shown in Table 3 (Appendix). The 
results from Table 3 (Appendix) reveal that the 
Birnbaum-Saunders distribution has the lowest AIC 
and BIC values when compared to other 
distributions. This indicates that the Birnbaum-
Saunders distribution is the most suitable for the 
positive wind speed data. Therefore, the wind speed 
data, comprising both zero and positive values, is 
appropriate for the delta-Birnbaum-Saunders 
distribution. Additionally, we have plotted 
histograms of wind speed data from both stations to 
visualize the distribution of the utilized data, as 
shown in Figure 5. As for Table 4 (Appendix), it 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.93 Usanee Janthasuwan, Sa-Aat Niwitpong, Suparat Niwitpong

E-ISSN: 2224-2880 905 Volume 23, 2024



presents statistical information regarding the wind 
speed data from both stations. The delta-Birnbaum-
Saunders distributions are employed to calculate 
confidence intervals for the difference between two 
coefficients of variation for the wind speed data. 
From the presented data in Table 5 (Appendix), it 
can be observed that the G.VST method has the 
narrowest confidence interval width compared to 
other methods. Because of this, the G.VST method 
is the most efficient method for calculating 
confidence intervals for the difference between two 
coefficients of variation of the delta-Birnbaum-
Saunders distributions in this wind speed data. 

 

 
Fig. 5: Histograms of wind speed data for (G) 
Chachoengsao Agrometeorological Station and (H) 
Lamphun Weather Observing Station 
 
 
6  Conclusions 
In this paper, our focus is to present confidence 
intervals for the difference between two coefficients 
of variation within the context of the delta-
Birnbaum-Saunders distribution. We have 
introduced methods for constructing confidence 
intervals, namely MOVER, BCI, G.VST, and 
G.WS. Additionally, performance comparison 
considers both coverage probability and average 
width obtained from Monte Carlo simulations. 
Importantly, we have applied the proposed methods 
to wind speed data. The results of the simulation 
study indicate that the BCI method produces 
findings similar to the MOVER method, except in 

cases where the shape parameter is (2.0, 2.0). 
However, the BCI method provides a lower 
coverage probability than the specified target and 
exhibits a wider average width compared to other 
methods. Meanwhile, the MOVER method achieves 
the target coverage probability and performs well 
when the shape parameters are small. The G.VST 
and G.WS methods provide similar results in terms 
of both coverage probability and average width, 
with coverage probability values close to the 
specified target for almost all methods and the 
narrowest interval. It was also found that as the 
sample size increases, all methods tend to show 
improved performance. Conversely, when the shape 
parameter and the proportion of zeros increase, the 
performance tends to decrease. Moreover, the 
simulation results are consistent with the results 
obtained from applying the methods to real data. 
Therefore, the methods recommended for 
constructing confidence intervals are the G.VST and 
G.WS. Additionally, the MOVER method is 
recommended for very small shape parameters.  

In future research, we will investigate 
estimation for more than two parameters and 
alternative methods for constructing confidence 
intervals, such as Bayesian estimation or Highest 
posterior density, to broaden the scope of the 
analysis. Additionally, we aim to apply our findings 
to diverse real-world scenarios, such as medical, 
economic, and environmental data, to highlight the 
practical applications of our research. 
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APPENDIX 
 

Table 1. The coverage probabilities and average widths for the 95% confidence intervals for   

1 2,   1 2,   1 2,m m  Coverage probabilities Average widths 
MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

0.25,0.25 0.1,0.1 30,30 0.9353 0.9463 0.9537 0.9557 0.4814 0.4866 0.1483 0.1482 

  30,50 0.9357 0.9423 0.9500 0.9487 0.4323 0.4336 0.1301 0.1302 
  30,100 0.9250 0.9407 0.9530 0.9530 0.3896 0.3902 0.1149 0.1150 
  50,50 0.9460 0.9453 0.9450 0.9457 0.3780 0.3769 0.1085 0.1085 
  50,100 0.9427 0.9473 0.9517 0.9517 0.3274 0.3249 0.0916 0.0916 

