
Abstract: - In this paper, a random predator-prey system is established, based on which cooperative hunting and
regional switching are considered. Firstly, the existence and uniqueness of the global positive solution of the
model are proved. Secondly, the sufficient conditions for extinction and stationary distribution are obtained by
using Lyapunov function. Finally, numerical simulation is used to demonstrate the correctness of the conclusion.
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1 Introduction
Studying the dynamic properties of predator-prey
models, [1], [2], is an important topic in ecological
research. However, in numerous studies, [3],
proposes a classical model with densitydependent
logical growth as follows{

du(t) = [u(t)(a− bu(t)− cv(t))]dt,
dv(t) = [v(t)(−h+ fcu(t))]dt,

(1)

where u(t) and v(t) are the sizes of prey population
and predator population at time t, respectively. a, b,
c, h and f are positive constants. The prey carrying
capacity of the environment is a

b and the feeding
efficiency of converting predators into new predators
is f .

The system(1) was extensively studied by [4], [5],
[6]. Many biological populations often engage in
cooperative hunting, [7], to increase the probability
of capturing and killing prey, thereby enhancing the
birth and survival rates of the population, such as the
mutual cooperation in wolf pack hunting. In 1999,
[8], proposed a model with novel functional response
that describes the aggregation behavior of predators
when encountering a group of prey. In 2010, [9],
established a model with Holling Type II response
and a predator-prey model with cooperative hunting,
finding that cooperative hunting disrupts the stability
of predator-prey dynamics. Furthermore, [10], [11],
also considered how cooperative hunting affects the
dynamics of predator-prey populations modeled by
ordinary differential equations. Based on the above
research, we establish the following predator-prey
model with cooperative predation:{

u(t) = u(t)(a− bu(t)− cv(t))− (p+ αv(t))u(t)v(t),
v(t) = v(t)(−h+ fcu(t)) +m(p+ αv(t))u(t)v(t),

(2)

where p> 0 is the attack rate of predators on prey, α
> 0 represents the cooperative parameter of predators
during hunting, [11], andm is a constant.

Since the environment is not static in real
life, the above systems are usually affected by

environmental noise. Generally, two types of
environmental noises are considered to describe
environmental disturbances, one is white noise, [12],
the other is classical colored noise, such as telegraph
noise, [13]. Among them, telegraph noise can
be characterized as random switches between two
or more environmental regimes. In most models,
environmental factors such as nutrition, [14], or
rainfall, [15], are considered to be different. Many
scholars have introduced stochastic perturbations
to elucidate the impact of environmental white
noise, [16], on population dynamics. Therefore,
we construct the following predator-prey stochastic
model with cooperative predation, considering the
interference of environmental noise to the model:

{
du(t) = [u(t)(a− bu(t)− cv(t))]dt,

dv(t) = [v(t)(−h+ fcu(t))]dt,
(3)

where B1(t) and B2(t) are one-dimensional standard
Brownian motions, σ1 and σ2 denote the intensity of
the white noise.

However, few researchers have studied the
dynamic behavior of predator-predator models with
state transitions, [17], and cooperative hunting.
Therefore, based on system (1.3), we construct a
random predation model with white noise linear
perturbations of cooperative hunting, [11], and state
transition, [18], as follows:

In this paper, we mainly study the relevant
dynamic properties of system (4). In the second
section, the existence and uniqueness of positive
solutions are modeled by Itô’s formula and the
comparison theorem. And the suffcient conditions
for the extinction of predators are obtained. In
the third section, an appropriate Lyapunov function
is constructed to prove the existence of stationary
distributions. Finally, the correctness of the obtained
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results is verified by numerical simulation.

du(t) =[u(t)(a(r(t))− b(r(t))u(t)

− c(r(t))v(t))− (p(r(t))

+ α(r(t))v(t))u(t)v(t)]dt

+ σ1(r(t))u(t)dB1(t),
dv(t) =[v(t)(−h(r(t))

+ f(r(t))c(r(t))u(t))

+m(r(t))(p(r(t))

+ α(r(t))v(t))u(t)v(t)]dt

+ σ2(r(t))v(t)dB2(t),

(4)

2 The Existence and Uniqueness of
Positive Solutions

In this section, we mainly prove the existence and
uniqueness of the global positive solution, [12],
of system (4), and obtain sufficient conditions for
predator extinction.
Theorem 2.1. For any initial value (u(0), v(0)) ∈
R2

+×S, for t ≥ 0, system (1.4) has a unique solution
(u (t), v (t)). The solution will remain in R2

+ × S for
all t ≥ 0 with probability one.