  100,100 0.9477 0.9447 0.9520 0.9510 0.2683 0.2655 0.0727 0.0727 

 0.1,0.3 30,30 0.9523 0.9433 0.9493 0.9467 0.6186 0.6234 0.1463 0.1461 
  30,50 0.9467 0.9417 0.9417 0.9410 0.5229 0.5250 0.1252 0.1253 
  30,100 0.9393 0.9427 0.9437 0.9447 0.4420 0.4420 0.1118 0.1117 
  50,50 0.9597 0.9527 0.9500 0.9503 0.4780 0.4768 0.1031 0.1031 

  50,100 0.9443 0.9373 0.9390 0.9410 0.3864 0.3840 0.0881 0.0881 
  100,100 0.9500 0.9480 0.9503 0.9490 0.3383 0.3355 0.0684 0.0684 
 0.1,0.5 30,30 0.9667 0.9503 0.9533 0.9513 0.8342 0.8504 0.1671 0.1672 
  30,50 0.9567 0.9463 0.9440 0.9417 0.6759 0.6808 0.1353 0.1352 
  30,100 0.9443 0.9463 0.9453 0.9483 0.5312 0.5321 0.1162 0.1162 
  50,50 0.9557 0.9450 0.9467 0.9480 0.6378 0.6406 0.1143 0.1140 
  50,100 0.9507 0.9460 0.9470 0.9480 0.4857 0.4838 0.0927 0.0928 
  100,100 0.9553 0.9493 0.9463 0.9477 0.4489 0.4460 0.0740 0.0739 
 0.3,0.3 30,30 0.9533 0.9377 0.9460 0.9437 0.7303 0.7366 0.1417 0.1419 
  30,50 0.9550 0.9437 0.9427 0.9393 0.6520 0.6543 0.1208 0.1209 
  30,100 0.9573 0.9447 0.9483 0.9490 0.5861 0.5860 0.1064 0.1066 
  50,50 0.9533 0.9423 0.9503 0.9507 0.5611 0.5602 0.0985 0.0985 

  50,100 0.9573 0.9497 0.9523 0.9540 0.4851 0.4825 0.0825 0.0825 

  100,100 0.9563 0.9510 0.9547 0.9537 0.3945 0.3906 0.0644 0.0643 

 0.3,0.5 30,30 0.9670 0.9517 0.9510 0.9483 0.9243 0.9422 0.1657 0.1654 
  30,50 0.9643 0.9493 0.9423 0.9443 0.7778 0.7845 0.1308 0.1308 
  30,100 0.9613 0.9567 0.9477 0.9467 0.6575 0.6592 0.1111 0.1111 
  50,50 0.9560 0.9393 0.9480 0.9430 0.7061 0.7098 0.1106 0.1106 
  50,100 0.9593 0.9490 0.9473 0.9450 0.5673 0.5662 0.0874 0.0873 
  100,100 0.9547 0.9450 0.9537 0.9530 0.4938 0.4912 0.0701 0.0700 

 0.5,0.5 30,30 0.9623 0.9380 0.9383 0.9417 1.0819 1.1100 0.1871 0.1869 
  30,50 0.9707 0.9527 0.9427 0.9453 0.9657 0.9839 0.1543 0.1542 
  30,100 0.9577 0.9463 0.9473 0.9503 0.8660 0.8784 0.1357 0.1356 

  50,50 0.9637 0.9467 0.9490 0.9507 0.8242 0.8313 0.1210 0.1208 

  50,100 0.9597 0.9457 0.9427 0.9393 0.7109 0.7132 0.0989 0.0990 
  100,100 0.9603 0.9527 0.9473 0.9473 0.5760 0.5736 0.0754 0.0753 

0.5,0.5 0.1,0.1 30,30 0.9500 0.9370 0.9433 0.9460 0.5256 0.5239 0.3944 0.3937 
  30,50 0.9593 0.9510 0.9490 0.9477 0.4703 0.4666 0.3442 0.3437 
  30,100 0.9460 0.9480 0.9530 0.9543 0.4221 0.4184 0.3065 0.3067 
  50,50 0.9503 0.9403 0.9427 0.9413 0.4071 0.4011 0.2903 0.2899 
  50,100 0.9580 0.9530 0.9507 0.9527 0.3525 0.3464 0.2474 0.2472 