Proof. Consider that the coefficients of system
(1.4) satisfy the local Lipschitz conditions, there
exists a unique local solution (u(t), v(t)) for any
initial value (u(0), v(0)) ∈ R2

+ × S, for t ∈ [0, τe],
where τe denoting the explosion time. Establishing
global uniqueness requires confirming that τe = +∞
almost surely. To achieve this, a sufficiently large
positive integer is selected to ensure that both u(0)
and v(0) fall within the interval [ 1

n0
, n0]. Each integer

greater than or equal to this value defines a stopping
time.

τn = inf{τ ∈ [0, τe) : min{u(t), v(t)}

≤ 1

n
ormax{u(t), v(t)} ≥ n},

(5)

where throughout this paper, we set inf⊘ = ∞.
Obviously, τn is increasing as n → ∞. Let τ∞ =
lim

n→+∞
τn, where τ∞ ≤ τe a.s. is true, then τe = ∞

a.s. and (u(t), v(t), r(t)) ∈ R2
+×S a.s. for all T ≥ 0.

In other words, to complete the proof, we only need to
prove τ∞ = ∞a.s. If this assertion is false, then there
is a pair of constants t>0 and ϵ ∈ (0, 1)such that

P{τ+∞ ≤ τ} > ϵ. (6)

Thus there exists an integer n1 ≥ n0 such that

P{τn ≤ τ} > ϵ,

for ∀ n ≥ n1 Take a C2-function V : R2
+ → R+ as

V = u− 1− lnu+ v − 1− ln v + P. (7)

From v−1− ln v ≥ 0, for v > 0, it follows that V
is a nonnegative function. If y ∈ R2

+, then using the
Itô’s formula reduces to

dV = (1− 1

u
)[u(a(r(t))− b(r(t))u− c(r(t))v)

− (p(r(t)) + α((r(t)))v)uv]dt+ uσ1dB1(t)

+
1

2
σ2
1(r(t))dt+ (1− 1

v
)[(v(−h(r(t)))

+ f(r(t))c(r(t))u) +m(r(t))(p(r(t))

+ α(r(t))v)uv]dt+ vσ2(r(t))dB2t+
1

2
σ2(r(t))dt

= [(u− 1)[α(r(t))− b(r(t))u− c(r(t))u

+m(r(t))(p(r(t)) + α(r(t))v)v] +
1

2
σ2
1(v − 1)

[−h(r(t)) + f(r(t))c(r(t))u+m(r(t))

(p(r(t)) + α(r(t))v)u] +
1

2
σ2
2(r(t))]dt

+ (u− 1)σ1(r(t))dB1t

+ (v − 1)σ2(r(t))dB2(t)

:= LV dt+ (u− 1)σ1dB1t+ (v − 1)σ2dB2(t).

where
LV = −(a(r(t))− b(r(t)))u− c(r(t))u− (p(r(t))

+ α(r(t))v)v + u[a(r(t))− b(r(t))u− c(r(t))v

− (p((r(t)) + α(r(t))v))v] + [h(r(t))− f(r(t))

c(r(t))u−m(r(t))(p(r(t)) + α(r(t))v)u]

+ v[−h(r(t)) + f(r(t))c(r(t))u+m(r(t))

(p(r(t)) + α(r(t))v)u] +
1

2
σ2
1(r(t)) +

1

2
σ2
2(r(t))

≤ −b(r(t))u2 + (b(r(t))− c(r(t)))u+ (m− 1)

(p(r(t)) + α(r(t))uv2 + (f(r(t))− 1)c(r(t))uv

+
1

2
(σ2

1(r(t)) + σ2
2(r(t)))

≤ −b(r(t))u2 + (b(r(t))− c(r(t)))u

+
1

2
(σ2

1(r(t)) + σ2
2(r(t)))

≤ N0,

where N0 is a positive constant which is independent
of u, v and n. The remainder of the proof is similar to
Theorem 2.1, [19]. so this part of the proof is omitted.
Thus the proof of this theorem is completed.

3 Extinction
We discuss the extinction of both predator and prey
now.
Theorem 3.1. If (u(t), v(t)), is a solution of the
system with initial values (u(0), v(0)) ∈ R2 and if
the condition is satisfied a < σ2

1

2 then the predator
becomes extinct.
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Proof. Consider the system on the boundary,
using the strong number theorem for local control, it
is known that∑

k∈s
∏

k

[a(k)−
∑2

1(k)

2
] < 0, (8)

lim
t→∞

u(t) = 0.

Extinction of food bait assume:∑
k∈s

∏
k

[a(k)− σ2
1(k)

2
] > 0, ρ(., .) : R× S → R.

Integrate from 0 to t and divide both sides
simultaneously by t:

lim
t→∞

1

t

∫ t

0
ρ(u(t), r(t))dt

=
∑
k∈s

∫
R+

ρ(u, k)d(du, k),
(9)

Using the Itô’s formula, it is possible to obtain:

lnu(t)− lnu(0)
t

=
1

t

∫ t

0
[a(r(t))

− σ2
1(r(t))

2
]ds− 1

t

∫ t

0
b(r(t))u(t)dt

+
M1(t)

t
,

M1(t) =

∫ t

0
= σ1(r(t))dB1(t). (10)

Continuous local integration

< M1,M2 > t =

∫ t

0
(r(t))dt. (11)

Using the strong number theorem of local
martingale, we can know that: lim

t→∞
M1

t = 0.
Two-sided limit:

lim
t→∞

lnu(t)
t

= lim
t→∞

1

t

∫ t

0
[a(r(t))− σ2

1(r(t))

2
]dt

− lim
t→∞

1

t

∫ t

0
b(r(t))u(t)dt.

(12)

We make use of lnu(t) for using Itô’s Eq:

d(lnu(t)) = (a− bu(t)− cv(t)(p+ αv(t))v(t))dt

+ uσ1dB1(t)

≤ (a− bu(t)− cv(t)− pv(t)− σ2
1

2
)dt

+ σ1dB1t.

(13)

Integrate the above formula from 0 to 0 and divide
both sides by t:

lnu(t)− lnu(0)
t

≤ (a− σ2
1

2
)− b

t

∫ t

0
u(t)dt

− c+ σ2
t

∫ t

0
v(t)dt+

σ1B1(t)

t

≤ (a− σ2
1

2
) +

σ1B1(t)

t
.

(14)

Take its upper bound and use the strong number
theorem of the local martingale:

lim
t→∞

σ1B1(t)

t
= 0, (15)

lim sup
t→∞

lnu(t)
t

≤ a− σ2
1

2
≤ 0. (16)

The extinction of the prey has been proved.

Theorem 3.2. Let
∑

k∈S πk[a(k)− σ2
1(k)
2 ] > 0 hold.

If λ < 0, then for any initial value (u(0),v(0),r(s))∈
R2

+ × S, the predator populations goes to extinction
almost surely.

Proof.Then prove the predator extinction for the
second equation of the system using Itô’s formula:

dv = [v(−h+ fcu) +m(p+ αv)uv]dt+ σ2dB2(t)

d(ln v) ≤ [fcu+ umα(p+ αv)]dt+ σ2dB2(t)
′ (17)

ln v(t)− ln v(0)
t

≤ fc

t

∫ t

0
u(t)dt

+
mα

t

∫ t

0
u(t)

∫ t

0
v(t)dt

+
σ2
t
dB2(t)

≤ fc+mαp

t

∫ t

0
u(t)dt

+
mα

t

∫ t

0
u(s)v(t)dt

+
σ2
t
dB2(t).

(18)

Because lim
t→∞

σ2
t
dB2(t) → 0 ,in the case,when

λ =
fc+mαp

t

∫ t

0
u(t)dt +

mα

t

∫ t

0
u(t)v(t)dt +

σ2
t
dB2(t) ≤ 0,v(t) tends to zero a.s. This completes

the proof of assertion.
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4 Stationary Distribution
In this section, we will investigate the ergodic
property of system(1.4) by using Lyapunov function
method. For the purpose of proving our theorem, we
will first introduce a transformation of system (4). Let
x(t) = lnu(t),y(t) = ln v(t), for ∀t ≥ 0. Applying
Itô’s formula to system (1.4), we have

{
dx(t) = [a− σ2

1

2 − bex(t) − ey(t)(c+ p+ αey(t))]dt+ σ1dB1(t),

dy(t) = [−h+ σ2
2

2 + ex(t)(fc+mp+mey(t))]dt+ σ2dB2(t)
(19)

Now we impose the condition, [11]:

(H) : λ = (fc+mp+mey(t))
∑
k∈s

πk[a(k)

− σ1(k)
2

2
]− b

∑
k∈s

πk[h(k)

− σ2(k)
2

2
] > 0

(20)

andmin{h(k)− σ2(k)2

2 } > 0

Theorem 4.1. Let us assume that hypothesis (H)
holds. For any k ∈ s and for any initial value
(u(0), v(0), r(0)) ∈ R2

+ × S be given, (u(t),v(t),r(t))
of system (4) is ergodic and has a unique stationary
distribution ∈ R2

+ × S.