  100,100 0.9610 0.9493 0.9473 0.9453 0.2888 0.2820 0.1984 0.1983 
 0.1,0.3 30,30 0.9607 0.9400 0.9493 0.9467 0.6764 0.6702 0.4166 0.4160 
  30,50 0.9560 0.9393 0.9447 0.9440 0.5732 0.5644 0.3545 0.3549 
  30,100 0.9570 0.9510 0.9510 0.9513 0.4825 0.4746 0.3112 0.3111 

  50,50 0.9643 0.9507 0.9413 0.9410 0.5240 0.5127 0.3018 0.3023 
  50,100 0.9533 0.9373 0.9440 0.9457 0.4214 0.4108 0.2523 0.2525 
  100,100 0.9623 0.9520 0.9520 0.9523 0.3690 0.3577 0.2032 0.2034 
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Table 1. Continued 

1 2,   1 2,   1 2,m m  Coverage probabilities Average widths 
MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

0.5.0.5 0.1,0.5 30,30 0.9663 0.9433 0.9483 0.9533 0.9337 0.9324 0.4956 0.4956 
  30,50 0.9660 0.9470 0.9553 0.9553 0.7530 0.7408 0.3960 0.3968 
  30,100 0.9663 0.9503 0.9530 0.9523 0.5897 0.5773 0.3303 0.3300 
  50,50 0.9553 0.9387 0.9470 0.9470 0.7160 0.7009 0.3508 0.3511 
  50,100 0.9653 0.9473 0.9443 0.9480 0.5426 0.5270 0.2760 0.2759 
  100,100 0.9580 0.9450 0.9503 0.9503 0.5025 0.4860 0.2296 0.2294 
 0.3,0.3 30,30 0.9697 0.9483 0.9477 0.9447 0.8055 0.7952 0.4363 0.4361 
  30,50 0.9630 0.9453 0.9523 0.9550 0.7129 0.6996 0.3760 0.3756 

  30,100 0.9633 0.9513 0.9440 0.9443 0.6446 0.6310 0.3335 0.3332 
  50,50 0.9647 0.9463 0.9487 0.9453 0.6176 0.6020 0.3120 0.3116 
  50,100 0.9607 0.9453 0.9533 0.9557 0.5358 0.5197 0.2649 0.2648 

  100,100 0.9577 0.9450 0.9540 0.9540 0.4358 0.4202 0.2090 0.2091 
 0.3,0.5 30,30 0.9693 0.9473 0.9417 0.9427 1.0306 1.0285 0.5150 0.5148 
  30,50 0.9740 0.9487 0.9500 0.9507 0.8703 0.8574 0.4182 0.4181 

  30,100 0.9613 0.9433 0.9527 0.9520 0.7303 0.7140 0.3545 0.3543 

  50,50 0.9703 0.9487 0.9423 0.9433 0.7888 0.7726 0.3584 0.3576 
  50,100 0.9677 0.9477 0.9517 0.9507 0.6346 0.6157 0.2860 0.2859 

  100,100 0.9637 0.9467 0.9500 0.9510 0.5520 0.5328 0.2349 0.2349 

 0.5,0.5 30,30 0.9773 0.9417 0.9440 0.9467 1.2189 1.2231 0.5887 0.5890 
  30,50 0.9780 0.9447 0.9460 0.9460 1.0854 1.0799 0.5010 0.5005 
  30,100 0.9703 0.9550 0.9503 0.9517 0.9697 0.9596 0.4391 0.4396 
  50,50 0.9690 0.9443 0.9443 0.9433 0.9308 0.9141 0.4014 0.4012 
  50,100 0.9683 0.9483 0.9510 0.9503 0.8027 0.7833 0.3351 0.3355 
  100,100 0.9673 0.9477 0.9517 0.9513 0.6528 0.6312 0.2605 0.2605 

1.0,1.0 0.1,0.1 30,30 0.9510 0.9467 0.9503 0.9530 0.7419 0.7408 0.7044 0.7043 

  30,50 0.9430 0.9430 0.9497 0.9503 0.6646 0.6632 0.6255 0.6257 

  30,100 0.9373 0.9410 0.9470 0.9473 0.5992 0.5979 0.5614 0.5620 
  50,50 0.9520 0.9463 0.9470 0.9457 0.5777 0.5760 0.5356 0.5354 
  50,100 0.9457 0.9473 0.9517 0.9507 0.5008 0.4993 0.4609 0.4614 

  100,100 0.9397 0.9373 0.9417 0.9417 0.4113 0.4103 0.3744 0.3741 
 0.1,0.3 30,30 0.9540 0.9443 0.9530 0.9530 0.9122 0.9155 0.7833 0.7828 

  30,50 0.9453 0.9380 0.9417 0.9403 0.7783 0.7781 0.6734 0.6730 
  30,100 0.9423 0.9407 0.9490 0.9493 0.6659 0.6648 0.5880 0.5872 
  50,50 0.9423 0.9343 0.9413 0.9420 0.7095 0.7105 0.5925 0.5925 
  50,100 0.9510 0.9463 0.9487 0.9487 0.5768 0.5761 0.4921 0.4924 
  100,100 0.9487 0.9460 0.9450 0.9457 0.5018 0.5014 0.4112 0.4112 
 0.1,0.5 30,30 0.9433 0.9363 0.9430 0.9480 1.2248 1.2454 0.9517 0.9514 
  30,50 0.9560 0.9477 0.9487 0.9470 1.0059 1.0141 0.7864 0.7857 
  30,100 0.9520 0.9450 0.9523 0.9510 0.8016 0.8025 0.6479 0.6476 

  50,50 0.9480 0.9427 0.9490 0.9517 0.9529 0.9620 0.7148 0.7149 

  50,100 0.9557 0.9480 0.9410 0.9443 0.7332 0.7348 0.5626 0.5623 
  100,100 0.9463 0.9460 0.9463 0.9483 0.6720 0.6734 0.4915 0.4912 
 0.3,0.3 30,30 0.9443 0.9323 0.9433 0.9430 1.0528 1.0611 0.8529 0.8500 
  30,50 0.9443 0.9313 0.9393 0.9427 0.9408 0.9457 0.7523 0.7529 
  30,100 0.9377 0.9440 0.9483 0.9487 0.8460 0.8490 0.6679 0.6694 
  50,50 0.9530 0.9450 0.9443 0.9440 0.8166 0.8201 0.6435 0.6433 
  50,100 0.9497 0.9430 0.9573 0.9567 0.7077 0.7098 0.5516 0.5520 
  100,100 0.9480 0.9417 0.9493 0.9477 0.5774 0.5788 0.4450 0.4452 
 0.3,0.5 30,30 0.9547 0.9377 0.9487 0.9480 1.3467 1.3734 1.0197 1.0189 
  30,50 0.9563 0.9387 0.9493 0.9517 1.1358 1.1484 0.8572 0.8577 

  30,100 0.9467 0.9350 0.9430 0.9443 0.9576 0.9631 0.7275 0.7276 
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Table 1. Continued 

1 2,   1 2,   1 2,m m  Coverage probabilities Average widths 
MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

1.0,1.0 0.3,0.5 50,50 0.9540 0.9433 0.9490 0.9507 1.0361 1.0462 0.7578 0.7577 
  50,100 0.9559 0.9530 0.9560 0.9530 0.8387 0.8419 0.6162 0.6155 
  100,100 0.9547 0.9537 0.9540 0.9537 0.7311 0.7350 0.5219 0.5217 
 0.5,0.5 30,30 0.9613 0.9343 0.9467 0.9457 1.5859 1.6296 1.1630 1.1614 
  30,50 0.9540 0.9407 0.9423 0.9427 1.4067 1.4350 1.0148 1.0153 
  30,100 0.9493 0.9430 0.9433 0.9403 1.2625 1.2835 0.9048 0.9055 
  50,50 0.9527 0.9377 0.9397 0.9410 1.2190 1.2351 0.8612 0.8605 
  50,100 0.9563 0.9473 0.9503 0.9487 1.0537 1.0635 0.7333 0.7332 
  100,100 0.9517 0.9410 0.9533 0.9543 0.8592 0.8645 0.5880 0.5883 