Proof. We consider the bounded open subset

D = (x, y) : |x| ≤ ln ε−1|y| ≤ ln ε−10 < ε. (21)

Define a C2-function

Φ(x, y) = M [−(fc+mp+ ey)x− by

+
(fc+mp+ ey)(c+ p+ αey)

2
ey]

+ [
ex + qey

2
]2.

(22)

where q = c+p+αey

fc+mp+ey and λ
2 max 2, sup(u,v)∈k2

− b
2e

(3x) − q2

4 mink∈s h(k) −σ2(k)2

2 e2y + ne2x and
n = a+ σ2

1

2 + a2

2mink∈s h(k)−σ2(k)2

2

.

By calculating the equation set of partial derivative
functions of Φ(x, y), we know that

− M(fc+mp+mey)

ex

+ ex +
pbex

q(fc+mp+mey) + (fc+mp+mey)(c+p+αey)
h ex

= 0
(23)

has a unique solution, which can be seen from
the monotonically property of the left function.
The minimum point of Φ(x, y) is x0, y0 =

ln( b

(fc+mp+mey0)(
c+p+αe

y
0

h
+pe−x0 )

). So We assert that

Φ(u, v)− Φ(u0, v0) ≥ 0.
Define a C2 − fuctionV :

V (x, y, k) = M [−FCx− by +
FCC

h
ey]

+
(ex + pey)2

2
− Φ(u0, v0) +M(ϖk +ϖl)

= V1(x, y) + V2(x, y)

− Φ(x0, y0) + V3(k),

(24)

where ϖ = (ϖ1, ..., ϖm)T , |ϖ| =
√∑

k = 1mϖ2
k

and ϖk will be determined in the rest of the proof.
Note that we put |ϖk| in order to make |ϖ|k+ |ϖ|

non-negative. By Itô’s formula, we have

L1(x, y) ≤M [−FC[a(k)− σ1(k)
2

2
]

+ b[h(k) +
σ2(k)

2

2
]

+
FFCC2

h
ex+y],

(25)

and
LV3(k) = M

∑
γkl(ϖl −ϖk), (26)

where FC = (fc+mp+mey), C = (c+ p+ αey)
Let us define the vector Λ = (Λ1, ...Λm)T with

Λk = FC[a(k)− σ1(k)2

2 ]−b[h(k)+ σ2(k)2

2 ]. Since the
generator matrix Γ is irreducible, then for Λk, there
exists ϖ = (ϖ1, ..., ϖm)T a solution of the poisson
system, such that

Γϖk − Λ = −(

m∑
j=i

πjΛj) (27)

where−→1 denotes the column vector with all its entries
equal to 1. Thus, we have∑

l ̸=k,k∈s
γkl(ϖl −ϖk)− (FC[a(k)

− σ1(k)
2

2
]

− b[h(k) +
σ2(k)

2

2
])

− (FC
∑
k∈s

πk[a(k)−
σ1(k)

2

2
]

− b
∑

(h(k) +
σ2(k)

2

2
))

= −λ.

(28)
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Thereby, yields L(V1 + V3) ≤ M(−λ +
FFCC2

h ex+y)

LV2(x, y) ≤ (ex + qey)[ex(a(k)− b(k)ex)

− Cex+y − ph(k)ey + pFCex+y]

+
σ1(k)

2

2
+ q2

σ2(k)
2

2
e2y

≤ −be3x − q2min
k∈s

{h(k)

− σ2(k)
2

2
}e2y + (a

+
σ2
1

2
e2x ++qa)ex+y

≤ −be3x − q2

2
min
k∈s

{h(k)− σ2(k)
2

2
}e2y

+ (a+
σ2
1

2
+

a2

2mink∈s{h(k)− σ2
2

2 }
)e2x

= −be3x − q2

2
minh(k)− σ2(k)

2

2
e2y + ne2x

(29)

Then, we have

LV (x, y, k) ≤ −Mλ+M
FFCC2

h
ex+y

− be3x − q2

2
min{h(k)− σ2(k)

2

2
}e2y

+ ne2y.

(30)

In the set Dc × S, we choose sufficiently small ε
such that

0 < ε <
hλ

4FFCC2
,

0 < ε <
q2hminh(k)− σ2(k)2

2

4MFFCC2
,

0 < ε <
bh

2MFFCC2
,

−Mλ− b

2ε2
+ k1 ≤ −1,

−Mλ− q2

4
min{h(k)− σ2(k)

2

2
}e2y + ne2x,

whereK1 andK2 are positive constants which can be
found in. Denote that

D1
ε = (x, y) ∈ R2 : −∞ ≤ x ≤ +∞,

D2
ε = (x, y) ∈ R2 : −∞ < y ≤ ln ε,

D3
ε = (x, y) ∈ R2 : x ≥ ln ε−1,

D4
ε = (x, y) ∈ R2 : y ≥ ln ε−1.