2.0,2.0 0.1,0.1 30,30 0.9233 0.9460 0.9520 0.9533 0.7024 0.7714 0.6625 0.6631 
  30,50 0.9180 0.9397 0.9520 0.9517 0.6262 0.6885 0.5884 0.5892 
  30,100 0.9230 0.9457 0.9460 0.9493 0.5634 0.6196 0.5298 0.5299 
  50,50 0.9177 0.9407 0.9503 0.9517 0.5397 0.5927 0.5055 0.5061 
  50,100 0.9213 0.9413 0.9487 0.9500 0.4657 0.5112 0.4352 0.4359 

  100,100 0.9230 0.9453 0.9467 0.9473 0.3783 0.4140 0.3534 0.3536 
 0.1,0.3 30,30 0.8987 0.9380 0.9483 0.9497 0.8632 1.0126 0.7526 0.7517 
  30,50 0.9110 0.9460 0.9500 0.9517 0.7329 0.8507 0.6472 0.6477 
  30,100 0.9097 0.9437 0.9530 0.9520 0.6228 0.7104 0.5617 0.5612 

  50,50 0.9053 0.9430 0.9517 0.9513 0.6588 0.7738 0.5711 0.5713 
  50,100 0.9163 0.9513 0.9563 0.9570 0.5364 0.6183 0.4748 0.4748 

  100,100 0.9093 0.9550 0.9513 0.9497 0.4607 0.5398 0.3989 0.3984 
 0.1,0.5 30,30 0.8920 0.9477 0.9550 0.9533 1.1890 1.4712 0.9377 0.9387 
  30,50 0.8867 0.9477 0.9517 0.9513 0.9570 1.1733 0.7729 0.7730 
  30,100 0.8870 0.9397 0.9480 0.9463 0.7528 0.9047 0.6321 0.6320 
  50,50 0.8787 0.9403 0.9527 0.9500 0.8995 1.1193 0.7090 0.7095 
  50,100 0.8853 0.9443 0.9453 0.9483 0.6816 0.8346 0.5553 0.5547 
  100,100 0.8777 0.9420 0.9537 0.9527 0.6247 0.7781 0.4920 0.4921 
 0.3,0.3 30,30 0.8990 0.9483 0.9477 0.9503 1.0008 1.2057 0.8344 0.8342 

  30,50 0.8863 0.9363 0.9453 0.9493 0.8899 1.0757 0.7395 0.7391 
  30,100 0.8890 0.9463 0.9507 0.9520 0.7995 0.9651 0.6646 0.6642 

  50,50 0.8857 0.9413 0.9537 0.9513 0.7627 0.9219 0.6327 0.6326 

  50,100 0.8930 0.9440 0.9513 0.9553 0.6570 0.7951 0.5447 0.5439 

  100,100 0.8970 0.9473 0.9520 0.9507 0.5310 0.6427 0.4400 0.4400 

 0.3,0.5 30,30 0.8917 0.9387 0.9530 0.9513 1.2900 1.6161 1.0020 1.0029 
  30,50 0.8923 0.9483 0.9577 0.9597 1.0814 1.3486 0.8497 0.8509 
  30,100 0.8977 0.9477 0.9510 0.9520 0.9033 1.1145 0.7251 0.7256 
  50,50 0.8780 0.9373 0.9477 0.9497 0.9794 1.2295 0.7602 0.7608 
  50,100 0.8883 0.9430 0.9433 0.9423 0.7813 0.9717 0.6166 0.6162 
  100,100 0.8813 0.9427 0.9483 0.9467 0.6787 0.8528 0.5267 0.5266 
 0.5,0.5 30,30 0.8907 0.9483 0.9520 0.9507 1.5408 1.9604 1.1538 1.1536 

  30,50 0.8747 0.9380 0.9520 0.9517 1.3725 1.7411 1.0252 1.0253 
  30,100 0.8660 0.9363 0.9473 0.9483 1.2207 1.5482 0.9164 0.9164 
  50,50 0.8947 0.9553 0.9477 0.9480 1.1560 1.4736 0.8693 0.8690 
  50,100 0.8837 0.9450 0.9457 0.9480 0.9974 1.2702 0.7479 0.7483 
  100,100 0.8637 0.9457 0.9460 0.9457 0.8002 1.0226 0.6001 0.6010 

Note: Bold text indicates coverage probabilities greater than or equal to 0.95 and the most appropriate average widths. 
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Table 2. Data on the wind speed (knot) from the Chachoengsao Agrometeorological Station and Lamphun 
Weather Observing Station, Thailand 

 

Chachoengsao Agrometeorological Station  Lamphun Weather Observing Station 
October November December  October November December 

0.4 0.0 0.0 1.1 1.1 0.9  0.5 0.3 0.5 0.3 0.0 0.2 
0.2 0.1 0.0 1.2 0.8 1.0  0.7 0.0 0.1 0.8 0.4 0.7 
0.6 0.0 0.0 1.2 1.0 0.9  0.2 0.1 0.1 0.6 0.3 0.1 
0.2 0.1 0.1 0.9 0.9 1.3  0.6 0.4 0.2 0.4 0.3 0.1 
0.0 0.1 0.1 0.8 0.6 2.0  0.5 0.4 0.3 0.4 0.0 0.3 
0.4 0.1 0.2 0.6 0.7 2.5  1.0 0.0 0.1 0.0 0.2 1.3 
0.4 0.0 0.6 0.5 1.0 2.6  0.1 0.0 0.1 0.0 0.9 1.3 
0.0 0.0 0.6 0.6 0.6 2.4  0.5 0.0 0.0 0.0 0.0 0.4 
0.0 0.0 0.2 0.9 0.5 3.1  0.7 0.1 0.1 0.1 0.0 0.3 
0.0 0.0 0.5 0.9 0.5 1.2  0.1 0.3 0.0 0.0 0.4 0.1 
0.1 0.0 0.2 0.8 0.5 1.2  0.6 0.2 0.0 0.1 0.1 0.0 
0.0 0.0 0.5 1.2 0.4 1.2  0.3 0.1 0.0 0.2 0.3 0.1 
0.0 0.0 0.5 1.3 0.9 1.1  0.5 0.4 0.3 0.3 0.3 0.0 
0.0 0.0 0.9 0.9 0.9 1.0  0.3 0.5 0.9 0.0 0.2 0.1 
0.0 0.0 0.7 1.1 0.6 0.8  0.2 0.4 0.4 0.1 0.1 0.1 
0.0    0.7   0.5    0.3  

 
 

Table 3. The AIC and BIC values of each model for the wind speed data 
Data Model Normal Logistic Exponential  Cauchy Birnbaum-Saunders 

Chachoengsao 
Agrometeorological 
Station 

AIC 127.852 116.125 112.906 123.838 107.942 

BIC 132.321 120.593 115.140 128.307 114.644 

Lamphun Weather 
Observing Station 

AIC 19.727 11.750 -3.852 23.393 -23.326 

BIC 24.308 16.331 -1.462 27.974 -16.455 

 
 

Table 4. Summary statistics for the wind speed data 
Data im   0i

m   1i
m  ˆ

i  ˆ
i  ˆ

i  î  
Chachoengsao 
Agrometeorological 
Station 

92 23 69 0.2500 0.9148 0.5793 1.2116 

Lamphun Weather 
Observing Station 

92 19 73 0.2065 0.7870 0.2699 1.0333 

 
 

Table 5. The 95% confidence intervals for   of the wind speed data 
Point estimation Methods Interval [L, U] Widths 

1 2
ˆ ˆ 0.1783    MOVER  [-0.0726, 0.4292] 0.5018 

BCI [-0.0445, 0.4453] 0.4898 
G.VST [-0.0215, 0.3504] 0.3719 
G.WS [-0.0308, 0.3653]  0.3961 
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