Obviously, Dc = D1 ∪ D2 ∪ D3 ∪ D4. In the
following we prove LV (x, y, k) ≤ −1 on Dc.

case1: On D1
ε × S, owing toex+y ≤ εey ≤ ε(1 +

e2y), we have

LV (x, y, k) ≤ −Mλ

4
+ (−Mλ

4
+

MFFCC2

h
)− b

2
e3x

+ (−q2

4
minh(k)− σ2(k)

2

2
+

MFFCC2

h
)e2y

+ [−Mλ

2
− b

2
e3x − q2

4
min{h(k)− σ2(k)

2

2
}e2y

+ ne2x]

≤ −Mλ

4
+ (−Mλ

MFFCC2

h
)− b

2
e3x

+ (−q2

4
min{h(k)− σ2(k)

2

2
}+ MFFCC2

h
)e2y

+ [−Mλ

2
+ sup− b

2
e3x − q2

4
minh(k)− σ2(k)

2

2
e2y

+ ne2x].

We have

M =
λ

2
max

{
2, sup

(u,v)∈k2

− b

2
e(3x

)

−q2

4
min
k∈s

{
h(k)− σ2(k)

2

2

}
e2y + ne2x

}.

Then

−Mλ

4
≤ −1.

case2: For any (x, y, k) ∈ D2
ε × S, owing to

eu+v ≤ εeu ≤ ε(1 + e3u), we have

L(x, y, k) ≤ −Mλ

4
− b

2
e3x ≤ −Mλ

4
≤ −1,

∵ ex+y ≤ εex ≤ εε(1 + e3x)

LV (x, y, k) ≤ −Mλ

4
+ (−Mλ

MFFCC2ε

h
)

+ (− b

2
+

MFFCC2ε

h
)e3x

− q2

4
minh(k)− σ2(k)

2

2
e2y

+ (−Mλ

2
+ sup− b

2
e3x

− q2

4
min
k∈s

{h(k)− σ2(k)
2

2
}e2y + ne2x),

LV (x, y, k) ≤ [−Mλ

4
− q2

4
min
k∈s

{h(k)− σ2(k)
2

2
}e2y

≤]− Mλ

4
≤ −1.
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case 3: when(x, y, k) ∈ D3
ε × S

LV (x, y, k) ≤ −Mλ− b

2
e3x

+ (− b

2
e3x − q2

4
min
k∈s

{h(k)− σ2(k)
2

2
}e2y

+ [n+
(MFFCC2)2

q2h2minh(k)− σ2(k)2

2

]e2y)

≤ −Mλ− b

2ε3
+ k1

≤ −1.

case4: when (x, y, k) ∈ D4
ε × S

LV (x, y, k) ≤ −Mλ− p2

4
minh(k)− σ2(k)

2

2
e2y

+ (−be3x + ((n+
MFFCC2

q2h2minh(k)− σ2(k)2

2

]e2y))

≤ −Mλ− p2

4
minh(k)− σ2(k)

2

2

1

ε2
+ k2

≤ −1.

To sum up, we deduce that LV (x, y, k) ≤ −1,for
all (x, y, k) ∈ Dc × S.

5 Examples and Numerical
Simulations

In this section, we useMilsteins Higher OrderMethod
for discretization and the fourthorder RK4 techniques
for iteration to perform numerical simulations.
The following two examples show extinction and
stationary distribution.

Example 1 When the selected parameters satisfy
the conditions of Theorems 3.1 and 3.2, prey and
predators will become extinct as shown in Figure 1.

Example 2 When the selected parameters satisfy
the conditions of Theorem 4.1, prey and predators will
appear as shown in Figure 2.

Fig. 1: Extinct

  Fig. 2: Stationary distribution

6 Conclusions
In this paper, we establish a novel stochastic
prey-predator model with hunting cooperation and
regime switching. We establish the existence and
uniqueness of the global positive solution, provide
sufficient conditions for the extinction of system
(1.4). Utilizing the Lyapunov function method, we
demonstrate that the stochastic system with switching
possesses a unique stationary distribution, marking
the first attempt to address this issue. Based on
our research findings, future studies can explore
the following directions: further investigation into
the stability and dynamical behavior of stochastic
systems with switching; exploration of alternative
methods to prove the unique stationary distribution
of stochastic systems; consideration of more complex
models on the model.
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